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1. Introduction

Persuasion through public experimentation is prevalent. For example, a pharmaceutical

company has to preregister clinical trials and submit complete results to the Food and Drug

Administration (FDA) as part of the drug approval process. However, prior to conducting

clinical trials, the pharmaceutical company already possess more information about the drug

than the FDA. Sources of the pharmaceutical company’s private information include internal

R&D on related drugs, seeding trials and animal testings. A common belief is that pharma-

ceutical companies can benefit from having private information, and conversely, making this

information public is socially beneficial since the FDA will be better informed when mak-

ing decisions. This has led to calls for more transparency throughout the pharmaceutical

industry beyond just during clinical research.

Another example is startup funding. An entrepreneur uses seed money to develop a pro-

totype in order to convince an investor that a new technology can be reliably deployed. The

prototype is developed according to business plans submitted to the investor in advance, and

the investor can independently evaluate whether the prototype meets expectations. Despite

the transparency in this process, the investor is naturally concerned that the entrepreneur

has better knowledge about the technology and may capitalize on her private information

when designing the prototype.

However, it is not immediately clear whether these concerns are necessary–that is, whether

private information undermines the effectiveness of public experimentation and leads to wel-

fare losses. On the one hand, if the pharmaceutical company designs the clinical trial con-

tingent on the results of its internal research, the FDA is able to infer the pharmaceutical

company’s private information from the design of the clinical trial and disentangle any effect

of the pharmaceutical company’s private information. On the other hand, it is also possible

that the pharmaceutical company’s trial design does not depend on its private information.

Moreover, it is unclear whether in equilibrium, the pharmaceutical company chooses a more

informative or less informative clinical trial compared to the counterfactual where it does not

have private information. Depending on the answers to these questions, private information

may be beneficial or detrimental.

We study in this paper a costly persuasion game between a sender (e.g., the pharmaceu-

tical company/the entrepreneur) and a receiver (e.g., the FDA/the investor). The sender

persuades the receiver about an unknown, binary state of the world (e.g., whether a drug is

effective/whether a technology is reliable) by conducting a public, costly experiment (e.g.,

a clinical trial/a prototype). The sender is privately and partially informed about the state

of the world–at the outset of the game, she privately observes a noisy signal about the state
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(e.g., results of internal research/proprietary knowledge about the technology), which is her

type. Different types of the sender thus have different prior beliefs about the state of the

world and can choose to run different experiments. Hence, this is a signaling game. The

receiver can infer the state of the world by observing just the choice of experiment by the

sender as well as from the outcome of the experiment.

We first derive a family of cost functions for experiments from a Wald’s (1945) sequential

sampling problem. That is, the sender sequentially acquires public signals, at a cost, about

the state of the world. Two distinct features of this sampling problem are, first, the sender

and the receiver have heterogeneous prior beliefs, and second, the cost of acquiring each

signal is ex ante a random variable whose value depends on the signal’s realization. An

experiment in the persuasion game is equivalent to a threshold stopping rule in the Wald

sampling problem, and we show that the cost of an experiment equals the expected reduction

of a weighted log-likelihood ratio function evaluated at the sender’s belief.

Both the pharmaceutical example and the startup funding example can be modeled in

this way, but with one key difference. In the pharmaceutical example, a clinical trial consists

of tests on individual patients, and the outcome of each patient is a public signal about

the effectiveness of the drug. From the point of view of persuading the FDA, if a patient

recovers, it is a piece of good news, and if a patient does not recover, it is a piece of bad

news. And for the pharmaceutical company, bad news leads to a higher cost of the clinical

trial, since the company has to treat the patient using existing drugs if she does not recover.

In the startup example, the process of developing a prototype can be viewed as developing a

series of features. From the point of view of persuading the investor, successfully developing

a feature is good news, and failure to to do so is bad news. However, good news leads to a

higher cost of developing the prototype because of moral hazard: to incentivize the engineers

who work on the prototype, the entrepreneur needs to pay them bonuses atop fixed wages if

a feature is successfully developed.

Using this family of cost functions that we derive, our main results show that the equi-

librium outcome of the persuasion game depends on the relative costs of drawing good news

and bad news in the experiment. As is common for signaling games, multiple equilibria ex-

ist, and we focus on equilibria that satisfy the D1 criterion (Banks and Sobel, 1987). If bad

news is more costly, there exists a unique separating equilibrium outcome. That is, different

types of the sender choose different experiments, hence the sender’s choice of experiment

perfectly reveals her type. In this case, sender private information increases the equilibrium

payoff of the receiver compared to a benchmark model where the sender’s type is public. The

reason is as follows. The sender type whose prior belief is higher chooses a more Blackwell-

informative experiment than she would have chosen if her type is known to the receiver, in
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order to deter the sender type whose prior belief is lower from mimicking. This implies that

mandating disclosure of pharmaceutical companies’ internal research reduces public welfare,

as it decentivizes companies to run informative clinical trials.

In contrast, if good news is sufficiently more costly than bad news (in a precise sense), this

is a signaling game where the single-crossing property fails. Under some technical conditions,

there exists a continuum of pooling equilibria, that is, in addition to the unique separating

equilibrium. In at least some pooling equilibria, the receiver’s payoff is strictly lower than his

equilibrium payoff in the benchmark model where the sender’s type is public. This implies

that entrepreneurs’ private information can hurt investors, and due deligence that aims to

reduce information asymmetry is necessary even when experiments are public.

Related literature. Kamenica and Gentzkow (2011) introduce the study of Bayesian

persuasion via unrestricted, costless experiments where the sender and the receiver have the

same prior belief about the state of the world. Their main result is concavification, that is,

the sender’s payoff can be expressed as a value function over the (common) posterior belief,

and the sender’s equilibrium payoff is the concave closure of that value function. Alonso

and Câmara (2016) study an extension where the sender and the receiver have heteroge-

neous priors, but they “agree to disagree.” They derive a bijection between the sender’s

posterior belief and the receiver’s posterior belief, hence concavification can be applied after

a translation of beliefs. Similarly, Gentzkow and Kamenica (2014) relaxes the assumption

that experiments are costless. Using posterior separable (Caplin et al., 2018) costs of exper-

iments, they show that a persuasion game with costly experiments and a common prior is

equivalent to one with costless experiments and heterogeneous priors. Hence, the equilibrium

can be solved using concavification.

The study of persuasion games with a privately informed sender is more recent. Perez-

Richet (2014) studies equilibrium refinement in a persuasion game where the sender is fully

informed of a binary state. Koessler and Skreta (2021) study a more general information

design problem by a fully informed designer, allowing for many agents and private messages.

Alonso and Câmara (2018) study persuasion by a partially informed sender who chooses an

experiment from a restricted set of experiments. They provide conditions for a sender to

never gain by becoming informed. All three papers assume that information transmission

is costless and apply a generalization of the inscrutability principle (Myerson, 1983), which

enables them to focus on pooling equilibria without loss of generality. In the current paper,

in addition to introducing costs of experiments, we assume that the public experiment is

not correlated with the sender’s private information conditional on the state of the world.

Hence, the inscrutability principal does not apply. Two other papers that feature both
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costly experiments and sender private information are by Li and Li (2013) and by Degan

and Li (2021). In both papers, a privately informed sender chooses from a restricted class of

noisy signals that differ only on their precision, and the cost is increasing in the precision.

In contrast, we allow the sender to choose any Blackwell experiment, and the cost of an

experiment is increasing in its informativeness.

Within the Bayesian persuasion literature, the closest to the current paper is by Hedlund

(2017). Hedlund (2017) studies persuasion by a sender who is partially informed about

a binary state, and he also focuses on equilibria satisfying the D1 criterion. However, it

is assumed that experiments are costless, and the sender’s payoff is strictly increasing in

the receiver’s posterior belief. In equilibrium, the outcomes are either separating or fully

disclosing. In a separating equilibrium, the experiments chosen by the sender are more

informative than the ones in the benchmark case where the sender’s type is public.

The introduction of costs of experiments adds rich dynamics to persuasion games–the

sender’s type is payoff relevant, and the single-crossing property fails if good news is suf-

ficiently more costly than bad news. As a result, pooling equilibria (which are not fully

revealing) may exist alongside separating equilibria. In contrast, when experiments are

costless, the single-crossing property is always satisfied. The failure of single-crossing in our

setting is worth noting beyond the Bayesian persuasion literature, since the majority of stud-

ies on signaling games assume single-crossing (see, e.g., the analysis of insurance markets by

Rothschild and Stiglitz (1976); Wilson (1977)).

Our paper also contributes to the literature on cost of information, and specifically in

the context of persuasion. Posterior-separable cost functions have been popular in modeling

attention cost (e.g., Sims (1998, 2003)) and are used by Gentzkow and Kamenica (2014).

However, an experiment, as is defined by Blackwell (1953), is a concept independent of beliefs,

and with heterogeneous priors, it is not clear which player’s beliefs should be used to measure

the cost of an experiment. By studying a Wald’s (1945) sequential sampling problem, we

show that the cost of an experiment equals the expected reduction in a weighted log-likelihood

ratio function evaluated at the sender’s belief. The setup of the sequential sampling problem

is similar to that in Brocas and Carrillo (2007) and Henry and Ottaviani (2019), but we allow

for heterogeneous priors and assume that the cost of acquiring each signal is ex ante a random

variable that depends on its realization. The same class of log-likelihood ratio cost functions

is studied also by Pomatto et al. (2020), who provide an axiomatic foundation for the cost

function. Our microfoundation results complement their results, and we show that prior

dependence of the cost of information can be motivated by the fact that the costs of drawing

good and bad signals differ in the Wald sampling problem. Our result also complements other

studies which microfound cost of information through sequential information acquisition but
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by a single decision maker (e.g., Morris and Strack (2019); Bloedel and Zhong (2020)).

