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Abstract

Real-world contests are inherently uncertain since the player who exerts the highest

effort can still lose. In this paper, I consider a general asymmetric incomplete informa-

tion contest model with a nonparametric distribution of uncertainty in the contest success

function. It generalizes all-pay auctions, Tullock contests, and rank-order tournaments

with two asymmetric players. Uncertainty in the contest success function summarizes

other factors that influence the contest win outcome apart from the efforts of the players,

such as, for example, players’ reputation or luck. First, I nonparametrically identify and

estimate the distribution of uncertainty using the information on contest win outcomes

and efforts. Next, I nonparametrically identify and estimate the distributions of the play-

ers’ costs of exerting effort. The model provides a method to disentangle two sources of

player’s advantage: asymmetry in the costs’ distributions and the effect of the uncertainty

distribution on the winning probability. As an empirical example, I apply the model to

the U.S. House of Representatives elections.
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1 Introduction

A contest is a natural model of costly competition. It describes situations when all players

spend resources (for example, exert efforts, spend money, or time) in order to affect their

probability of getting an object (or a prize). The effort is a sunk cost, since no matter whether

a player wins or loses the cost is always incurred. A broad variety of real-world situations

falls under this description. For example, electoral competitions were modeled using contest

theory since the 1980s as all the candidates raise and spend money for their campaigns, but

only one candidate wins the election and obtains the seat (see, for example, Snyder (1989),

Baron (1994) and Skaperdas and Grofman (1995)). The effort in this case is represented by

campaign expenditures. In research and development, firms incur R&D expenses but only one

gets the patent (Taylor (1995), Che and Gale (2003), Dasgupta (1986)). Applications have also

been made to numerous other scenarios including marketing and advertising by firms, litigation,

sport events, arm races and rent-seeking activities, such as lobbying.1

Most of these real-world situations are inherently uncertain since the player who exerts the

highest effort can still lose. For example, the candidate with the highest campaign spending

can still lose the election; the company with the highest R&D expenditures can still not get

the patent. In contest models, the uncertainty is captured through the contest success function

that maps the efforts into probabilities of winning for participating players. As an example, in

the case of the Tullock contest, the probability of winning is determined by the relative efforts

of the players, and thus uncertainty takes a very particular parametric form.

In this paper, instead, I account for uncertainty in a much more flexible way. I consider a general

model of imperfectly discriminating contests, which was introduced by Hillman and Riley (1989),

and which generalizes the rank-order tournament model of Lazear and Rosen (1981). In this

model, the probability of winning is determined not only by the efforts of the players but also

by a stochastic variable that summarizes all other factors that influence the uncertain result

of the contest. I call this variable uncertainty. Its distribution is known to the players, but

unknown to the researcher. Instead of imposing any type of parametric assumptions, I will

nonparametrically estimate the distribution of uncertainty. Uncertainty also determines one

possible advantage of one player over the other: even if players exert the same efforts, one

might have higher chances of winning. For example, one political candidate might simply be

more popular than the other given campaign expenditures; among two equally well-trained

athletes, the one who performs better under stress might win more tournaments.

Importantly, this model generalizes many common contests such as all-pay auctions (in which

1See, for example, Bell et al. (1975), Farmer and Pecorino (1999), Bernardo et al. (2000), Hirshleifer and

Osborne (2001), Baye et al. (2005), Tullock (1980), Moldovanu and Sela (2001), Krueger (1974), Baye et al.

(1993), Kang (2015).
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there is no uncertainty given the efforts since the bidder with the highest effort wins), Tullock

contests, logit-form contests, and several others.2

The contest model that I study is of incomplete information and with asymmetric players.

Each player has a cost type (or ability) that is drawn from different distributions. Cost types

describe how costly it is to exert the efforts for the players, which is a second key source of

possible advantage. For example depending on the candidates’ abilities, for one candidate it is

less costly to raise campaign financing than for the other; for one firm R&D is less costly than

for the other. The model is a game of incomplete information in the sense that the players do

not observe the other players’ cost types, but the distributions of the cost types are common

knowledge. Each player exerts effort in order to win a prize, knowing his own cost type, the

distribution of the other player’s cost type, and the distribution of uncertainty. Fey (2008),

Ryvkin (2010), Ewerhart (2014), and Wasser (2013) are a few papers providing the existence of

equilibrium results for incomplete information contests.3

The literature on nonparametric identification and estimation of incomplete information auc-

tions and contests is very scarce even though the nonparametric methods received growing

attention in recent years. The only paper that studies the identification of an imperfectly dis-

criminating contest as a game with incomplete information is the one by He and Huang (2020).4

In that paper, the authors focus on the Tullock contest, which is a particular case of the general

model that I consider.

I first prove the identification of the model. I provide a method to disentangle two sources of

the possible advantage of one of the players: asymmetry in the cost types’ distributions and

the effect of the uncertainty distribution on the winning probability. The important difference

between these two advantages is that in most contexts only the former can be influenced by the

policymakers, whereas the latter can not (as it captures the broad variety of inherently uncertain

factors). Thus it is crucial for policy implications to be able to distinguish and quantify these

two sources of advantage. I propose a method to identify both the distribution of players’ cost

types as well as the distribution of uncertainty from observed efforts and win outcomes, which

does not require solving for the Bayesian Nash Equilibrium. The novelty of the paper is that I

do not impose any parametric assumption on the uncertainty distribution of the contest success

function.

2See Jia (2008), Jia et al. (2013), Ryvkin and Drugov (2020) for stochastic derivations of several contest

models.
3In contrast to incomplete information setting, the literature on the equilibrium characterisation in complete

information setting is larger. See, for example, Cornes and Hartley (2005), Yamazaki (2008), Siegel (2009), Siegel

(2010).
4The first-price auctions, instead, were studied in detail in the block of papers originated from Guerre et al.

(2000). Moreover, Shakhgildyan (2019) studies the identification and estimation of the all-pay auctions.
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Second, I propose a two-step estimation procedure. In the first step, I estimate the distribution

of uncertainty using the information on win outcomes and efforts. Next, I estimate the dis-

tributions of the players’ cost types. I prove the consistency and asymptotic normality of the

proposed estimators and use Fréchet derivatives to find the asymptotic distributions. Given the

growing availability of big data, nonparametric estimation becomes more and more desirable,

and the proposed model provides a tool that can be applied to a wide range of applications.

As an empirical application, I consider the U.S. House of Representatives elections. I chose the

application also considered in He and Huang (2020) to better illustrate how the proposed non-

parametric method compares to the existing state-of-the-art method proposed by them. Using

the model, I disentangle and estimate two potential advantages of the Incumbent. The first

source of advantage comes from the asymmetry in cost types since Incumbent might have a bet-

ter ability in raising money for the campaign than the Challenger. The second comes from the

effect of the uncertainty distribution on winning probability since even if Incumbent and Chal-

lenger spend the same amounts on their campaigns, the Incumbent might have higher chances

of winning (due to better reputation, name recognition, and other possible non-monetary fac-

tors). This separate identification is particularly important for policy counterfactual analysis

since only campaign financing can be regulated by the authority.

A large body of empirical work studies the effect of campaign spending on Congressional elec-

tions outcomes starting from the pioneering work of Jacobson (1978). My paper contributes

to the literature by providing a method of recovering the incumbency advantage in campaign

financing, as well as the advantage of the Incumbent due to his reputation in a nonparametric

way. This is done using the information on the observed spending as well as winning outcomes,

and the nonparametric structural contest model. Results of the model suggest that the in-

cumbency advantage was prevalent throughout the sample period 1972-2016. Incumbents won

93.9% of contests. Moreover, on average Incumbents spent 2.5 times as much as the average

Challenger. Using the structural model, I estimate that if the Incumbents were to spend as

much as the Challengers they would instead win only 85% of the elections.

The knowledge of the distributions of cost types allows policymakers to quantify the effect

of different policy changes. I consider two different policy counterfactual analyses aimed at

limiting the incumbency advantage: a public campaign financing of Challengers and a limit on

Incumbents’ expenditure. I show that the latter is more effective in terms of lowering both the

Incumbents’ winning probability as well as the total campaign spending.