The rest of the paper is organized as follows. Section 2 presents the persuasion game

with a privately and partially informed sender and costly experiments. Section 3 studies the

symmetric information benchmark. Section 4 and section 5 study the pooling and separating

equilibria of the game, respectively, and section 6 compares the receiver’s equilibrium payoff

in the persuasion game and the symmetric information benchmark. Section 7 microfounds

the log-likelihood ratio cost function via a Wald’s sampling problem. Section 8 shows that

our main results–failure of the single-crossing property and existence of pooling equilibria–are

robust to Shannon entropy cost function. The last section concludes.

2. The Model

There is a sender (she), and a receiver (he). At the outset of the game, Nature determines

a binary state of the world ω ∈ Ω := {G,B} and a signal θ ∈ Θ := {h, l}1 according to a

commonly known distribution with full support. Let µ0 be the probability of the good state

(i.e., ω = G), and µθ the probability of the good state conditional on the signal realization

θ; assume that 0 < µl < µ0 < µh < 1. The sender privately observes the signal realization

θ, and neither player observes the state realization ω. Therefore, θ is the sender’s type, and

her prior belief on the good state is either µl or µh. On the other hand, the receiver’s prior

belief on the good state is µ0.

The game proceeds as follows. The sender publicly chooses an experiment π on the state

of the world which generates a binary outcome s ∈ {g, b}. That is, π : Ω→ ∆({g, b}). The

outcome of the chosen experiment s is determined according to the distribution π(·|ω) and

is publicly observed. The receiver takes a binary action a ∈ {0, 1}, and payoffs are realized.

2.1. Strategies. Given an experiment π, let p = π(g|G) and q = π(g|B). Without

loss of generality, p ≥ q. The experiment can thus be identified with (p, q), and the set of

experiments is Π = {(p, q) : 1 ≥ p ≥ q ≥ 0}.
A pure strategy of the sender {πθ}θ∈Θ consists of experiments chosen by all types of the

sender, where πθ ∈ Π is the experiment chosen by the type θ sender. A pure strategy of the

receiver is denoted a : Π × {g, b} → {0, 1}. It selects an action at every information set of

the receiver, which is identified by the sender’s choice of experiment π and its outcome s.

2.2. Beliefs. After observing the sender’s choice of experiment but before observing

its outcome, the receiver forms a belief about the sender’s type. Let γ(θ|π) denote his belief

1All our results can be generalized to accommodate finite Θ.
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that the sender’s type is θ after experiment π is chosen. It is more convenient to keep track

of β(π) :=
∑

θ∈Θ γ(θ|π)µθ. Notice that β(π) ∈ [µl, µh] is the receiver’s interim belief on the

good state.

After the outcome is observed, both players update their beliefs. Let µ̂(θ, π, s) and β̂(π, s)

be the posterior beliefs of the type θ sender and the receiver, respectively, that the state is

good after observing outcome s from experiment π.

2.3. Cost of experiment and the sender’s payoff. The sender strictly prefers the

high receiver action over the low action. Her payoff v(a, π|θ) = a − c(π|µθ) consists of two

parts: a reward, which is normalized to 1, if the receiver chooses the high action, minus the

cost of experiment c(π|µθ), which equals the expected reduction in a weighted log-likelihood

ratio function, measured using the sender’s beliefs. That is,

c(π|µ) = E[H(µ)−H(µ̂)],

where

H(µ) = Cgµ ln

(
1− µ
µ

)
+ Cb(1− µ) ln

(
µ

1− µ

)
and Cg, Cb > 0, and µ̂ is the sender’s posterior belief induced by the experiment π. Fixing

the sender’s prior and an experiment, µ̂ is a random variable whose value depends on the

experiment’s outcome and is calculated by the Bayes’ rule.

Several remarks are in order. First, in section 6, we microfound this cost function by

a Wald sampling problem. The parameters Cg and Cb are affine transformations to the

costs of drawing good and bad news in the sampling problem. Hence, the cost function can

accommodate both leading examples. The parameterization Cg < Cb models scenarios such

as pharmaceutical companies conducting clinical trials, where bad news is more costly than

good news, whereas Cg > Cb models scenarios such as entrepreneurs developing prototypes,

where good news is more costly than bad news. Second, for almost all experiments and

parameters Cg and Cb, the cost of running an experiment depends on the sender’s prior

belief, and different types of the sender may rank a set of experiments differently in terms

of their idiosyncratic costs. Third, the cost is increasing in the Blackwell-informativeness of

the experiment. The cost of running an uninformative experiment (i.e., p = q) is zero, and

the cost of running a fully revealing experiment (i.e., p = 1 > q or p > q = 0) is infinity.

The intuition is that, to be certain of either state, the sender must in expectation acquire

infinite number of signals in the sampling problem. Lastly, in section 7, we show that our

result that the single-crossing property fails is robust to Shannon Entropy cost.
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2.4. The receiver’s payoff. The receiver follows a threshold decision rule and chooses

the high action a = 1 if and only if his posterior belief is at least some commonly known

threshold β̄ ∈ (0, 1). We take this threshold as given and fixed throughout the paper.

To analyze the impact of sender private information on the receiver, we specify the payoff

of the receiver. The receiver’s payoff u(a, ω) depends on his action a and the state of the world

ω. By normalization, let u(0, G) = u(0, B) = 0, u(1, G) = 1, and u(1, B) = −β?/(1 − β?),
where β? ∈ (0, 1) is the sequentially rational threshold of choosing the high action.

We assume that β̄ > β? > µh. The assumption that β̄ > β? recognizes that the receiver

is able to commit to a higher standard β̄ so as to elicit more information from the sender.

We do not explicitly study the receiver’s commitment problem, but we make the following

observations. If β̄ = β?, the receiver’s equilibrium payoff is zero, as is in a standard persuasion

game; if β̄ = 1, persuasion is not possible due to the cost, and the receiver’s equilibrium

payoff is again zero. Therefore, there is an optimal threshold β̄ ∈ (β?, 1) that maximizes

the receiver’s expected payoff. The assumption β? > µh implies that the receiver is never

persuaded at the interim stage. Regardless of the receiver’s interim belief, it is not optimal

for the receiver to choose the high action if an experiment generates the bad outcome.

2.5. Equilibrium. An equilibrium consists of pure strategies of the players, {πθ}θ∈Θ

and a : Π × {g, b} → {0, 1}, and the receiver’s system of beliefs β : Π → [µl, µh], β̂ :

Π× {g, b} → [0, 1], such that

(1) Given the receiver’s strategy a, the sender’s strategy is optimal, i.e.,

πθ ∈ arg max
π∈Π

E[v(a(π, s), π|θ)]

for all θ ∈ Θ;

(2) The receiver follows the threshold rule, i.e., a(π, s) = 1 if and only if β̂(π, s) ≥ β̄;

(3) Beliefs are updated using Bayes’ rule whenever possible. That is, β(πl) = β(πh) = µ0

if πl = πh, β(πθ) = µθ if πl 6= πh, and

β̂(π, s) = B(β(π), π, s) :=
β(π)π(s|G)

β(π)π(s|G) + (1− β(π))π(s|B)

if π(s|G) + π(s|B) 6= 0.

We say an equilibrium is a pooling equilibrium if πl = πh and a separating equilibrium if

πl 6= πh. Furthermore, an equilibrium is a persuasion equilibrium if the high action is taken

with positive probability on the equilibrium path, i.e., Eθ,s[a(πθ, s)] > 0. Otherwise, it is a

trivial equilibrium. Given an equilibrium, we call the collection of experiments {πθ}θ∈Θ the

7



equilibrium outcome.

2.6. The D1 criterion. Among all equilibria, we are particularly interested in persua-

sion equilibria that satisfy the D1 criterion (Banks and Sobel, 1987).

Given the receiver’s interim belief β ∈ [µl, µh] and an experiment π ∈ Π, denote by

v̄(β, π|θ) the sender’s expected payoff if the receiver updates his posterior belief using the

Bayes’ rule and chooses the sequentially optimal action. That is, v̄(β, π|θ) = P[B(β, π, s) ≥
β̄]−c(π|µθ). Given an equilibrium of the game, denote by v?θ = v̄(β(πθ), πθ|θ) the equilibrium

payoff of the type θ sender, and for any deviation π ∈ Π \ {πθ}θ∈Θ, define

Dθ(π) = {β ∈ [µl, µh] : v̄(β, π|θ) > v?θ},

D0
θ(π) = {β ∈ [µl, µh] : v̄(β, π|θ) ≥ v?θ}.

That is, Dθ(π) is the set of receiver interim beliefs that warrant π a profitable deviation

for the type θ sender, and D0
θ(π) is the set of receiver interim beliefs following which the

deviation gives the sender at least the same payoff as her equilibrium payoff.

An equilibrium satisfies the D1 criterion if for all θ 6= θ′ and deviations π ∈ Π \ {πθ}θ∈Θ

such that D0
θ′(π) ( Dθ(π), the receiver’s off-path interim belief β(π) = µθ. Intuitively, if the

type θ sender is more keen to deviate to π in the sense that such deviation is profitable for

her given a larger set of receiver beliefs than for the other sender type θ′, the receiver should

attribute this deviation to the type θ sender.

3. Symmetric Information Benchmarks

To illustrate our settings and introduce some useful notation, consider a benchmark

model with symmetric information. Suppose that the sender’s prior belief on the good

state is µs, and the receiver’s prior belief is µr < β̄. That is, we allow the sender and the

receiver to have heterogeneous priors, but they “agree to disagree.” The sender publicly

chooses an experiment. The receiver takes the binary action after observing the outcome of

the experiment. Since there is no sender private information, receiver learns only from the

outcome of experiment.

Given any experiment π = (p, q) 6= (0, 0), we say that it is persuasive at belief µr if

the receiver chooses the high action after seeing the good outcome. That is, the receiver’s

posterior belief B(µr, π, g) ≥ β̄. Equivalently,

q

p
≤ Q(µr) :=

µr
1− µr

/ β̄

1− β̄
.
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All other experiments, including the uninformative experiment (0, 0), are unpersuasive at

belief µr. That is, the receiver chooses the low action regardless of the outcome of the

experiment.

The sender’s expected payoff from choosing the experiment π is

f(π, µs) := µsp+ (1− µs)q − c(π|µs)

if it is persuasive at belief µr. Although the experiment (0, 0) is not persuasive at belief µr,

it is an accumulation point of the set of persuasive experiments, and the sender’s expected

payoff is zero from choosing the experiment (0, 0). Hence, the sender can receive a payoff

arbitrarily close to zero from choosing persuasive experiments. On the other hand, the

sender’s payoff is simply −c(π|µr) ≤ 0 if the experiment π is unpersuasive, and the sender

can achieve zero payoff if and only if she chooses an uninformative experiment, i.e., p = q.

Hence, the sender’s equilibrium payoff in the symmetric information benchmark is

V (µs, µr) := sup
π∈Π, q

p
≤Q(µr)

f(π, µs) ≥ 0.

Two scenarios are possible. When the cost of experiment is low (in a precise sense, see ap-

pendix A.1), V (µs, µr) > 0, and there exists a unique experiment π̂(µs, µr) that is persuasive

at belief µr and obtains the sender’s equilibrium payoff, i.e., f(π̂(µs, µr), µs) = V (µs, µr). In

any equilibrium, the sender chooses the experiment π̂(µs, µr), and the receiver’s posterior be-

lief after seeing the good outcome is β̄. That is, π̂(µs, µr) is the unique equilibrium outcome.

When the cost of experiment is high, V (µs, µr) = 0, and persuasion is not possible in equilib-

rium. In all equilibria, the sender chooses an uninformative experiment which gives her zero

payoff. The equilibrium outcome is essentially unique, since all uninformative experiments

are equivalent under Blackwell’s order of informativeness. Denote by πu the equivalence class

of uninformative experiments, and by abuse of notation, we say π̂(µs, µr) = πu is the unique

equilibrium outcome in the latter case.

Moreover, fixing the receiver’s prior µr and the cost parameters Cg and Cb, the equilibrium

outcome π̂(µs, µr) is ranked by the sender’s prior µs. If good news is sufficiently more costly

than bad news, i.e., Cg is sufficiently greater than Cb (in a precise sense, see appendix A.1),

the equilibrium outcome is less Blackwell-informative if the sender’s prior is higher, and the

equilibrium payoffs of the sender and the receiver are both decreasing in the sender’s prior.

If Cg is small relative to Cb, the equilibrium outcome is more Blackwell-informative if the

sender’s prior is higher, and the players’ equilibrium payoffs are increasing in the sender’s

prior. This comparative statics result is closely related to failure of single-crossing in our
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main model with sender private information.

A special case where µs = µr is studied in Gentzkow and Kamenica (2014) and pertains

to the two welfare benchmarks of our model. In the no signal benchmark, the sender does

not observe the noisy signal θ, hence both players have prior belief µ0. In the public signal

benchmark, the noisy signal θ is observed by both the sender and the receiver. Hence, after

observing the noisy signal, the continuation game is one with common prior µθ. The receiver

is weakly better off with public signal compared to no signal.

Lemma 1. Let Uns be the receiver’s ex ante expected payoff in the no signal benchmark,

and Ups that in the public signal benchmark. Uns ≤ Ups.

4. Pooling Equilibria

We now turn to the game with incomplete information. Since the receiver updates his

belief about the state of the world after seeing the sender’s choice of experiment, whether

an experiment can persuade the receiver depends on the interim belief held by the receiver.

If an experiment π is persuasive at belief β(π), then the receiver chooses the high action if

the experiment π is chosen and yields the good outcome.

Since the receiver’s lowest possible interim belief is µl, an experiment π = (p, q) is always

persuasive if q
p
≤ Q(µl). That is, regardless of his interim belief, the receiver chooses the high

action if an always persuasive experiment yields the good outcome. Conversely, if q
p
> Q(µh),

the experiment π is never persuasive. For any other experiment, it is persuasive if and only

if the receiver’s interim belief is high enough, namely, β(π) ≥ Q−1( q
p
).

The sender can achieve a payoff guarantee V̄ (µθ) := V (µθ, µl) by choosing the experiment

π̂θ := π̂(µθ, µl). If V̄ (µθ) > 0, the experiment π̂θ is an always persuasive experiment, hence

the sender’s payoff from choosing π̂θ is V̄ (µθ) regardless of the receiver’s interim belief. If

V̄ (µθ) = 0, any always persuasive experiment gives her negative payoff, and the sender

achieves zero payoff only by choosing an uninformative experiment. Therefore, the type θ

sender’s ex ante expected payoff must be at least V̄ (µθ) in any equilibrium.

4.1. Pooling equilibrium outcomes. In a pooling persuasion equilibrium, the ex-

periment chosen by both types of the sender, π = (p, q), must be persuasive at the receiver’s

interim belief β(π) = µ0. That is, q
p
≤ Q(µ0). This condition, along with the the sender’s

payoff guarantee, fully characterizes the set of pooling persuasion equilibrium outcomes. A

pooling trivial equilibrium exists only if both sender types’ payoff guarantees are zero. The

following proposition characterizes the set of pooling equilibrium outcomes.
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Figure 1: The set of pooling equilibria

Proposition 2. There exists a pooling persuasion equilibrium where both sender types

choose experiment π = (p, q) if and only if f(π, µθ) ≥ V̄ (µθ) for all θ ∈ Θ and q
p
≤ Q(µ0).

There exists a pooling trivial equilibrium where both sender types choose experiment π = (p, q)

if and only if p = q and V̄ (µθ) = 0 for all θ ∈ Θ.

Figure 1 illustrates the set of pooling equilibrium outcomes. In each subfigure, the right

triangle is the set of experiments Π. The horizontal and vertical coordinates of an experiment

are the probabilities of the good outcome under the good and bad states, respectively. The

set of always persuasive experiments is {π : q
p
≤ Q(µl)}, and the set of experiments that are

persuasive at belief µ0 is {π : q
p
≤ Q(µ0)}. The two straight lines show the boundaries of

these sets.

When the cost of experiment is low, both sender types’ payoff guarantees are positive, as

is the case in figure 1(A). By choosing experiment π̂l, the low-type sender can achieve payoff

V̄ (µl) regardless of the interim belief β(π̂l) held by the receiver. The dashed curve through

π̂l is the low-type sender’s indifference curve, i.e., f(π, µl) = V̄ (µl). An experiment π that

is above the indifference curve gives the low-type sender a higher payoff than her payoff

guarantee if it is persuasive at belief β(π). Similarly, the high-type sender can guarantee

payoff V̄ (µh) by choosing experiment π̂h.

The set of pooling equilibrium experiments is the highlighted area Π? in figure 1(A).

That is, the set of all experiments which are persuasive at belief µ0 and give both sender

types at least their respective payoff guarantees. Taking any experiment π? ∈ Π?, we can

construct a pooling persuasion equilibrium where the sender chooses the experiment π?, as

11



follows. Both sender types choose the experiment π?, and the receiver’s interim belief is such

that β(π?) = µ0 and β(π) = µl for all π′ 6= π?. That is, any deviation is believed to be from

the low-type sender. The receiver updates his posterior belief using Bayes’ rule and chooses

the action according to the threshold rule. Off the equilibrium path, the receiver chooses

the high action after seeing the good outcome if the sender deviates to an always persuasive

experiment, and he chooses the low action otherwise. It is easy to verify that neither sender

type has a profitable deviation. If the sender deviates to an always persuasive experiment

π′, her deviation payoff f(π′, µθ) ≤ V̄ (µθ) ≤ f(π?, µθ) is bounded by her equilibrium payoff;

any other deviation is unpersuasive given the receiver’s critical off-path interim belief, so the

sender’s deviation payoff is bounded by zero.

When the cost of experiment is sufficiently high, the payoff guarantees for both types of

the sender are zero, as is the case in figure 1(B). The two curves passing through the origin

show the zero-payoff curves for the sender, with the dashed curve being for the low-type

sender. In this case, there is a continuum of pooling trivial equilibria where both sender

types pool on an uninformative experiment and receive zero payoffs, as well as a continuum

of pooling persuasion equilibria where both sender types receive nonnegative payoffs.

We discuss in details the existence of pooling equilibria in appendix A.4. Main results are

highlighted here. Fixing the sender’s possible prior beliefs {µθ}θ∈Θ, pooling trivial equilibria

exist if and only if the cost of experiment is sufficiently high. Pooling persuasion equilibria

exist if and only if the cost of experiment is sufficiently low, and the receiver’s prior µ0 is

sufficiently high–that is, the probability of the high-type sender is sufficiently high. Intu-

itively, if the receiver’s prior µ0 is close to µl, the low-type sender’s gain from mimicking the

high-type sender becomes small, since it does not change the receiver’s interim belief much.

Hence, no pooling persuasion equilibrium exists.

4.2. Single-crossing and the D1 criterion. In the preceding section, pooling equi-

libria are constructed using critical off-path beliefs of the receiver. Although there are other

pooling equilibria with different off-path receiver beliefs, the key to constructing any pooling

equilibrium is that, following any deviation π′ which the sender may find profitable (i.e.,

Dθ(π
′) is nonempty for some sender type θ), the receiver’s interim belief β(π′) must be suf-

ficiently low so as to deter the sender from deviating. Applying the D1 criterion, persuasion

equilibria can be ruled out generically.

Take, for example, the set of pooling equilibrium outcomes Π? we solve in figure 1(A)

and consider an equilibrium where the sender chooses an experiment π? ∈ Π?. The two

indifference curves through π? in figure 2 show the sender’s equilibrium payoffs. That is,

any experiment π′ = (p′, q′) above the solid curve is a profitable deviation for the high-type

12



p

q

Q(µh)

π?