The rest of the paper is organized as follows. In Section 2, I introduce the contest model

with uncertainty. Section 3 discusses the nonparametric identification of the model. Section

4 considers the nonparametric estimation. The application to the U.S. House Elections is

presented in Section 5. Section 6 concludes. All the proofs are omitted from the main text and
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are presented in the Appendix.

2 Contest Model with Uncertainty

2.1 Notations and Definitions

In this paper, I consider a contest of incomplete information with two asymmetric risk-neutral

players. This is motivated by the nature of the application in which two candidates are compet-

ing for a seat in the U.S. House of Representatives: one is the Incumbent and the other is the

Challenger.5 The general asymmetric model allows the econometrician to study and disentangle

two sources of the possible advantage of the players: asymmetry in the cost type distributions

and the effect of the uncertainty distribution on the winning probability.

Assumption 1. Each player has a cost type ci, i = 1, 2, which is his private information.

Player draws these costs ci, i = 1, 2 independently from commonly known distributions Fi(·)
with supports [ci, c̄i], densities fi and quantile functions qi = F−1

i , i = 1, 2.

Assumption 2. The players exert efforts bi simultaneously.6

Assumption 3. The efforts are sunk, regardless of whether or not the player wins a prize.

Moreover, the impact of the efforts (campaign spending in the application) on the winning

probability is uncertain. To incorporate this uncertainty in the model, I assume that the proba-

bility of winning is determined not only by the efforts of the players but also by nonparametric

stochastic components εi, i = 1, 2. Those components summarize other factors apart from the

efforts that are not under the control of the player at the time of exerting the effort, but that

could also influence the winning probability. For example, in the application to the elections,

both campaign expenditures, as well as other factors such as the Incumbent’s reputation, deter-

mine voters’ preferences over the candidates. The goal is to disentangle and estimate these two

potential advantages of the Incumbent. The first source of advantage is due to the fact that the

Incumbent often has a better reputation and is more experienced than the Challenger. The other

source of advantage is the Incumbent’s better skills in raising money for the campaign.

I denote the ratio of epsilons ξ and call it uncertainty. Depending on uncertainty ξ, players’

efforts have different effects on the winning probability. Formally,

Assumption 4. The real impact is xi = bi · εi, i = 1, 2, where εi is assumed to be independent

of bi and ci. Hξ(·) is the CDF of ε2/ε1 := ξ. I refer to ξ as uncertainty. Each εi, i = 1, 2

5The model with arbitrary N can be nonparametrically identified and estimated under the assumption of

the identically distributed uncertainty terms.
6In case when the players can observe the efforts of each other, the model becomes simpler since there would

be no need to integrate over all possible efforts of the other player.
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has a positive support, since only positive xi can lead to victory. hξ(·) is corresponding density

function.

In this paper, I consider the case when the higher expenditures have a multiplicative effect on the

political impact: as in Hillman and Riley (1989), where the model was introduced. By applying

the logarithm, it is straightforward to switch from the multiplicative model to the additive

model usually assumed in the rank-order tournaments originated from Lazear and Rosen (1981)

in which real impact is given by xi = bi + εi. Note that in contrast to the standard assumption

in the rank-order tournaments that εi are i.i.d, the model in the paper is more general as it

does not require εi to be identically distributed. In contrast, a difference in the distribution

of εi would allow quantifying the advantage of one of the players due to the factors that are

independent of the spending.

Assumption 5. At the time of exerting the effort, each player i knows his own cost type ci, as

well as Fj(·) and the distributions of uncertainty ξ.

Moreover, let wi = 1 if player i wins and wi = 0 otherwise. Then the probability of winning of

the first player given the efforts is:

P (w1 = 1| b1, b2) = P (x1 > x2 | b1, b2) = P (b1ε1 > b2ε2 | b1, b2) = P (b1 > b2ξ | b1, b2), (1)

where ε1 and ε2 are preferences for player 1 and player 2 respectively.

The expected payoff to player i participating in the contest is given by:

E[Ui|ci, Fj, Hξ] = P [wi = 1|ci, Fj, Hξ]− cibi = P (biεi > bjεj|ci, Fj, Hξ)− cibi, (2)

where i = 1, 2, j = −i.7 The final payoff to the player i is 1 − cibi if he obtains a good, and

−cibi if he does not obtain a good.

It is worth noting that:

Proposition 1. In a specific case when both εi and εj have an exponential distribution with

parameter λ = 1, the contest described above is equivalent to the Tullock contest.

That proposition shows that a widely used in applications Tullock contest is a particular case

of the general model presented in the paper. Moreover, under different exact distributions of εi,

the model reduces to the generalized Tullock contest, logit contest, probit contest, and several

others. For example, the inverse exponential distribution of εi’s yields exactly the ratio form of

the contest success function. For further discussions see Jia (2008), Jia et al. (2013), Ryvkin

and Drugov (2020).

7This model can be extended to account for the observables by assuming:

P [wi = 1|ci, Fj , Hξ] = P [(bi +m(Xi))εi ≥ (bj +m(Xj))εj |ci, Fj , Hξ],

where both function m and distribution of ε2/ε1 can be identified in the first step.
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2.2 Equilibrium Characterization

I consider the strictly monotonic Bayesian Nash equilibrium (BNE) in this incomplete informa-

tion game. Using the results of Athey (2001), I prove the existence of equilibrium.

Proposition 2. Given Assumptions 1-5 are satisfied, there exists a pure strategy decreasing

BNE of the incomplete information game formulated above.

The formal proof is presented in the Appendix, but the main intuition is that in this game the

single-crossing property holds with strict inequality, and thus the BNE in decreasing strategies

exists.

For each cost type, the corresponding effort is defined by the function si(ci) = bi, i = 1, 2 that

is the equilibrium effort strategy which maximizes the player i’s expected payoff. Since si(ci) is

strictly monotonic it is invertible and s−1
i (bi) = ci.

Given these decreasing strategies, we are able to express the first-order conditions of the game

in a way that represents the cost types in terms of the efforts’ distributions and equilibrium

strategies.

Proposition 3. Given Assumptions 1-5 as well as the assumption of strict monotonicity of the

strategies the first-order conditions of this game can be written as:

c1 =

c̄2∫
c2

f2(c2)
1

s2(c2)
hξ

(
s1(c1)

s2(c2)

)
dc2 (3)

and

c2 =

c̄1∫
c1

f1(c1)
s1(c1)

s2
2(c2)

hξ

(
s1(c1)

s2(c2)

)
dc1. (4)

In our case, given the data, private cost types and the distribution of uncertainty are unobserved

for the econometrician, whereas efforts are observed. Thus the goal for the identification would

be to rewrite the right-hand sides of the equations (3) and (4) in terms of distribution of

efforts. The first complication is that the effort distributions depend on the underlying cost

type distributions in two ways: directly through the cost types, and indirectly through the

equilibrium strategies that we cannot solve analytically.

Moreover, the right-hand sides also depend on the unobserved distribution of uncertainty which

we need to identify separately. The method is described in detail in the Section on Identifica-

tion.
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2.2.1 Representation in Terms of Valuations

The problem can be easily reformulated in terms of the valuations since the model is equivalent

to the one in which vi = 1/ci. The expected payoff to player i, in this case, is given by:

E[Ui|vi, Fj, Hξ] = viP [wi = 1|vi, Fj, Hξ]− bi = viP (biεi > bjεj|vi, Fj, Hξ)− bi, (5)

where i = 1, 2, j = −i, vi = 1
ci

and Fi is the value distribution function whereas fi is the

corresponding density.

It can be easily seen that equations (3) and (4) can be written in terms of valuations:

v1 =

( v̄2∫
v2

f2(v2)
1

s2(v2)
hξ

(
s1(v1)

s2(v2)

)
dv2

)−1

(6)

and

v2 =

( v̄1∫
v1

f1(v1)
s1(v1)

s2
2(v2)

hξ

(
s1(v1)

s2(v2)

)
dv1

)−1

. (7)

3 Nonparametric Identification

In this section, I prove that the unknown elements of the model are nonparametrically identified

from available data.

In the presented model there are three unknown structural elements for the econometrician -

the distributions of cost types Fi(·), i = 1, 2 as well as the distribution Hξ(·) of uncertainty

ξ = ε2/ε1, whereas the number of players, the efforts themselves bi, i = 1, 2 as well as the win

results, are observed.8 Therefore the identification problem reduces to whether the distributions

Fi, i = 1, 2 and Hξ are uniquely determined from observed efforts and win outcomes. Note that

the distribution Gi(·) of bi depends on the underlying distributions Fi(·), i = 1, 2 not only

through ci, but also through the equilibrium strategies si(·), i = 1, 2 and the distribution of

uncertainty.

Formally, let G denote the set of all distributions G = (G1, G2) over the space of permitted

efforts and let p denote the win probability of one of the players, F = (F1, F2) ∈ F and Hξ ∈ H.

Let us call the mapping from the private information to efforts γ ∈ Γ, where γ : F×H → G×p.
Then,

Definition 1. (Identification). A model (F ,H,Γ) is identified if for every (F, F ′), (Hξ, H
′
ξ)

and (γ, γ′), γ(F,Hξ) = γ′(F ′, H ′ξ)⇒ (F,Hξ, γ) = (F ′, H ′ξ, γ
′).

8Note that we cannot not separately identify the distributions of the ε’s, only their ratio.
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The identification argument is conducted in the following two steps. First:

Proposition 4. The distribution of uncertainty ξ = ε1/ε2 is identified from the data on efforts

and win outcomes.

The identification follows from the fact that when the ratio of the efforts varies significantly,

but the winner’s identity does not change, the ratio of the uncertainty terms should also vary

to explain the winning outcome. Formally:

P (w1 = 1) = P (b1ε1 > b2ε2) = P

(
ε2
ε1
<
b1

b2

)
:= P

(
ξ <

b1

b2

)
= Hξ

(
b1

b2

)
, (8)

where conditioning on efforts is omitted for simplicity of the exposition.

Thus the distribution of ε1
ε2

can be identified from observed win outcomes on the positive support

by varying b1/b2.

In the second step, the distribution of ξ is used to recover the cost type distribution.

Proposition 5. 9 Suppose that functions

λ1(b1, G,Hξ) ≡
b̄2∫
b2

g2(b2)
1

b2

hξ

(
b1

b2

)
db2

and

λ2(b2, G,Hξ) ≡
b̄1∫
b1

g1(b1)
b1

b2
2

hξ

(
b1

b2

)
db1

are strictly decreasing on the supports of efforts [bi, b̄i], i = 1, 2, respectfully, and their inverses

are differentiable on the supports of types [ci, c̄i]. If Gi(·), i = 1, 2, are absolutely continuous

probability distributions with support [bi, b̄i], then there exist absolutely continuous distributions

of players’ private cost types Fi(·) corresponding to the distributions of efforts. When Fi(·)
exist, they are unique with supports [ci, c̄i], i = 1, 2, respectfully, and satisfy Fi(ci) = 1 −
Gi((λi)

−1(bi, G,Hξ)) for all ci ∈ [ci, c̄i]. In addition, λi(·, G,Hξ) are the quasi inverse of the

equilibrium strategies in the sense that λi(b,G,Hξ) = s−1
i (b, F,Hξ) for all b ∈ [bi, b̄i]. Moreover,

the identifying equations can be rewritten in terms of quantile functions:

q1(1− t1) =

1∫
0

1

r2(t2)
hξ

(
r1(t1)

r2(t2)

)
dt2 (9)

9The formulation of the proposition is similar to Theorem 1 in Guerre et al. (2000).
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and

q2(1− t2) =

1∫
0

r1(t1)

r2
2(t2)

hξ

(
r1(t1)

r2(t2)

)
dt1, (10)

where t1, t2 ∈ (0, 1).

Similar to Guerre et al. (2000), the identification result is based on the property that together

with the distribution Fi(·) and the density fi(·), the derivative of the strategy s′i(·) can be

canceled out from the differential equation.

For every b ∈ [bi, b̄i] = [si(c̄i), si(ci)], we have Gi(b) = Pr(bi ≤ b) = Pr(ci ≥ s−1
i (b)) =

1−Fi(s−1
i (b)) = 1−Fi(c), where bi = si(ci). Thus the distribution Gi(·) is absolutely continuous,

has support [si(c̄i), si(ci)] and density gi(bi) = −fi(ci)
s′i(ci)

, where ci = s−1
i (bi). The formal proof is

presented in the Appendix.

Thus the players’ cost types can be represented in terms of the distributions of efforts and the

estimated earlier distribution of the uncertainty.

Proposition 5 can be also reformulated in terms of valuations.

Corollary 1. Suppose that functions

λ1(b1, G,Hξ) ≡
( b̄2∫
b2

g2(b2)
1

b2

hξ

(
b1

b2

)
db2

)−1

and

λ2(b2, G,Hξ) ≡
( b̄1∫
b1

g1(b1)
b1

b2
2

hξ

(
b1

b2

)
db1

)−1

are strictly increasing on the supports of efforts [bi, b̄i] i = 1, 2, respectfully, and their inverses are

differentiable on the supports of valuations [vi, v̄i]. If Gi(·), i = 1, 2, are absolutely continuous

probability distributions with supports [bi, b̄i], then there exist absolutely continuous distributions

of players’ valuations Fi(·) corresponding to the distributions of efforts. When Fi(·) exist, they

are unique with supports [vi, v̄i], i = 1, 2, respectfully, and satisfy Fi(vi) = Gi(λ
−1
i (bi, G,Hξ))

for all vi ∈ [vi, v̄i]. In addition, λi(·, G,Hξ) are the quasi inverse of the equilibrium strategies in

the sense that λi(b,G,Hξ) = s−1
i (b, F,Hξ) for all b ∈ [bi, b̄i]. Moreover, the identifying equations

can be rewritten in terms of quantile functions:

qv1(t1) =

( 1∫
0

1

r2(t2)
hξ

(
r1(t1)

r2(t2)

)
dt2

)−1

(11)
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and

qv2(t2) =

( 1∫
0

r1(t1)

r2
2(t2)

hξ

(
r1(t1)

r2(t2)

)
dt1

)−1

, (12)

where t1, t2 ∈ (0, 1).

That is a corollary of Proposition 5 since vi = 1
ci

, i = 1, 2.

4 Nonparametric Estimation

In this section, I propose the asymptotically normal estimators of the density hξ and the players’

cost types.

Let L be the number of contests, l is the the l-th contest, {bil, i = 1, 2, l = 1, ..., L} are the

observations of the efforts, {wil, i = 1, 2, l = 1, ..., L} are the observations of the winning out-

comes.10

In the first step, I estimate the distribution of uncertainty ξ from the observed efforts and win-

ning outcomes using kernel estimation. Specifically, consider player 1 winning probability:

Ĥξ(b) = P̂ (w1 = 1|b1/b2 = b) =

L∑
l=1

w1lK
(
b1l/b2l−b

h

)
L∑
l=1

K
(
b1l/b2l−b

h

) , (13)

where K(·) is the kernel function and h is the bandwidth.

By taking derivative with respect to b, we can find the estimator for the corresponding density

function:

ĥξ(b) = Ĥ ′ξ(b) =

=

L∑
l=1

w1lK
(
b1l/b2l−b

h

)
·
L∑
l=1

K ′
(
b1l/b2l−b

h

)
−

L∑
l=1

K
(
b1l/b2l−b

h

)
·
L∑
l=1

w1lK
′
(
b1l/b2l−b

h

)
h

[
L∑
l=1

K
(
b1l/b2l−b

h

)]2 . (14)

I use Fréchet derivatives to find the asymptotic distribution. In terms of the density of the

observables:

Hξ(b) =

∫
wf(w, b)dw

f(b)
,

10I assume that in each contest the same two types of players take part. In case when there are some

observable characteristics of the players and enough data, the analysis is similar, with the only difference that

we can condition on the observables.