π′

low-type

high-type

Figure 2: The D1 criterion eliminates an pooling equilibrium

sender if it is persuasive at belief β(π′), i.e., if β(π′) ∈ Dh(π
′) = [Q−1( q

′

p′
), µh] (the interval is

nonempty if q′

p′
≤ Q(µh)). On the other hand, any experiment π′ = (p′, q′) below the dashed

curve is strictly equilibrium dominated for the low-type sender even if it is persuasive at

belief β(π′). That is, D0
l (π
′) = ∅.2

Since the two sender types’ indifference curves have different slopes at π?, we can choose

a nearby experiment π′ such that it is above the high-type’s indifference curve but below

the low-type’s indifference curve. Considering π′ as a deviation of the sender, D0
l (π
′) = ∅ (

Dh(π
′) = [Q−1( q

′

p′
), µh]. Hence, the D1 criterion argues that a reasonable receiver should

hold off-path belief β(π′) = µh. However, given this belief, π′ is indeed a strictly profitable

deviation for the high-type sender, so this off-path belief cannot be supported by any pooling

equilibrium where both sender types choose the experiment π?.

To formalize this idea, let us define the marginal rate of substitution (of p for q for sender

type θ) as

MRS(π|µθ) = −∂f(π, µθ)/∂p

∂f(π, µθ)/∂q
.

That is, MRS(π|µθ) is the slope of the type θ sender’s indifference curve at the experiment

π = (p, q). Notice that at any uninformative experiment, the marginal rate of substitution

MRS(π|µθ) = − µθ
1− µθ

is strictly decreasing in µθ. We say that the single-crossing property is satisfied if this ranking

2Hence, D0
θ′(π) ( Dθ(π) ⇒ D0

θ′(π) = ∅. That is, the D1 criterion gives the same result as the intuitive
criterion (Cho and Kreps, 1987) in our game.
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holds true at all experiments (in the interior of Π), that is, if MRS(π|µh) ≤ MRS(π|µl)
for all π ∈ Π◦. If the single-crossing property is satisfied, different sender types’ indifference

curves are never tangent. Hence, we can find a nearby deviation and apply the D1 criterion

to rule out all pooling persuasion equilibria.

Our next result characterizes when the single-crossing property holds. We show that,

the single-crossing property fails if and only if Cg is sufficiently greater than Cb. That is, if

good news is sufficiently more costly than bad news. As a comparison, when experiments

are costless, the sender’s expected payoff f(π, µθ) = pµθ + q(1 − µθ) is linear in π and µθ,

hence the single-crossing property is always satisfied.

Proposition 3. There exists an increasing and concave function K̂ : R++ → R++

such that the single-crossing property is satisfied if and only if Cg ≤ K̂(Cb). Moreover,

K̂(Cb) > Cb for all Cb > 0.

Corollary 4. If 0 < Cg ≤ K̂(Cb), there is no pooling persuasion equilibrium satisfying

the D1 criterion.

Specifically, if bad news is more costly, i.e., 0 < Cg < Cb, no pooling persuasion equilib-

rium satisfies the D1 criterion. The function K̂ is fully characterized in the proof. Although

it does not admit a closed form solution, the function is shown in figure 3. The shaded

region is the set of parameters where the single-crossing property fails. As a remark, the

function K̂ does not depend on the sender’s prior beliefs, so the above proposition 3 extends

to finitely many sender types.

1 2 3 4 5

2

4

6

Cg

Cb

Cg = K̂(Cb)

Cg = Cb

Figure 3: The D1 criterion fails in the highlighted area
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4.3. Failure of single-crossing. We now turn to the case where the single-crossing

property fails. Since the difference between the high- and low-types’ marginal rates of substi-

tution change signs, there exist experiments where different sender types’ indifference curves

are tangent. The following proposition characterizes such experiments.

Proposition 5. If Cg > K̂(Cb), there exist p̂, p̌ : (0, 1) → (0, 1) such that q < p̂(q) <

p̌(q), and MRS(π|µh) = MRS(π|µl) if and only if p = p̂(q) or p = p̌(q). Moreover, p̂(q) is

decreasing in Cg and increasing in Cb for all q ∈ (0, 1).

As is the case with the function K̂, the functions p̂ and p̌ are independent of the sender’s

prior beliefs µl and µh. They depend only on the parameters Cg and Cb. Indeed, the marginal

rate of substitution at every experiment is weakly monotonic in the sender’s prior belief, so

we can extend our results to finitely many sender types.

When different sender types’ indifference curves are tangent, the aforementioned argu-

ment of the D1 criterion may not apply. The highlighted curves in figure 4 plot the set

of experiments where the high and low sender types’ marginal rates of substitution are

equal. Two experiments, π1 = (p1, q1) and π2 = (p2, q2), are so chosen that p1 = p̂(q1) and

p2 = p̌(q2), and we plot the indifference curves for the sender at these experiments. At

both experiments, the sender’s indifference curves are tangent. The difference between them

is that, at π1, the high-type sender’s indifference curve is more convex than the low-type

sender’s, while at π2, the low-type sender’s indifference curve is more convex. At experiment

π2, we can find a nearby experiment π′ 6= π2 that is above the high-type sender’s indifference

curve but below the low-type sender’s indifference curve. In any pooling equilibrium where

the sender chooses π2, the high-type sender is more keen to deviate to π′. Hence, the pooling

equilibrium does not satisfy the D1 criterion.

However, at experiment π1, since the high-type sender’s indifference curve is more convex,

we cannot find a nearby deviation that is always equilibrium dominated for the low-type

sender but strictly profitable for the high-type sender when the receiver’s interim belief

is high. In fact, for any nearby deviation π′ that is between the two indifference curves,

the low-type sender is more keen to deviate to π′, so the receiver’s interim belief should

be β(π′) = µl by the D1 criterion, which is consistent with the receiver’s critical off-path

beliefs. If q1 is small, the two indifference curves through π1 intersect again close to p = 1,

and there exists a large deviation π′ = (p′, q′) such that q′

p′
≤ Q(µh), and it is above the

high-type sender’s indifference curve but below the low-type sender’s indifference curve. In

this case, the high-type sender is more keen to deviate to π′, and we can again apply the D1

criterion to rule out any pooling equilibrium where the sender chooses π1. To summarize,

in any pooling persuasion equilibrium that satisfies the D1 criterion, the sender’s choice of
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p = p̂(q)

p = p̌(q)

π1

π2

low-type

high-type

Figure 4: Experiments where indifference curves are tangent

experiment π? = (p?, q?) must be such that p? = p̂(q?) so that no nearby deviation can break

the equilibrium, and q? must be sufficiently large so that no large deviation can break the

equilibrium.

Proposition 6. If Cg > K̂(Cb), there exists q̄ such that a pooling persuasion equilibrium

outcome π? = (p?, q?) can be supported by an equilibrium satisfying the D1 criterion if and

only if p? = p̂(q?) and q? > q̄.

5. Separating equilibria

In a separating equilibrium, the experiment chosen by the low-type sender πl is different

from the experiment chosen by the high-type sender πh. For the low sender type, her

equilibrium payoff must be at least her payoff guarantee V̄ (µl). However, she cannot achieve

a higher payoff than V̄ (µl), since at the interim stage, the receiver knows that she is the

low-type, i.e., β(πl) = µl. Therefore, in a separating equilibrium, the low-type sender chooses

πl = π̂l if her payoff guarantee V̄ (µl) > 0, and she chooses an uninformative experiment if

V̄ (µl) = 0. In both cases, the high-type sender’s payoff from mimicking the low-type sender

is bounded by her payoff guarantee V̄ (µh). Hence, the high-type sender does not want to

mimic the choice of the low-type sender.

The following proposition characterizes the set of separating equilibrium outcomes.

Proposition 7. There exists a separating persuasion equilibrium where the type θ sender

chooses experiment πθ = (pθ, qθ) if and only if πl = π̂l, f(πh, µh) ≥ V̄ (µh), f(πh, µl) ≤ V̄ (µl),
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q

Q(µh)

Q(µl)

π̂hπ̂l

Π?
h

low-type

high-type

(a) When the cost of experiment is small

p

q
Q(µh)

Q(µl)

persuasion eqm.

trivial eqm.

low-type

high-type

(b) When the cost of experiment is high

Figure 5: The set of separating equilibria

and qh
ph
≤ Q(µh). There exists a separating trivial equilibrium if and only if V̄ (µθ) = 0 for

all θ ∈ Θ, and πl 6= πh are both uninformative.

Figure 5 illustrates the result. When the cost of experiment is low, both sender types’

payoff guarantees are positive, as is the case in figure 5(A), and there exists a continuum of

separating equilibria that differ on the experiment chosen by the high-type sender. The low-

type sender chooses the always persuasive experiment π̂l which achieves her payoff guarantee

in every separating experiment, and Π?
h is the set of equilibrium experiments chosen by the

high-type sender. When the cost of experiment is high, both sender types’ payoff guarantees

are zero, as is the case in figure 5(B), and there exist separating trivial equilibria as well as

separating persuasion equilibria.

The following proposition characterizes the set of separating persuasion equilibria that

satisfy the D1 criterion. Suppose that a separating persuasion equilibrium exists. Then there

exists an essentially unique separating persuasion equilibrium that satisfies the D1 criterion

which maximizes the sender’s expected payoff.

Proposition 8. A separating persuasion equilibrium outcome can be supported by an

equilibrium that satisfies the D1 criterion if and only if it is sender optimal. That is, there

exists a unique D1 separating equilibrium outcome {π?l , π?h} such that the experiment chosen

by the low-type sender π?l = π̂l, and the experiment chosen by the high-type sender

π?h = argmax
π∈Π?

h

f(π, µh).
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In appendix A.7, we show the condition that trivial equilibria satisfy the D1 criterion.

Suppose that V̄ (µθ) = 0 for all θ ∈ Θ. Then there exist pooling and separating trivial

equilibria. If, in addition, there exists a separating persuasion equilibrium, no (pooling or

separating) trivial equilibrium satisfies the D1 criterion. If no separating persuasion equilib-

rium exists, then all (pooling and separating) trivial equilibrium outcomes can be supported

by an equilibrium satisfying the D1 criterion. In terms of the cost parameters, trivial equi-

libria satisfy the D1 criterion if either Cg is large relative to Cb, or if both parameters are

sufficiently large. The result does not depend on the single-crossing property.

6. Welfare Comparison

We focus on the case where the cost of experiment is such that persuasion equilibria exist.

When the single-crossing property holds, there exists a unique equilibrium outcome {π?l , π?h}
that can be supported by a separating persuasion equilibrium satisfying the D1 criterion. For

the low-type sender, the experiment chosen is the same as in the public signal benchmark,

i.e., π?l = πpsl = π̂l. For the high-type sender, the unique experiment chosen in D1 separating

equilibria is strictly more Blackwell-informative than in the public signal benchmark, i.e.,

π?h �B πpsh . Hence, the receiver’s equilibrium payoff in D1 separating equilibria is strictly

higher than that in the public signal benchmark.

When the single-crossing property fails and there exist a continuum of pooling persua-

sion equilibria that satisfy the D1 criterion, we compare the D1 pooling equilibrium outcome

π? = (p?, q?) such that q?

p?
= Q(µ0) with the equilibrium outcome πns in the no informa-

tion benchmark. The experiment π? is strictly less Blackwell-informative than πns, i.e.,

π? ≺B πns. Therefore, at least in some D1 pooling equilibria where the sender chooses an

experiment close to π?, the receiver’s equilibrium payoff is strictly less than that in the no

signal benchmark.

Proposition 9. Suppose that persuasion equilibria exist. In the unique D1 separating

equilibrium outcome, the receiver’s equilibrium payoff is strictly higher than that in the pub-

lic signal benchmark. If there exist pooling equilibria that satisfy the D1, then the receiver’s

equilibrium payoff is strictly lower in some D1 pooling equilibria than in the no signal bench-

mark.

7. Microfoundation of the Cost Function

We microfound the log-likelihood ratio cost function for experiments used in the per-

suasion game by a Wald sampling problem. There is a sequence of noisy signals about the
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state of the world which is ex ante unobserved to either player. The sender can sequentially

acquire signals at a cost, and the cost of acquiring each signal depends on the signal real-

ization. Once acquired, a signal is publicly observed by both players. The sender’s stopping

decision is irreversible, and the receiver moves after the sender stops acquiring signals. An

experiment in the persuasion game is equivalent to a threshold stopping rule in the Wald

sampling problem–that is, the sender stops acquiring additional signals at the first instance

the difference between the numbers of good and bad signals reaches some thresholds. To

microfound the cost function, we can equivalently model the persuasion game by assuming

that the sender commits to such a stopping rule in the sampling problem after she observes

her type. Since the receiver learns about the sender’s type only at this interim stage but

not during the sampling process, it is sufficient to focus on a complete information version

of the sampling problem, where the sender and the receiver hold different prior beliefs but

“agree to disagree,” and there is no sender private information.

7.1. The Wald sampling problem. Let us first consider a discrete version of the

problem. There is a binary state of the world ω ∈ {G,B}. A sender and a receiver have

heterogeneous priors. The sender’s prior belief on the good state is denoted µ, and the

receiver’s β, and we assume that µ, β ∈ (0, 1).

There is a sequence of binary signals (sn)∞n=1 such that each sn ∈ {g, b}. It is common

knowledge that conditional on the state, signals are distributed iid such that P(sn = g|ω =

G) = P(sn = b|ω = B) = α > 1
2
.

Both the state of the world and the signals are realized at the outset of the game and are

not observed by either player. We model the sender’s information acquisition as follows. At

any public history of the game where the sender has acquired signals s1, s2, . . . , sn and the

game has not yet ended, the sender chooses between acquiring an additional signal sn+1 and

irreversibly stopping signal acquisition. If she chooses to acquire signal sn+1, it is publicly

observed by both players. If she chooses to stop, the receiver takes a binary action a ∈ {0, 1},
and the game ends.

The receiver updates his belief using Bayes’ rule, and he chooses a = 1 if and only if his

posterior belief is at least some exogenous threshold β̄ ∈ (β0, 1). The sender’s payoff depends

on the receiver’s action and the public history. Let hn = (s1, s2, . . . , sn) denote the public

history at which the sender stops information acquisition, which contains the realization of

all signals acquired by the sender. Denote by ng(hn) and nb(hn) the number of good and

bad signals in the sequence hn, respectively. The sender’s payoff

v(hn, a) = a− cgng(hn)− cbnb(hn),
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where cg, cb > 0. That is, each signal is costly for the sender to acquire, and the cost depends

on the signal realizaton. This assumption is suitable in many applications. For example, in

the pharmaceutical company example, cg is the fixed cost of enrolling each patient in the

clinical trial, and cb − cg > 0 is the cost associated with treating a patient who develops

side effects; in the entrepreneur example, cb is the fixed wage paid to the engineers, and

cg − cb > 0 is the bonus the entrepreneur has to pay if the engineers successfully develop a

feature. Observe that neither the sender’s nor the receiver’s prior belief is payoff relevant.

7.2. The sender’s strategy and the cost of information. A strategy of the sender

is a stopping time adapted to the natural filtration generated by public histories. Specifically,

consider the following threshold strategy τ of the sender: she stops at the first history where

the difference between the number of good andbad signals equals some threshold values n < 0

or n̄ > 0. Notice that the sender stops in finite time with probability one. Hence, interpreting

the event ng(hτ )−nb(hτ ) = n̄ as the good outcome and the event ng(hτ )−nb(hτ ) = n as the

bad outcome, the stopping strategy τ is equivalent to an experiment π = (p, q) in our main

model, where the probabilities p and q are the probabilities of the good outcome conditional

on the good and bad state, respectively.

The sender’s posterior belief on the good state induced by the stopping rule τ is a

random variable µ̂, which equals either µn̄ :=
(

1 + 1−µ
µ
xn̄
)−1

or µn :=
(

1 + 1−µ
µ
xn
)−1

,

where x := 1−α
α

< 1.

In the following proposition, we calculate the expected cost of implementing the strategy

τ . We show that it equals the expected reduction in a weighted log-likelihood ratio measured

by the sender’s beliefs.

Proposition 10. The expected cost of implementing the strategy τ is E[cgng(hτ ) +

cbnb(hτ )] = E[H(µ0)−H(µ̂)], where

H(µ) = − lnx

2α− 1

[
c̄gµ ln

(
1− µ
µ

)
+ c̄b(1− µ) ln

(
µ

1− µ

)]
,

and c̄g = αcg + (1− α)cb, c̄b = (1− α)cg + αcb.

Hence, letting Cg = − lnx
2α−1

c̄g and Cb = − lnx
2α−1

c̄b, the cost of experiment π = (p, q) takes

the form we assume in section 2.

Notice that for a given experiment π, its cost c(π|µ) is a linear function of the sender’s

prior belief, and generically (i.e., for all but a measure zero set of parameters (p, q, Cg, Cb) ∈
Π × R2

++), it is strictly monotonic. That is, the cost of running an experiment depends on

the sender’s prior belief.
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8. Shannon Entropy Cost

Our findings that the single-crossing property may fail in a costly persuasion game

with a partially informed sender and that there exist pooling equilibria that satisfy the

D1 criterion are not specific to the log-likelihood cost function we use. The same features

are present in the model if we assume Shannon Entropy cost of experiments, i.e., letting

H(µ) = −C [µ lnµ+ (1− µ) ln(1− µ)], where C > 0. The Shannon entropy cost is widely

used in the literature to model attention cost (cf. Sims (2003)). When using the Shannon

Entropy cost function, the single-crossing property fails, and consequently, there may exist

a continuum of pooling equilibria that satisfy the D1 criterion.

Proposition 11. The single-crossing property fails in the persuasion game with Shan-

non Entropy cost of experiments. There exists p̂ : (0, 1) → (0, 1) such that q < p̂(q),

and MRS(π|µh) < MRS(π|µl) if p < p̂(q), MRS(π|µh) = MRS(π|µl) if p = p̂(q),

and MRS(π|µh) > MRS(π|µl) if p > p̂(q). A pooling persuasion equilibrium outcome

π? = (p?, q?) can be supported by an equilibrium satisfying the D1 criterion if and only if

p? = p̂(q?).

9. Conclusions

We study a persuasion game with costly experiments and a partially informed sender. At

the outset of the game, the sender privately observes a noisy signal (i.e., her type) about the

state of the world. She then chooses a costly experiment which generates public information

about the state of the world to the receiver. The receiver can infer the state of the world

from the choice of experiment as well as the outcome of the experiment.

From a Wald sampling problem with heterogeneous priors, we show that the cost of

experiment equals the expected reduction in a weighted log-likelihood ratio measured by the

sender’s beliefs. Therefore, the costs of running experiments depend on the sender’s type.

We focus on equilibria of the persuasion game that satisfy the D1 criterion. We show

that the D1 equilibrium outcome depends on the relative costs of drawing good and bad

news in the experiment. If bad news is more costly such as in the pharmaceutical example,

there exists a unique separating equilibrium outcome. The experiments chosen by the sender

are more informative than the ones chosen by the sender in the public signal benchmark.

Therefore, the receiver is unambiguously better off with sender private information. On the

other hand, if good news is sufficiently more costly than bad news such as in the entrepreneur

example, this is a signaling game where the single-crossing property fails .There may exist a

continuum of pooling equilibria in addition to the essentially unique separating equilibrium.
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In some pooling equilibria, the receiver’s equilibrium payoff is strictly less than that when

there is no sender private information.
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Appendix A. Auxiliary Results and Proofs

A.1. Results relating to symmetric information benchmark. We prove two re-

sults relating to the symmetric information benchmark. Lemma A.1 shows that the equi-

librium is essentially unique and gives the condition when persuasion is possible. Lemma

A.2 shows that fixing the receiver’s prior, the equilibrium is ranked by the sender’s prior.

When bad news is more costly, the equilibrium experiment is more Blackwell-informative if

the sender’s prior is higher; when good news is sufficiently more costly than bad news, the

equilibrium experiment is less Blackwell-informative if the sender’s prior is higher.