10



where f(w, b) is the density of the vector (w, b) and b = b1/b2. By taking the derivative with

respect to b we get:

hξ(b) =
f(b)

∫
w ∂f(w,b)

∂b
dw − ∂f(b)

∂b

∫
wf(w, b)dw

f(b)2
=

f(b)
∫
wf ′(w, b)dw − f ′(b)

∫
wf(w, b)dw

f(b)2
.

Next, I introduce assumptions that would allow proving the consistency and asymptotic nor-

mality of the proposed estimators.

Assumption 6. The data on {bi, wi} is i.i.d.

Assumption 7. The density f(b) has compact support, is continuously differentiable of order

m ≥ δ + k, k ≥ 2, with derivatives which are uniformly bounded.

Assumption 8. The kernel function is of order δ, it has compact support and is continuously

differentiable on its support.

Assumption 9. As L→∞, h→ 0,
√
Lh3 →∞,

√
Lh3+2k → 0.

Then the following theorem holds:

Theorem 1. Given the assumptions about the model as well as Assumptions 6-9 are satisfied,

the estimator of the density of the uncertainty is consistent and asymptotically normal:

ĥξ(b)
p−→ hξ(b), and

√
Lh3(ĥξ(b)− hξ(b))→ N(0, Vξ),

where

Vξ =

[
P (w = 1| b1

b2
= b)(1− P (w = 1| b1

b2
= b)))

f 2(b)

]∫ (
∂K(u)

∂u

)2

du

Once the distribution of the uncertainty is estimated, we are ready to use it in the estimation

of the cost types. In order to do that, we also need to estimate the density of the efforts’

distributions. The effort densities can be estimated using the kernel estimator as follows:

ĝi(bi) =
1

Lh

L∑
l=1

K
(bi − bil

h

)
, (15)

Given the estimators of the distributions of uncertainty (14) and the effort densities (15), the

cost types can be estimated using their combination:

ĉ1 =

¯̂
b2∫
b̂2

ĝ2(b2)
1

b2

ĥξ

(
b1

b2

)
db2 (16)
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and

ĉ2 =

¯̂
b1∫
b̂1

ĝ1(b1)
b1

b2
2

ĥξ

(
b1

b2

)
db1 (17)

In the following theorem, I show that the proposed estimators are consistent and asymptotically

normal, and derive asymptotic distributions.

Theorem 2. Given the assumptions about the model as well as Assumptions 6-9 are satisfied

the proposed estimators of the cost is consistent and asymptotically normal:

ĉ1(b1)
p−→ c1(b1), and

√
Lh3(ĉ1(b1)− c1(b1))→ N(0, Vc1),

where

Vc1 =

b̄2∫
b2

g2
2(b2)

1

b2
2

[
P (w = 1| b1

b2
)(1− P (w = 1| b1

b2
)))

f( b1
b2

)

]
db2 ·

∫ (
∂K(u)

∂u

)2

du

Similarly:

ĉ2(b2)
p−→ c2(b2), and

√
Lh3(ĉ2(b2)− c2(b2))→ N(0, Vc2),

where

Vc2 =

b̄1∫
b1

g2
1(b1)

b2
1

b4
2

[
P (w = 1| b1

b2
)(1− P (w = 1| b1

b2
)))

f( b1
b2

)

]
db2 ·

∫ (
∂K(u)

∂u

)2

du

Thus, the proposed estimators are consistent and asymptotically normal.11

Corollary 2. Given the assumptions about the model as well as Assumptions 6-9 are satisfied

in the model with valuations:

v̂1(b1)
p−→ v1(b1), and

√
Lh3(v̂1(b1)− v1(b1))→ N(0, V1),

where

v̂1 =

( ¯̂
b2∫
b̂2

ĝ2(b2)
1

b2

ĥξ

(
b1

b2

)
db2

)−1

, (18)

11See Appendix for the estimation using quantile functions.
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V1 = v4
1(b1)

b̄2∫
b2

g2
2(b2)

1

b2
2

[
P (w = 1| b1

b2
)(1− P (w = 1| b1

b2
)))

f( b1
b2

)

]
db2 ·

∫ (
∂K(u)

∂u

)2

du

Similarly:

v̂2(b2)
p−→ v2(b2), and

√
Lh3(v̂2(b2)− v2(b2))→ N(0, V2),

where

v̂2 =

( ¯̂
b1∫
b̂1

ĝ1(b1)
b1

b2
2

ĥξ

(
b1

b2

)
db1

)−1

, (19)

V2 = v4
2(b2)

b̄1∫
b1

g2
1(b1)

b2
1

b4
2

[
P (w = 1| b1

b2
)(1− P (w = 1| b1

b2
)))

f( b1
b2

)

]
db2 ·

∫ (
∂K(u)

∂u

)2

du.

That is a simple corollary of Theorem 2 since the valuations vi = 1
ci

, i = 1, 2.

5 Application: U.S. House of Representatives

As an example of the application of the theoretical model described in the previous sections, I

quantify the incumbency advantage in the U.S. 1972-2016 House of Representatives elections.

Moreover, the model provides a method to separate the advantage into two parts. The first

advantage is due to better reputation of the Incumbent. It is characterized by the fact that

even when both the Incumbent and the Challenger spend the same amount of money on their

campaign, the probability that the Incumbent wins is estimated to be bigger than that of the

Challenger. This probability is given by the P (ξ < 1), which is determined by the distribution

of uncertainty. In its turn, the second advantage is due to the difference in campaign financ-

ing, which is characterized by the difference in the quantile functions of candidates’ cost types,

where the cost type describes how costly is it for the candidate to raise money. I show that

the Incumbent has a lower cost type and thus is better at campaign financing. The important

difference between these two advantages is that only the latter can be influenced by the policy-

makers, whereas the reputation can not. Thus it is crucial for policy implications to be able to

distinguish and quantify them.
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5.1 The U.S. House Elections: Incumbent vs. Challenger

I use the data from the U.S. House of Representatives elections.12 These elections happen

every two years. Currently, there are 435 voting seats; winners serve 2-year terms. To quantify

the incumbency advantage, I use the data on 6562 Incumbent-Challenger elections during the

1972-2016 period.13 All the Incumbent’s and the Challenger’s expenditures are in $2016. The

summary statistics is presented in Table 1 below. On average, Incumbents spent a lot more,

about 2.5 times as much as the Challengers on their campaigns, and what is especially striking

is that Incumbents won almost 94 percent of the elections. Throughout the observed period,

expenditures were increasing with only a slight decline starting in 2010. Please see Figure 1

below.

Table 1: Summary statistics of the Incumbent-Challenger elections

Obs Mean Std. Dev. Min Max

Incumbent’s Expenditures 6562 1056.65 1043.15 .198 26859.96

Challenger’s Expenditures 6562 400.19 698.55 .002 10839.82

Incumbent winning dummy 6562 .939 .240 0 1

* Expenditures are in thousands of 2016 dollars.

Figure 1: Average expenditures by election cycle

12I am very grateful to Gary Jacobson, Professor of Political Science at the University of California, San

Diego, for providing me with his data.
13I drop the elections in which we have no data on the expenditures as well as one observation for which the

ratio of expenditures is greater than 20, but the challenger wins, that is the outlier.
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In terms of the theoretical model, we observe the data on 6562 contests with two players each,

and winning outcomes, where players are two candidates, and the efforts are their expenditures.

Players have different cost types which they draw from different distributions, and they also

differ in terms of the distribution of stochastic components of the contest success function.

As a reminder, the expected payoff to player i in this case is given by:

E[Ui|ci, Fj(c), Hξ] = P [wi = 1|ci, Fj, Hξ]− cibi = P (biεi > bjεj|ci, Fj, Hξ)− cibi,

where i = 1, 2, j = −i, ci represents the cost type of each of the candidate, whereas the value

of the prize is normalized to one.

The first step is the estimation of the distribution of uncertainty ξ using equations (13) and

(14) above. The normal kernel and the optimal bandwidth are used. The results are shown

below in Table 2.

Table 2: Cumulative distribution function Hξ(·)

b 1 2 3 4 5 6 7

Ĥξ(b) 0.85 0.88 0.91 0.94 0.97 0.98 1.00

Here b represents the ratio of the Incumbent’s and the Challenger’s efforts.

If b = 1, expenditures are equal, and Hξ(1) represents the winning probability of the Incumbent

in this case. Thus the first incumbency advantage is represented by 85% winning probability

even in the case when the expenditures are the same.

The second step is the estimation of the distributions of candidates’ cost types using the efforts’

distributions and the distribution of uncertainty. Figure 2 represents the results of the model

estimation.14 The first panel represents results across all the data 1972-2016. I also divide

all election cycles by decades.15 The result reflects the Incumbent’s advantage in campaign

financing as the Challenger’s cost type first-order stochastically dominates the Incumbent’s cost

type distribution. That means that it is easier for the Incumbent to raise money than for the

Challenger.

14On the lower boundary, the quantile functions were monotonized as the kernel estimators tend to be biased

close to the boundaries.
15The last period includes 8 elections cycles over the years 2002-2016.
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Figure 2: Estimated Quantile Functions of Cost Types by Decade

I also present the change of the quantile functions over the decades in Figure 3 below. For

the Incumbent, the cost type distributions in later years first-order stochastically dominate

distributions in earlier years. That means that it became easier for the Incumbent to raise

funds in recent years. The trend is not monotone for the Challenger.
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Figure 3: Estimated Quantile Functions of Cost Types over Decades

5.2 Counterfactuals

Once the primitives of the model – such as the distribution of uncertainty and the cost type

distributions – are estimated, researchers have the capability to run the counterfactual sim-

ulations. In the setting of the election, counterfactuals allow testing different ways to limit
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the incumbency advantage. Limiting the incumbency advantage is important for the following

reasons. First, according to the prevalent opinion in political science, democracy is not possible

without sufficient competition as well as the turnover of the seats in Congressional elections.

Moreover, the increased total campaign spending is costly for society. Thus it desirable policy

is that one that reduces the Incumbent’s winning probability, as well as the total campaign

spending.

Two well-known policies are the limit on expenditures and public campaign financing. Accord-

ing to Jacobson (1978): “Even though Incumbents raise money more easily from all sources,

limits on contributions will not help Challengers because the problem is not equalizing spend-

ing between candidates but rather simply getting more money to Challengers so that they can

mount competitive races.” The reason behind that statement is that the marginal effect of

the Challenger’s expenditure on the probability to win is greater than that of the Incumbent.

Although that is true, this logic doesn’t take into account the underlying game between the In-

cumbent and the Challenger. In reality, as the Challenger increases expenditures, the low-cost

type Incumbent also does so, and as a result, the effect on winning probability is uncertain.

Next, I consider two policies, one by one, and compare the conclusions.

5.2.1 Public Campaign Financing

First, I consider public campaign financing for the Challenger, which lowers his cost type’s

distribution. I quantify the effect of the limit case of the public financing of the Challengers

such that the resulting cost type quantile function matches one of the Incumbents. This case

eliminates the advantage due to the difference in cost types completely, since now the cost types

are assumed to be the same.

I take equal cost type distributions of the Incumbent and the Challenger as given (assume that

the Challenger has the same cost type distribution as the Incumbent). The goal is to find the

optimal strategies of the players in that case and find the resulting distributions of efforts.16

After that, I calculate the Incumbent’s winning probability knowing the effort strategies and

the distribution of uncertainty. Results are presented in Table 3 below.

Table 3: Public campaign financing: resulting winning probability

Incumbent’s probability of winning

All 72-80 82-90 92-2000 2002-2016

Original 0.939 0.929 0.953 0.941 0.935

With Challenger’s financing 0.899 0.913 0.923 0.904 0.858

Decrease 0.04 0.016 0.03 0.037 0.077

16Since it is not possible to solve the model analytically, I do that by approximating the effort distributions

by the exponential distributions λie
−λbi , i = 1, 2. See Appendix for further details.
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The Incumbent’s winning probability decreases by 4 percentage points, from 93.9% to 89.9%.

On the other hand, the reform leads to the increase in expenditures of both candidates, see

Table 4 below:

Table 4: Public campaign financing: resulting expenditures

All 72-80 82-90 92-2000 2002-2016

Mean of Incumbent’s expenditures

Original 1057 394 792 1110 1650

With challenger’s financing 1846 691 1532 2160 4384

Increase 789 297 740 1050 2434

Mean of challenger’s expenditures

Original 400 243 309 420 557

With challenger’s financing 1051 397 860 970 2453

Increase 651 154 551 550 1896

* Expenditures are in thousands of 2016 dollars.

Thus even though the Incumbent’s advantage was lowered, this policy would lead to a dramatic

increase in expenditures.

5.2.2 Limit on Expenditure

The other popular policy is the limit on expenditure. I consider such a case that the limit is

sufficiently low for both candidates to spend the same amount. In this case, b1 = b2 and the

Incumbent’s winning probability becomes:

P (b1ε1 > b2ε2) = P (ε1 > ε2) = P (ε2/ε1 < 1) = Hξ(1)

Using this formula and equation (13), I estimate the winning probability. Results are presented

in Table 5 below.

Table 5: Limit on expenditure results

Incumbent probability of winning

All 72-80 82-90 92-2000 2002-2016

Original 0.939 0.929 0.953 0.941 0.935

With the expenditure constraint 0.851 0.873 0.885 0.852 0.789

Decrease 0.088 0.056 0.068 0.089 0.146

It can be seen that the Incumbent’s winning probability drops by 8.8 percentage points, from

93.9% to 85.1%, a bigger change than with public campaign financing for the Challenger, and

on top of that the expenditures are lower for the Incumbent.
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In conclusion, the Challenger’s public financing is not as effective as the limit on expenditures

in terms of both lowering the Incumbent’s winning probability as well as on the total cam-

paign spending. Thus by taking into account the game structure of the model, I have shown

that the predictions change once the game-theoretical structure of the interactions between the

candidates is taken into account.

6 Conclusion

In this paper, I identified and estimated the incomplete information contest model with non-

parametric uncertainty distribution of the contest success function. Uncertainty in the contest

success function summarizes other factors that could influence the contest result apart from the

efforts of the players. As a result, I recovered the distribution of cost types from the efforts

distributions and win outcomes. Here types characterized how costly it is for the player to exert

the effort. This model provides the framework that can be applied to the variety of real-life sce-

narios such as marketing and advertising by firms, litigation, research and development, patent

race, procurement of innovative good, research contest, sports event, arms race, rent-seeking

activity, such as lobbying, as well as electoral competition. The model proposes a method to

disentangle two sources of the possible advantage of one of the players: asymmetry in the cost

type distributions and the effect of the uncertainty distribution on the winning probability. As

an empirical example, I applied the model to the U.S. House of Representatives elections and

recovered the cost type distributions of the Incumbent and the Challenger. The knowledge of

the cost types’ distributions allows quantifying the effect of different policy changes such as

limits on expenditures or funding of Challengers in order to eliminate incumbency advantage.

By comparing these two policies, I found the former to be more effective.

20



References

Athey, Susan, “Single Crossing Properties and the Existence of Pure Strategy Equilibria in

Games of Incomplete Information,” Econometrica, 2001, 69 (4), 861–889.

Baron, David P., “Electoral Competition with Informed and Uninformed Voters,” American

Political Science Review, 1994, 88 (1), 33–47.

Baye, Michael R., Dan Kovenock, and Casper G. de Vries, “Rigging the Lobbying

Process: An Application of the All-Pay Auction,” The American Economic Review, 1993, 83

(1), 289–294.

, , and , “Comparative Analysis of Litigation Systems: An Auction-Theoretic Ap-

proach,” The Economic Journal, 2005, 115 (505), 583–601.

Bell, David E., Ralph L. Keeney, and John D. C. Little, “A Market Share Theorem,”

Journal of Marketing Research, 1975, 12 (2), 136–141.