Lemma A.1. Persuasion is possible in the symmetric information benchmark, i.e., V (µs, µr) >

0, if and only if F(Cg, Cb, µs, µr) > 0, where

F(Cg, Cb, µs, µr) := µs + (1− µs)Q(µr)+µsCg (ln Q(µr) + 1−Q(µr))

− (1− µs)Cb (Q(µr) ln Q(µr) + 1−Q(µr)) .

If F(Cg, Cb, µs, µr) > 0, there exists a unique equilibrium outcome π̂ which is persuasive at

belief µr. If F(Cg, Cb, µs, µr) ≤ 0, an experiment is an equilibrium outcome if and only if it

is uninformative. That is, the equilibrium outcome is essentially unique, and we denote it

by π̂ = πu.

Proof. First, observe that

c(π|µ) = H(µ)− (µp+ (1− µ)q)H(µg)− (µ(1− p) + (1− µ)(1− q))H(µb)

= Cg

[
µ ln

1− µ
µ
− µp ln

(1− µ)q

µp
− µ(1− p) ln

(1− µ)(1− q)
µ(1− p)

]
+ Cb

[
(1− µ) ln

µ

1− µ
− (1− µ)q ln

µp

(1− µ)q
− (1− µ)(1− q) ln

µ(1− p)
(1− µ)(1− q)

]
= Cg

[
−µp ln

q

p
− µ(1− p) ln

1− q
1− p

]
+ Cb

[
−(1− µ)q ln

p

q
− (1− µ)(1− q) ln

1− p
1− q

]
is convex in p and q, where µg = B(µ, π, g) and µb = B(µ, π, b). Hence, f(π, µs) is concave

in p and q. Therefore, if V (µs, µr) > 0, there exists a unique experiment π̂ = (p̂, q̂) that

obtains the maximum. Moreover, it must be the case that q̂
p̂

= Q(µr). Assume by way of

contradiction that q̂
p̂
< Q(µr). Then there exists a linear combination π̃ = (p̃, q̃) of π̂ and

(1, 1) such that q̃
p̃
≤ Q(µr). Since f((1, 1), µs) = 1 > f(π̂, µs), concavity of f(·, µs) implies

that f(π̃, µs) > f(π̂, µs). This is a contradiction to that π̂ solves the sender’s maximization

problem.
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Hence, the sender’s equilibrium value in the symmetric information benchmark can be

simplified to

V (µs, µr) = max
p∈[0,1]

f((p,Q(µr)p), µs).

This single variable convex optimization problem can be solved by the first order condition
d
dp
f((p,Q(µr)p), µs) = 0. To shorten notation, we will denote the derivative briefly by f ′(p),

and Q(µr) by Q. Notice that

f ′(p) = µs + (1− µs)Q+ µsCg

[
lnQ− ln

1−Qp
1− p

+
1−Q
1−Qp

]
− (1− µs)Cb

[
Q lnQ−Q ln

1−Qp
1− p

+
1−Q
1− p

]
,

and as p ↑ 1, f ′(p) tends to negative infinity. Hence, the first order condition admits a unique

interior solution p̂ ∈ (0, 1) if and only if

f ′(0) = F(Cg, Cb, µs, µr) > 0.

If this is satisfied, there exists a unique equilibrium outcome where the sender chooses

the experiment π̂ = (p̂,Q(µr)p̂), and the sender’s equilibrium payoff V (µs, µr) > 0. If

F(Cg, Cb, µs, µr) ≤ 0, f ′(p) < 0 for all p ∈ (0, 1), hence the maximization problem has a

unique corner solution p̂ = 0, and V (µs, µr) = f((0, 0), µs) = 0. In this case, the sender

chooses an uninformative experiment in any equilibrium, and any uninformative experiment

can be supported by an equilibrium. By abuse of notation, we denote the essentially unique

equilibrium outcome in this case by π̂ = πu.

Notice that lnQ + 1 − Q < 0, and Q lnQ + 1 − Q > 0 for all Q ∈ (0, 1). Therefore,

F(Cg, Cb, µs, µr) > 0 if and only if the cost parameters Cg and Cb are small. Fixing µr, or

equivalently fixing Q = Q(µr), figure A.1 illustrates the result. Given some µs, V (µs, µr) > 0

if and only if (Cb, Cg) is below the solid line. As the sender’s prior belief increases to µ′s > µs,

the boundary of the region rotates around
(

Q
Q lnQ+1−Q ,−

1
lnQ+1−Q

)
, and V (µ′s, µr) > 0 if and

only if (Cb, Cg) is below the dashed line.

Hence, if Cg ≥ − 1
lnQ+1−Q and Cb ≥ Q

Q lnQ+1−Q , π̂ = πu for all µs ∈ (0, 1); if Cg ≥
− 1

lnQ+1−Q and Cb <
Q

Q lnQ+1−Q , π̂ = πu if and only if µs is sufficiently large; if Cg < − 1
lnQ+1−Q

and Cb ≥ Q
Q lnQ+1−Q , π̂ = πu if and only if µs is sufficiently small. The following lemma

generalizes this finding. Fixing all other parameters, the unique equilibrium outcome in the

symmetric information benchmark π̂ is ranked by the sender’s prior µs. Whether it is more

or less Blackwell-informative as µs increases depends on the relative costs of good and bad
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Cg

Cb

− 1
lnQ+1−Q

Q
Q lnQ+1−Q

− µs+(1−µs)Q
µs(lnQ+1−Q)

µs+(1−µs)Q
(1−µs)(Q lnQ+1−Q)

Cg = K̂(Cb)

Figure A.1: Region of persuasion and monotone comparative statics in the symmetric information
benchmark

news.

Lemma A.2. There exists an increasing and concave function K̂ : R++ → R++ such

that, fixing any µr, the unique equilibrium outcome π̂ is independent of the sender’s prior

µs if and only if Cg = K̂(Cb). Moreover, if Cg > K̂(Cb), the unique equilibrium outcome π̂

is less Blackwell-informative as the sender’s prior µs increases; if Cg < K̂(Cb), the unique

equilibrium outcome π̂ is more Blackwell-informative as the sender’s prior µs increases.

Proof. Fix an arbitrary µr. Consider first the case F(Cg, Cb, µs, µr) > 0. That is,

π̂ = (p̂, Qp̂) where p̂ ∈ (0, 1) is solved by the first order condition f ′(p) = 0. Notice that

f ′(p) = µs

(
1 + Cg

[
lnQ− ln

1−Qp
1− p

+
1−Q
1−Qp

])
︸ ︷︷ ︸

=:M

+ (1− µs)
(
Q− Cb

[
Q lnQ−Q ln

1−Qp
1− p

+
1−Q
1− p

])
︸ ︷︷ ︸

=:N

.

Hence, evaluated at p = p̂, M and N have different signs. Therefore, p̂ is independent of µs,

i.e., ∂
∂µs
f ′(p̂) = M −N = 0, if and only if M = N = 0.

Given any Cb > 0, M = N = 0 defines a system of equations of p and Cg, which admits
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a unique solution

p = 1− 1−Q
Q

1

t̂(Cb)
, Cg = K̂(Cb) := −

(
1

Cb
− t̂(Cb)

2

1 + t̂(Cb)

)−1

,

where t̂(Cb) > 0 is the unique solution to t− ln(1 + t) = 1
Cb

. Notice that the solution of Cg

does not depend on µr or Q. Thus, it defines a function K̂ of Cb. If Cg > K̂(Cb), M < 0 < N

at p = p̂, so ∂
∂µs
f ′(p̂) < 0, and p̂ is strictly decreasing in µs. If Cg = K̂(Cb), M = N = 0 at

p = p̂, so ∂
∂µs
f ′(p̂) = 0, and p̂ is independent of µs. If Cg < K̂(Cb), M > 0 > N at p = p̂, so

∂
∂µs
f ′(p̂) > 0, and p̂ is strictly increasing in µs.

Moreover, t̂
(

Q
Q lnQ+1−Q

)
= 1

Q
− 1, and K̂

(
Q

Q lnQ+1−Q

)
= − 1

lnQ+1−Q . Hence, we can com-

bine the case F(Cg, Cb, µs, µr) ≤ 0 and state that p̂ is independent of µs if Cg = K̂(Cb), weakly

increasing in µs if Cg < K̂(Cg), and weakly decreasing in µs if Cg > K̂(Cb). Equivalently,

the unique equilibrium outcome π̂ is independent of µs if Cg = K̂(Cb), more Blackwell-

informative as µs increases if Cg < K̂(Cg), and less Blackwell-informative as µs increases if

Cg > K̂(Cb). Since µr is arbitrary, the results hold for all µr ∈ (0, 1).

The rest of the proof, namely K̂ being increasing and concave, is done in the proof of

proposition 3.

The function K̂ reappears in proposition 3, where we show that the single-crossing prop-

erty in the persuasion game with sender private information fails if and only if Cg > K̂(Cb).

The highlighted curve in figure A.1 plots the function.

A.2. Proof of Lemma 1.

Proof. Let Ū(µ) be the receiver’s equilibrium payoff in the symmetric information

benchmark where µs = µr = µ. We are to show that Ū is piecewise linear and weakly

convex, hence

Uni = Ū(µ0) ≤ µ0 − µl
µh − µl

Ū(µh) +
µh − µ0

µh − µl
Ū(µl) = Ups.

Given µ < β̄, in the symmetric information benchmark with common prior µ, the sender

solves

max
x≤µ

µ− x
β̄ − x

−
(
H(µ)− µ− x

β̄ − x
H(β̄)− β̄ − µ

β̄ − x
H(x)

)
,

which admits a unique solution x?. If x? < µ, there is a unique equilibrium outcome where

the sender chooses an experiment that splits the players’ belief to x? and β̄. If x? = µ, the

sender chooses an uninformative experiment, and persuasion is not possible in equilibrium.
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The first order condition of the sender’s problem is

β̄ − µ
(β̄ − x)2

[
1 +H(β̄)−H(x)

]
− β̄ − µ
β̄ − x

H ′(x) = 0,

that is,

(A.1)

∫ β̄

x

(H ′(x)−H ′(z)) dz = 1.