Bernardo, AE, E Talley, and I Welch, “A theory of legal presumptions,” The Journal of

Law, Economics, and Organization, 2000, 16 (1), 1–49.

Che, Yeon-Koo and Ian Gale, “Optimal Design of Research Contests,” American Economic

Review, June 2003, 93 (3), 646–671.

Cornes, Richard and Roger Hartley, “Asymmetric contests with general technologies,”

Economic Theory, 2005, 26 (4), 923–946.

Csorgo, M., Quantile processes with statistical applications, Philadelphia: SIAM [Society for

Industrial and Applied Mathematics], 1983.

Dasgupta, Partha, The Theory of Technological Competition, London: Palgrave Macmillan

UK, 1986.

Ewerhart, Christian, “Unique equilibrium in rent-seeking contests with a continuum of

types,” Economics Letters, 2014, 125 (1), 115 – 118.

Farmer, Amy and Paul Pecorino, “Legal expenditure as a rent-seeking game,” Public

Choice, Sep 1999, 100 (3), 271–288.

Fey, Mark, “Rent-seeking contests with incomplete information,” Public Choice, Jun 2008,

135 (3), 225–236.

Guerre, Emmanuel, Isabelle Perrigne, and Quang Vuong, “Optimal Nonparametric

Estimation of First-price Auctions,” Econometrica, 2000, 68 (3), 525–574.

21



He, Ming and Yangguang Huang, “Structural Analysis of Tullock Contests with an Ap-

plication to U.S. House of Representatives Elections,” forthcoming International Economic

Review, 2020.

Hillman, Arye L. and John G. Riley, “Politically contestable rents and transfers,” Eco-

nomics & Politics, 1989, 1 (1), 17–39.

Hirshleifer, Jack and Evan Osborne, “Truth, Effort, and the Legal Battle,” Public Choice,

Jul 2001, 108 (1), 169–195.

Jacobson, Gary C., “The Effects of Campaign Spending in Congressional Elections,” Amer-

ican Political Science Review, 1978, 72 (2), 469–491.

Jia, Hao, “A Stochastic Derivation of the Ratio Form of Contest Success Functions,” Public

Choice, 2008, 135 (3/4), 125–130.

, Stergios Skaperdas, and Samarth Vaidya, “Contest functions: Theoretical foundations

and issues in estimation,” International Journal of Industrial Organization, 2013, 31 (3), 211–

222. Tournaments, Contests and Relative Performance Evaluation.

Kang, Karam, “Policy Influence and Private Returns from Lobbying in the Energy Sector,”

The Review of Economic Studies, 07 2015, 83 (1), 269–305.

Krueger, Anne O., “The Political Economy of the Rent-Seeking Society,” The American

Economic Review, 1974, 64 (3), 291–303.

Lazear, Edward P. and Sherwin Rosen, “Rank-Order Tournaments as Optimum Labor

Contracts,” Journal of Political Economy, 1981, 89 (5), 841–864.

Moldovanu, Benny and Aner Sela, “The Optimal Allocation of Prizes in Contests,” Amer-

ican Economic Review, June 2001, 91 (3), 542–558.

Ryvkin, Dmitry, “Contests with private costs: Beyond two players,” European Journal of

Political Economy, 2010, 26 (4), 558 – 567.

and Mikhail Drugov, “The shape of luck and competition in winner-take-all tournaments,”

Theoretical Economics, 2020, 15 (4), 1587–1626.

Shakhgildyan, Ksenia, “Essays on Nonparametric Identification and Estimation of All-Pay

Auctions and Contests,” University of California, Los Angeles, ProQuest Dissertations Pub-

lishing, 2019.

Siegel, Ron, “All-Pay Contests,” Econometrica, 2009, 77 (1), 71–92.

, “Asymmetric Contests with Conditional Investments,” American Economic Review, Decem-

ber 2010, 100 (5), 2230–60.

22



Skaperdas, Stergios and Bernard Grofman, “Modeling Negative Campaigning,” American

Political Science Review, 1995, 89 (1), 49–61.

Snyder, James M., “Election Goals and the Allocation of Campaign Resources,” Economet-

rica, 1989, 57 (3), 637–660.

Taylor, Curtis R., “Digging for Golden Carrots: An Analysis of Research Tournaments,” The

American Economic Review, 1995, 85 (4), 872–890.

Tullock, Gordon, “Efficient Rent Seeking,” in R.D. Tollison J.M. Buchanan and G. Tullock,

eds., Towards a Theory of the Rent-seeking Society, Texas A&M University Press, 1980,

pp. 3–15.

Wasser, Cédric, “Incomplete information in rent-seeking contests,” Economic Theory, May

2013, 53 (1), 239–268.

Yamazaki, Takeshi, “On the Existence and Uniqueness of Pure-Strategy Nash Equilibrium

in Asymmetric Rent-Seeking Contests,” Journal of Public Economic Theory, 2008, 10 (2),

317–327.

23



Appendices

A Proof of Proposition 1

In case when both εi and εj have exponential distribution with parameter λ = 1, fε(t) = e−t

and in its turn Fε(t) = 1− e−t and as a result:

P (w1 = 1| b1, b2) = P (x1 > x2 | b1, b2) = P (b1ε1 > b2ε2 | b1, b2) =

= P (ε2 <
b1

b2

ε1 | b1, b2) =

+∞∫
0

Fε

(
b1

b2

t

)
fε(t)dt =

+∞∫
0

(
1− e−

b1
b2
t
)
e−tdt =

= 1− 1

1 + b1
b2

=
b1

b1 + b2

which is the contest success function of the well-known Tullock contest.

B Proof of Proposition 2

Let us consider all assumptions required for the Theorem 6 in Athey (2001) to hold. Here I

consider the equivalent model in which vi = 1/ci.

1. fi(·) - density with respect to Lebesque measure, bounded and atomless.

2. Ui = pi(b1, b2)(vi−bi)+(1−pi(b1, b2))(−bi) - can be written in the general form considered

in the paper.

3. Winner’s payoff vi − bi and loser’s payoff −bi are continuous in (vi, b) and bounded as vi
has a finite support [vi, v̄i] and the players won’t find it profitable to exert a higher effort

than the valuation.

4. Expected utility E[Ui] =
∫
pi(bi, sj(vj))fj(vj)dvj − bi is bounded and finite.

5. Single-crossing condition ∂2Ui

∂vi∂bi
≥ 0 is satisfied as:

∂2U1

∂v1∂b1

=
∂P1

∂b1

=
1

b1

hξ

(
b1

b2

)
> 0,

∂2U2

∂v2∂b2

=
∂P2

∂b2

=
b1

b2
2

hξ

(
b1

b2

)
> 0.

Thus all the assumptions of Theorem 6 in Athey (2001) are satisfied, hence there exists a

pure-strategy Bayesian Nash Equilibrium in nondecreasing strategies. Since the single-crossing
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property holds with strict inequality, this equilibrium is actually in increasing strategies. Going

back to the model in terms of cost types: the equilibrium is in decreasing strategies instead

since ci = 1/vi.

C Proof of Proposition 3

Under the assumptions of strict monotonicity of the strategies and independent cost types, we

can write the expected payoff to player 1 when his true cost type is c1 but he exerts an effort

as if it was c as:

E[U1|c1, F2, Hξ] =

= P [w1 = 1|b, F2, Hξ]− c1b = P (bε1 > b2ε2)− c1b = P (b2ξ < b)− c1b =

=

b̄2∫
b2

 b/b2∫
0

hξ(y)dy

 g2(b2)db2 − c1b =

=

c̄2∫
c2

 s1(c)/s2(c2)∫
0

hξ(y)dy

 f2(c2)dc2 − c1s1(c).

Using the First order condition (differentiating with respect to c and substituting c = c1 and

equating it to zero) we get the following equation for the cost type of player 1:

c̄2∫
c2

s′1(c)

s2(c2)
hξ

(
s1(c)

s2(c2)

)
f2(c2)dc2 − c1s

′
1(c) = 0 when c = c1 ⇒

c1 =

c̄2∫
c2

f2(c2)
1

s2(c2)
hξ

(
s1(c1)

s2(c2)

)
dc2

Similarly, for player 2 the expected payoff when his true cost type is c2 but he exerts an effort

as if it was c is:

E[U2|c2, F1, Hξ] =

= P [w2 = 1|b, F1, Hξ]− c2b = P (bε2 > b1ε1)− c2b = P (ξ > b1/b)− c2b =

=

b̄1∫
b1

 ∞∫
b1/b

hξ(y)dy

 g1(b1)db1 − c2b =

=

c̄1∫
c1

 ∞∫
s1(c1)/s2(c)

hξ(y)dy

 f1(c1)dc1 − c2s2(c).
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By taking derivative with respect to c and equating it to zero we get the following equation for

the cost type of player 2:

c̄1∫
c1

s′2(c)s1(c1)

s2
2(c)

hξ

(
s1(c1)

s2(c)

)
f1(c1)dc1 − c2s

′
2(c) = 0 when c = c2 ⇒

c2 =

c̄1∫
c1

f1(c1)
s1(c1)

s2
2(c2)

hξ

(
s1(c1)

s2(c2)

)
dc1.

This proves the proposition.

D Proof of Proposition 5

Similar to Guerre et al. (2000), the identification result is based on the property that together

with the distribution Fi(·) and the density fi(·), the derivative of the strategy s′i(·) can be

canceled out from the differential equation.

Because bi is a function of ci, which is random and distributed as Fi(·), bi is also random. Let’s

denote its distribution Gi(·) and quantile function ri(·) = G−1
i (·), i = 1, 2.

For every b ∈ [bi, b̄i] = [si(c̄i), si(ci)], we have Gi(b) = Pr(bi ≤ b) = Pr(ci ≥ s−1
i (b)) =

1−Fi(s−1
i (b)) = 1−Fi(c), where bi = si(ci). Thus, the distributionGi(·) is absolutely continuous,

has support [si(ci), si(c̄i)] and density gi(bi) = −fi(ci)
s′i(ci)

, where ci = s−1
i (bi).

This allows us to rewrite the differential equation above in terms of the distribution of efforts,

that is for the first player:

c1 =

b̄2∫
b2

g2(b2)
1

b2

hξ

(
b1

b2

)
db2 (20)

In its turn, the equation for the second player can be rewritten as:

c2 =

b̄1∫
b1

g1(b1)
b1

b2
2

hξ

(
b1

b2

)
db1 (21)

Thus, equations now express the individual private cost types ci as functions of the individual

equilibrium efforts bi, their distributions Gi(·), their densities gi(·), and the density hξ of the

uncertainty ξ.
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Let us denote 1− ti = Fi(ci) and 1− tj = Fj(cj), equivalently ci = qi(1− ti) and cj = qj(1− tj),
where qi(·) and qj(·) are quantile functions of the distribution of cost types. As a result of

monotonicity of the strategies Gi(si(ci)) = 1 − Fi(vi), applying ri(·) to both sides of equality,

where ri(·) is quantile function of the effort distribution we get: si(ci) = ri(1− Fi(ci)) = ri(ti)

and sj(cj) = rj(1−Fj(cj)) = rj(tj). Moreover, Fj(s
−1
j (si(ci))) = 1−Gj(si(ci)) = 1−Gj(ri(ti)),

Fj(c̄j) = 1 and Fj(cj) = 0. Using these equalities and changing variables we can rewrite the

equations (20) and (21) above as:

q1(1− t1) =

1∫
0

1

r2(t2)
hξ

(
r1(t1)

r2(t2)

)
dt2 (22)

and

q2(1− t2) =

1∫
0

r1(t1)

r2
2(t2)

hξ

(
r1(t1)

r2(t2)

)
dt1, (23)

where t1, t2 ∈ (0, 1). This proves the proposition.

E Proof of Theorem 1

First, we would like to estimate hξ(b) - the derivative of

Hξ(b) =

∫
wf(w, b)dw

f(b)

By taking the derivative with respect to b we get:

hξ(b) = Φ(f) =
f(b)

∫
w ∂f(w,b)

∂b
dw − ∂f(b)

∂b

∫
wf(w, b)dw

f(b)2
=

f(b)
∫
wf ′(w, b)dw − f ′(b)

∫
wf(w, b)dw

f(b)2

Φ(f + h) =

=
[f(b) + h(b)]

∫
w[f ′(w, b) + h′(w, b)]dw − [f ′(b) + h′(b)]

∫
w[f(w, b) + h(w, b)]dw

[f(b) + h(b)]2
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Φ(f + h)− Φ(f) =

f(b)2[f(b) + h(b)]
∫
w[f ′(w, b) + h′(w, b)]dw

f(b)2[f(b) + h(b)]2
−

f(b)2[f ′(b) + h′(b)]
∫
w[f(w, b) + h(w, b)]dw

f(b)2[f(b) + h(b)]2
+

−f(b)[f(b) + h(b)]2
∫
wf ′(w, b)dw

f(b)2[f(b) + h(b)]2
+

f ′(b)[f(b) + h(b)]2
∫
wf(w, b)dw

f(b)2[f(b) + h(b)]2

Num = f 3(b)

∫
wf ′(w, b)dw + f 3(b)

∫
wh′(w, b)dw + f 2(b)h(b)

∫
wf ′(w, b)dw+

+f 2(b)h(b)

∫
wh′(w, b)dw − f 2(b)f ′(b)

∫
wf(w, b)dw − f 2(b)f ′(b)

∫
wh(w, b)dw−

−f 2(b)h′(b)

∫
wf(w, b)dw − f 2(b)h′(b)

∫
wh(w, b)dw − f 3(b)

∫
wf ′(w, b)dw−

−2f 2(b)h(b)

∫
wf ′(w, b)dw − f(b)h2(b)

∫
wf ′(w, b)dw + f ′(b)f 2(b)

∫
wf(w, b)dw+

+2f ′(b)f(b)h(b)

∫
wf(w, b)dw + f ′(b)h2(b)

∫
wf(w, b)dw =

f 3(b)

∫
wh′(w, b)dw − f 2(b)h(b)

∫
wf ′(w, b)dw + f 2(b)h(b)

∫
wh′(w, b)dw−

−f 2(b)f ′(b)

∫
wh(w, b)dw − f 2(b)h′(b)

∫
wf(w, b)dw − f 2(b)h′(b)

∫
wh(w, b)dw−

−f(b)h2(b)

∫
wf ′(w, b)dw + 2f ′(b)f(b)h(b)

∫
wf(w, b)dw + f ′(b)h2(b)

∫
wf(w, b)dw =

Q+ P,

Where:

Q = f 3(b)

∫
wh′(w, b)dw − f 2(b)h(b)

∫
wf ′(w, b)dw − f 2(b)f ′(b)

∫
wh(w, b)dw−

−f 2(b)h′(b)

∫
wf(w, b)dw + 2f ′(b)f(b)h(b)

∫
wf(w, b)dw

P = f 2(b)h(b)

∫
wh′(w, b)dw − f 2(b)h′(b)

∫
wh(w, b)dw − f(b)h2(b)

∫
wf ′(w, b)dw+

+f ′(b)h2(b)

∫
wf(w, b)dw

Moreover:

1

f 2(f + h)2
=

1

f 4
+

1

f 2(f + h)2
− 1

f 4
=

1

f 4
− 2hf + h2

f 4(f + h)2
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As a result:

Φ(f + h)− Φ(f) =

=
Q

f 4(b)
+

P

f 4(b)
− Q(2h(b)f(b) + h2(b))

f 4(b)(f(b) + h(b))2
− P (2h(b)f(b) + h2(b))

f 4(b)(f(b) + h(b))2
= D +R,

Where:

D =
Q

f 4(b)

R =
P

f 4(b)
− Q(2h(b)f(b) + h2(b))

f 4(b)(f(b) + h(b))2
− P (2h(b)f(b) + h2(b))

f 4(b)(f(b) + h(b))2

Q = f 3(b)

∫
wh′(w, b)dw − f 2(b)h(b)

∫
wf ′(w, b)dw − f 2(b)f ′(b)

∫
wh(w, b)dw−

−f 2(b)h′(b)

∫
wf(w, b)dw + 2f ′(b)f(b)h(b)

∫
wf(w, b)dw

In it’s turn

f(b) =

∫
f(w, b)dw

Thus

Q = f 3(b)

∫
wh′(w, b)dw − f 2(b)h′(b)

∫
wf(w, b)dw + the rest =

= f 3(b)

∫
w(f̂ ′(w, b)− f ′(w, b))dw−

−f 2(b)

∫
((f̂ ′(w, b)− f ′(w, b))dw)

∫
wf(w, b)dw + the rest =

=

∫
f 2(b)

[
wf(b)−

∫
wf(w, b)dw

]
(f̂ ′(w, b)− f ′(w, b))dw + the rest.