Notice that the left-hand side of (A.1) is decreasing in x, and as x → 0, it goes to infinity.

Hence, (A.1) admits a unique solution β < β̄ which is independent of µ. If β < µ < β̄,

x? = β solves the sender’s problem; if µ < β, the sender’s problem has a corner solution

x? = µ.

To summarize, if β < µ < β̄, the unique equilibrium outcome splits the players’ belief

to β and β̄, and the receiver’s expected payoff Ū(µ) =
µ−β
β̄−β Ū(β̄); if µ ≤ β, persuasion is not

possible, and the receiver’s payoff Ū(µ) = 0. Together with the observation that when µ ≥ β̄,

the receiver chooses a = 1 and gets Ū(µ) = µ − β?

1−β? (1 − µ), these lead to the conclusion

that Ū is piecewise linear and weakly convex.

A.3. Proof of Proposition 2.

Proof. The “only if” part. Given a pooling equilibrium where the sender chooses ex-

periment π = (p, q), the receiver’s interim belief β(π) = µ0. If it is a persuasion equilibrium,
q
p
≤ Q(µ0). Otherwise, the receiver’s posterior belief B(µ0, π, g) < β̄ even after the good

outcome, and the receiver always chooses the low action on the equilibrium path, which

contradicts the equilibrium being a persuasion equilibrium.

The type θ sender’s ex ante expected payoff in the equilibrium must be at least V̂ (µθ). For

a persuasion equilibrium, the sender’s equilibrium payoff equals f(µθ, π), hence f(π, µθ) ≥
V̄ (µθ). For a trivial equilibrium, the sender’s equilibrium payoff is zero, but V̄ (µθ) ≥ 0, so

it must be the case that V̄ (µθ) = 0 and π is uninformative.

The “if” part. Let π = (p, q) be such that f(π, µθ) ≥ V (µθ) for all θ ∈ Θ, and q
p
≤ Q(µ0).

We show by construction that this is the experiment chosen by the sender in a pooling

persuasion equilibrium. Let πl = πh = π, β(π) = µ0, and β(π′) = µl for all π′ 6= π.

Moreover, let β̂, a be such that β̂(π′, s) = B(β(π′), π′, s) for all π′ ∈ Π and s ∈ {g, b}, and

a(π′, s) = 1 if and only if β̂(π′, s) ≥ β̄. To check that this constitutes an equilibrium, we

only need to check that there is no profitable deviation for the sender. For any π′ 6= π that is

always persuasive, the sender’s payoff by deviating to π′ is f(π′, µθ) ≤ V̄ (µθ) ≤ f(π, µθ). For
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any π′ 6= π that is not always persuasive, it is not persuasive at belief β(π′) = µl. Therefore,

the sender’s payoff from deviating to π′ is at most 0 ≤ V̄ (µθ) ≤ f(π, µθ). Hence, the sender

does not have a profitable deviation. Moreover, on the equilibrium path, the receiver chooses

the high action if the experiment π yields the good outcome, which happens with probability

µ0p+ (1− µ0)q > 0. Hence, the constructed is a persuasion equilibrium.

Let π be any uninformative experiment. We show that it is the experiment chosen by

the sender in a pooling trivial equilibrium if V̄ (µθ) = 0 for all θ ∈ Θ. Using the same

construction as above, let πl = πh = π, β(π) = µ0, and β(π′) = µl for all π′ 6= π. Moreover,

β̂(π′, s) = B(β(π′), π′, s) for all π′ ∈ Π and s ∈ {g, b}, and a(π′, s) = 1 if and only if

β̂(π′, s) ≥ β̄. This gives a trivial equilibrium. For any π′ that is always persuasive, the

sender’s payoff by deviating to π′ is strictly negative. For any π′ 6= π that is not always

persuasive, it is not persuasive at belief β(π′) = µl. Therefore, the sender’s payoff from

deviating to π′ is at most zero, and there is no profitable deviation.

A.4. Results relating to existence of pooling equilibria. A direct corollary of

proposition 2 and lemma A.1 shows that pooling trivial equilibria exist if and only if Cg and

Cb are high.

Corollary A.3. Pooling trivial equilibria exist if and only if F(Cg, Cb, µθ, µl) ≤ 0 for

all θ ∈ Θ.

Similarly, a necessary condition for a poling persuasion equilibrium to exist is that Cg

and Cb are small. The following result shows that, in addition, the receiver’s prior µ0 has to

be large.

Proposition A.4. A pooling persuasion equilibrium exists only if F(Cg, Cb, µθ, µh) > 0

for all θ ∈ Θ. Moreover, fixing {µθ}θ ∈ Θ and Cg, Cb such that F(Cg, Cb, µθ, µh) > 0 for all

θ ∈ Θ, there exists µ̄ ≥ µl such that a pooling persuasion equilibrium exists if µ0 > µ̄, and

no pooling persuasion equilibrium exists if µ0 < µ̄.

Proof. Fixing {µθ}θ∈Θ, pooling persuasion equilibrium does not exist if, for all π =

(p, q) such that q
p
≤ Q(µ0), f(π, µθ) < 0 for some θ ∈ Θ. Since µ0 < µh, a necessary

condition that a pooling persuasion equilibrium exists is F(Cg, Cb, µθ, µh) > 0 for all θ ∈ Θ.

That is, Cg and Cb are small.

Suppose that Cg and Cb are such that F(Cg, Cb, µθ, µh) > 0 for all θ ∈ Θ. We are to

show that a pooling persuasion equilibrium exists if and only if µ0 is sufficiently high. We

consider two separate cases.
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First, if π?l = π?h = πu, i.e., if F(Cg, Cb, µθ, µl) ≤ 0 for all θ ∈ Θ, letting

µ̄ := inf{x : F(Cg, Cb, µθ, x) > 0, ∀θ ∈ Θ},

a pooling persuasion equilibrium exists if and only if µ0 > µ̄. By assumption, µ̄ ∈ [µl, µh).

Second, if π̂θ 6= πu for at least some θ ∈ Θ, let Uθ = {π : f(π, µθ) ≥ V̄ (µθ)}. It is a

closed and convex set, and therefore, so is Ul ∩ Uh. Moreover, Ul ∩ Uh is nonempty, since

(1, 1) ∈ Ul ∩ Uh. Let

µ̄ = min

{
µ0 : ∃(p, q) ∈ Ul ∩ Uh,

q

p
≤ Q(µ0)

}
≥ µl.

Let π? = (p?, q?) ∈ Ul ∩ Uh be such that q?

p?
≤ Q(µ̄). By convexity of Ul ∩ Uh, any convex

combination of π? and (1, 1) belongs to Ul ∩ Uh. Hence, for all µ0 ≥ µ̄, there exists (p, q) ∈
Ul ∩ Uh such that q

p
≤ Q(µ0). Therefore, by proposition 2, a pooling persuasion equilibrium

exists if and only if µ0 ≥ µ̄. Moreover, µ̄ = µl if and only if π?l = π?h 6= πu, which happens

only on a Lebesgue measure zero set of parameters satisfying Cg = K̂(Cb).

A.5. Proof of Proposition 3.

Proof. Given µ ∈ (0, 1) and π = (p, q) ∈ Π such that 1 > p ≥ q > 0, let µg = B(µ, π, g),

and µb = B(µ, π, b). That is, µg and µb are the posterior beliefs induced by the good and

bad outcome from experiment π given prior µ, respectively. Observe that

f(π, µ) = µp+ (1− µ)q −H(µ) + (µp+ (1− µ)q)H(µg) + (µ(1− p) + (1− µ)(1− q))H(µb).

Taking derivatives,

∂f(π, µ)

∂p
= µ [1 +H(µg) + (1− µg)H ′(µg)−H(µb)− (1− µb)H ′(µb)]

= µ

[
1 + Cg

(
ln

1− µg
µg

− ln
1− µb
µb

)
+ Cb

(
1− µg
µg

− 1− µb
µb

)]
= µ− µCg ln

p(1− q)
(1− p)q

− (1− µ)Cb
p− q
p(1− p)

= −Cb
p− q
p(1− p)︸ ︷︷ ︸
=:A1

−µ
[
−1 + Cg ln

p(1− q)
(1− p)q

− Cb
p− q
p(1− p)

]
︸ ︷︷ ︸

=:A2

,
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and similarly,

∂f(π, µ)

∂q
= (1− µ) [1 +H(µg)− µgH ′(µg)−H(µb) + µbH

′(µb)]

= (1− µ)

[
1 + Cg

(
µg

1− µg
− µb

1− µb

)
+ Cb

(
ln

µg
1− µg

− ln
µb

1− µb

)]
= 1− µ+ µCg

p− q
q(1− q)

+ (1− µ)Cb ln
p(1− q)
(1− p)q

= 1 + Cb ln
p(1− q)
(1− p)q︸ ︷︷ ︸

=:A3

+µ

[
−1 + Cg

p− q
p(1− p)

− Cb ln
p(1− q)
(1− p)q

]
︸ ︷︷ ︸

=:A4

.

Therefore,

MRS(π|µ) = −∂f(π, µ)/∂p

∂f(π, µ)/∂q
=
A1 + A2µ

A3 + A4µ
.

Noticing that ∂f(π,µ)
∂q

> 0, that is, the denominator A3 +A4µ > 0. Therefore, for any µl < µh,

MRS(π|µh)−MRS(π|µl) has the same sign as

∆ := A2A3−A1A4 = (Cg−Cb) ln
p(1− q)
(1− p)q

+CgCb

[(
ln
p(1− q)
(1− p)q

)2

− (p− q)2

pq(1− p)(1− q)

]
−1.

Notice that ∆ does not depend on µh or µl. Moreover, as p ↓ q, ∆→ −1 < 0, and as p ↑ 1,

∆→ −∞.

Fix q ∈ (0, 1). Taking derivative with respect to p,

(A.2)
∂∆

∂p
=
Cg − Cb
p(1− p)

+
CgCb

p(1− p)

[
2 ln

p(1− q)
(1− p)q

− p− q
p(1− q)

− p− q
(1− p)q

]
.

Notice that the bracket in (A.2) is strictly negative for all p > q, since

∂

∂p

[
2 ln

p(1− q)
(1− p)q

− p− q
p(1− q)

− p− q
(1− p)q

]
=

2

p(1− p)
− q

p2(1− q)
− 1− q

(1− p)2q
< 0,

and evaluated at p = q, it equals zero. Hence, if Cg ≤ Cb, ∆ is strictly decreasing in p and

therefore negative for all p ≥ q. That is, MRS(π|µh) < MRS(π|µl) holds for all π ∈ Π◦,

and the single-crossing property holds.

Moreover, notice that the bracket in (A.2) goes to negative infinity as p ↑ 1. Hence, if

Cg > Cb, ∆ is first increasing in p when p ∈ (q,p(q)) and decreasing in p when p ∈ (p(q), 1),
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where p = p(q) is the unique solution of

(A.3) 2 ln
p(1− q)
(1− p)q

− p− q
p(1− q)

− p− q
(1− p)q

= −Cg − Cb
CgCb

.

Letting t := p(1−q)
(1−p)q > 1, we can rewrite (A.3) as

(A.4) 2 ln t+
1

t
− t+

Cg − Cb
CgCb

= 0.

The left-hand side of (A.4) is strictly decreasing in t; as t ↓ 1, it tends to Cg−Cb

CgCb
> 0, and

as t→∞, it tends to negative infinity. Hence, (A.4) has a unique solution t? > 1, which is

increasing in Cg and decreasing in Cb. Therefore,

(A.5) p(q) =
t?q

1 + (t? − 1)q
∈ (q, 1).

Using (A.5) to evaluate ∆ at p = p(q), we have

∆? := (Cg − Cb) ln t? + CgCb

[
(ln t?)2 − (t? − 1)2

t?

]
− 1.

Notice that ∆? does not depend on q. That is, fixing any q ∈ (0, 1) and varying p on (q, 1), ∆

first increases, obtains its maximum ∆? at p = p(q), and then decreases. Applying envelope

theorem,
∂∆?

∂Cg
= ln t? + Cb

[
(ln t?)2 − (t? − 1)2

t?

]
≥ ∆? + 1

Cg
> 0.

Notice that y′(x) = y(x)+1
x

solves a linear function. Therefore, ∆? increases in Cg at least as

fast as a linear function. Given any Cb > 0, as Cg ↓ Cb, ∆? → −1. Therefore, there exists a

unique Cg > Cb such that ∆? = 0. Denote this unique Cg by K̂(Cb) (we later check that K̂

is the same function as derived in lemma A.2). Notice that (ln t)2 − (t−1)2

t
< 0 for all t > 1.

Therefore, by envelope theorem,

∂∆?

∂Cb
= − ln t? + Cg

[
(ln t?)2 − (t? − 1)2

t?

]
< 0

Hence, K̂ is strictly increasing.

If Cg ≤ K̂(Cb), MRS(π|µh) ≤ MRS(π|µl) for all π in the interior of Π, and the single-

crossing property is satisfied. If Cg > K̂(Cb), ∆? > 0. Hence, for any π = (p, q) such that

p = p(q), MRS(π|µh) > MRS(π|µl), hence the single-crossing property does not hold.
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We are left to check that K̂ is the same function as derived in appendix A.1. We do so by

showing that for all Q ∈ (0, 1), K̂
(

Q
Q lnQ+1−Q

)
= − 1

lnQ+1−Q . Substituting Cg = − 1
lnQ+1−Q

and Cb = Q
Q lnQ+1−Q in (A.4) yields the unique solution t? = 1

Q
, hence

∆? =
(2Q lnQ+ 1−Q2) lnQ−Q

[
(lnQ)2 − (1−Q)2

Q

]
(lnQ+ 1−Q)(Q lnQ+ 1−Q)

− 1 = 0.

That is, K̂
(

Q
Q lnQ+1−Q

)
= − 1

lnQ+1−Q .

A.6. Proof of Proposition 5.

Proof. If Cg > K̂(Cb), ∆? > 0. Hence, fixing q ∈ (0, 1), ∆ as a function of p has

two zeros, denoted p̂(q) and p̌(q), such that q < p̂(q) < p(q) < p̌(q) < 1. At p = p̂(q) or

p = p̌(q), MRS(π|µh) = MRS(π|µl). If p < p̂(q) or p > p̌(q), MRS(π|µh) < MRS(π|µl); if

p̂(q) < p < p̌(q), MRS(π|µh) > MRS(π|µl). Therefore, at p = p̂(q), the high-type sender’s

indifference curve is more convex than the low-type sender’s indifference curve, while at

p = p̌(q), the high-type sender’s indifference is more convex than the high-type sender’s.

We are left to show that that p̂(q) is strictly decreasing in Cg and increasing in Cb. By

definition, p = p̂(q) is a solution of ∆ = 0, and at p = p̂(q), ∂∆
∂p
> 0. Notice that ∆ is strictly

decreasing in Cb. Therefore, p = p̂(q) is strictly increasing in Cb. On the other hand,

(A.6)
∂∆

∂Cg
= ln

p(1− q)
(1− p)q

+ Cb

[(
ln
p(1− q)
(1− p)q

)2

− (p− q)2

pq(1− p)(1− q)

]
.

Using the fact that ∆ = 0 at p = p̂(q) to replace the bracket in (A.6), we have

∂∆

∂Cg
=
Cb
Cg

ln
p̂(q)(1− q)
(1− p̂(q))q

> 0

at p = p̂(q). Therefore, p̂(q) is decreasing in Cg.

A.7. Results relating to existence of pooling trivial equilibria that satisfy the

D1 criterion. Suppose that V̄ (µθ) = 0 for all θ ∈ Θ. That is, F(Cg, Cb, µθ, µl) ≤ 0 for all

θ ∈ Θ. Then there exists pooling and separating trivial equilibria.

If there also exists a separating persuasion equilibrium where the high-type sender chooses

experiment πh = (p, q). By proposition 7, q
p
≤ Q(µh), and f(πh, µh) > 0 > f(πh, µl).

Consider any trivial equilibrium. Both types of the sender receive zero payoff in equilibrium.

Consider πh as a deviation of the sender. Since f(πh, µh) > 0, πh is a profitable deviation for

the high-type sender if it is persuasive at belief β(πh). That is, Dh(πh) = [Q−1( q
p
), µh] 6= ∅.
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On the other hand, since f(πh, µl) < 0, πh is strictly equilibrium dominated for the low-type

sender regardless of the receiver’s interim belief, i.e., D0
l (πh) = ∅. Hence, the D1 criterion

requires that β(πh) = µh, which cannot be supported by any trivial equilibrium. Since

µh ∈ Dh(πh), πh is a profitable deviation for the high-type sender given such off-path belief.

If there does not exist a separating persuasion equilibrium, then for all π = (p, q) such that

f(π, µh) > 0, either q
p
> Q(µh), or f(π, µl) > 0. Hence, fixing any trivial equilibrium where

the receiver uses the critical off-path belief and any deviation π′ that is not uninformative,

the D1 criterion either requires that β(π′) = µl, which is consistent with the receiver’s critical

off-path belief, or the D1 criterion is muted about the off-path belief β(π′). Hence, the trivial

equilibrium satisfies the D1 criterion.

By lemma A.1 and proposition 7, when V̄ (µθ) = 0 for all θ ∈ Θ, a separating persuasion

equilibrium exists if and only if Cg ≤ K̂(Cb) and F(Cg, Cg, µl, µh) > 0.

A.8. Proof of Proposition 10.

Proof. For n ≤ n ≤ n̄, let zn be the expected cost of acquiring additional signals before

the difference between the number of g’s and b’s reaches either threshold, conditional on the

state being good and the current difference being n. {zn} satisfies the following recurrence

relation:

(A.7) zn = [αcg + (1− α)cb] + αzn+1 + (1− α)zn−1

for all n < n < n̄ and the boundary conditions zn = zn̄ = 0. Letting c̄g = αcg + (1 − α)cb,

(A.7) can be rewritten as

α

(
zn+1 +

n+ 1

2α− 1
c̄g

)
−
(
zn +

n

2α− 1
c̄g

)
+ (1− α)

(
zn−1 +

n− 1

2α− 1
c̄g

)
= 0.

Therefore,

zn = C1x
n + C2 −

n

2α− 1
c̄g,

where

C1 = − c̄g
2α− 1

n̄− n
xn − xn̄

, C2 =
c̄g

2α− 1

n̄xn − nxn̄

xn − xn̄

are solved using the boundary conditions. Hence, the expected cost of implementing the

threshold stopping rule τ conditional on the good state, i.e., E[cgng(hτ ) + cbnb(hτ )|ω = G],

is

z0 =
c̄g

2α− 1

n̄(xn − 1)− n(xn̄ − 1)

xn − xn̄
.

Similarly, conditional on the bad state, the expected cost of implementing τ , i.e., E[cgng(hτ )+
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cbnb(hτ )|ω = B], is
c̄b

2α− 1

n̄(xn̄ − xn̄+n)− n(xn − xn̄+n)

xn − xn̄
,

where c̄b = αcb + (1 − α)cg. Hence, the expected cost of implementing the strategy τ ,

E[cgng(hτ ) + cbnb(hτ )], is

1

2α− 1

[
µ
n̄(xn − 1)− n(xn̄ − 1)

xn − xn̄
c̄g + (1− µ)

n̄(xn̄ − xn̄+n)− n(xn − xn̄+n)

xn − xn̄
c̄b

]
.

It can be equivalently written as E[H(µ0)−H(µ̂)], where

H(µ) = − lnx

2α− 1

[
c̄gµ ln

(
1− µ
µ

)
+ c̄b(1− µ) ln

(
µ

1− µ

)]
,

and µ̂ is the sender’s posterior belief at stopping calculated by Bayes’ rule, which is a random

variable supported on {µn, µn̄}.
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