As a result,

D =

∫ [
wf(b)−

∫
wf(w, b)dw

f 2(b)

]
(f̂ ′(w, b)− f ′(w, b))dw + the rest.

Thus

√
Lh3(Φ(f + h)− Φ(f))→ N (0, V ) ,
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where

V =

∫ [
wf(b)−

∫
wf(w, b)dw

]2
f(w, b)

f 4(b)
dw.

As w can only take 2 values 0 and 1:
∫
wf(w, b)dw = f(1, b) and

V =

[
f(1, b)2f(0, b) + f(0, b)2f(1, b)

f 4(b)

] ∫ (
∂K(u)

∂u

)2

du =

=

[
f(1, b)f(0, b)

f 3(b)

] ∫ (
∂K(u)

∂u

)2

du

Moreover,

f(1, b) = f(b)P (w = 1|b) and
f(0, b) = f(b)P (w = 0|b) = f(b)(1− P (w = 1|b)),

thus

V =

[
P (w = 1|b)(1− P (w = 1|b)))

f(b)

] ∫ (
∂K(u)

∂u

)2

du

And as a result,

ĥξ(b)→ hξ(b) in probability, and

√
Lh3(ĥξ(b)− hξ(b))→ N

(
0,

[
P (w = 1|b)(1− P (w = 1|b)))

f(b)

] ∫ (
∂K(u)

∂u

)2

du

)

F Proof of Theorem 2

Now let us denote by f̃(w, b1, b2) the joint density of the vector (w, b1, b2) and consider:

c1 = 1/v1 =

b̄2∫
b2

g2(b2)
1

b2

hξ

(
b1

b2

)
db2 := Φ̃(b1; f)

We also denote:

hξ

(
b1

b2

)
:= φ(b1, b2; f̃)

g2(b2)
1

b2

:= ψ(b2; f̃)
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Then

Φ̃(b1; f̃) =

b̄2∫
b2

ψ(b2; f̃)φ(b1, b2; f̃)db2

It follows that:

Φ̃(b1; f̃ + h̃)− Φ̃(b1; f̃) =

b̄2∫
b2

ψ(b2; f̃ + h̃)φ(b1, b2; f̃ + h̃)db2 −
b̄2∫
b2

ψ(b2; f̃)φ(b1, b2; f̃)db2

=

b̄2∫
b2

φ(b1, b2; f̃)Dψ(b1, b2; f̃)db2 +

b̄2∫
b2

Dψ(b2; f̃)φ(b1, b2; f̃)db2 + the rest =

=

b̄2∫
b2

∫
w

g2(b2)
1

b2

[
wf(b)−

∫
wf(w, b)dw

f 2(b)

]
(f̂ ′(w, b)− f ′(w, b))dwdb2 + the rest,

where b = b1/b2.

The rest converges faster as the rate of convergence of f̂ ′(w, b) is slower than that of f̂(w, b).

Thus:

ĉ1(b1)
p−→ c1(b1), and

√
Lh3(ĉ1(b1)− c1(b1))→ N(0, Vc1),

where

Vc1 =

b̄2∫
b2

g2
2(b2)

1

b2
2

[
P (w = 1| b1

b2
)(1− P (w = 1| b1

b2
)))

f( b1
b2

)

]
db2 ·

∫ (
∂K(u)

∂u

)2

du

Similarly:

ĉ2(b2)
p−→ c2(b2), and

√
Lh3(ĉ2(b2)− c2(b2))→ N(0, Vc2),

where

Vc2 =

b̄1∫
b1

g2
1(b1)

b2
1

b4
2

[
P (w = 1| b1

b2
)(1− P (w = 1| b1

b2
)))

f( b1
b2

)

]
db2 ·

∫ (
∂K(u)

∂u

)2

du
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And by delta method for the cost types vi = 1
ci

:

v̂1(b1)
p−→ v1(b1), and

√
Lh3(v̂1(b1)− v1(b1))→ N(0, V1),

where

V1 = v4
1(b1)

b̄2∫
b2

g2
2(b2)

1

b2
2

[
P (w = 1| b1

b2
)(1− P (w = 1| b1

b2
)))

f( b1
b2

)

]
db2 ·

∫ (
∂K(u)

∂u

)2

du

Similarly:

v̂2(b2)
p−→ v2(b2), and

√
Lh3(v̂2(b2)− v2(b2))→ N(0, V2),

where

V2 = v4
2(b2)

b̄1∫
b1

g2
1(b1)

b2
1

b4
2

[
P (w = 1| b1

b2
)(1− P (w = 1| b1

b2
)))

f( b1
b2

)

]
db2 ·

∫ (
∂K(u)

∂u

)2

du

G Estimation using quantile functions

ri(·) can be estimated from observed efforts:

r̂i(t) = b
(dLte:L)
i , (24)

where b
(dse:L)
i is the s-th lowest order statistic out of L i.i.d. efforts observations; d·e is the ceiling

function.

In the second step, the quantile functions of the player’s cost types are estimated:

q̂1(t1) =
1

1∫
0

1
r̂2(t2)

ĥξ

(
r̂1(t1)
r̂2(t2)

)
dt2

(25)

and

q̂2(t2) =
1

1∫
0

r̂1(t1)

r̂22(t2)
ĥξ

(
r̂1(t1)
r̂2(t2)

)
dt1

, (26)

where t1, t2 ∈ (0, 1).
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Note that the invertibility of the equilibrium strategy is the key for identification as we relied

on the assumption that the players use a strictly decreasing effort function.

Similarly, we can estimate the quantile functions of types:

q̂c1(1− t1) =

1∫
0

1

r̂2(t2)
ĥξ

(
r̂1(t1)

r̂2(t2)

)
dt2 (27)

and

q̂c2(1− t2) =

1∫
0

r̂1(t1)

r̂2
2(t2)

ĥξ

(
r̂1(t1)

r̂2(t2)

)
dt1, (28)

where t1, t2 ∈ (0, 1).

Proposition 6. (Csorgo (1983)) Let G be a twice differentiable distribution function, having

finite support. Assume inf
0<t<1

g(G−1(t)) > 0 and sup
0<t<1

|g′(G−1(t))| < ∞. Then sup
0<t<1

|r̂(t) −

r(t)| a.s.−−→ 0.

⇒
sup

0<t<1
|r̂(t)− r(t)| = op(1).

It can be proved that:

Proposition 7. Under the same assumptions as above:

q̂i(t)− qi(t) = op(1),

i = 1, 2.

H Analysis of the Public Campaign Financing Counter-

factual

I consider equal cost type distributions of the Incumbent and the Challenger by assuming that

the Challenger has the same cost type distribution as the Incumbent.

Since it is not possible to solve for the equilibrium efforts analytically, I approximate the effort

distributions of each of the players by the exponential distributions λie
−λibi with unknown

parameters λi, i = 1, 2. Next, I estimate λi, i = 1, 2, by solving for such λi, i = 1, 2, that

minimize the distance between the actual cost type distributions and the estimated ones from

the exponentially distributing bid distributions. The distance between distributions is estimated
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using the distance between quantile functions on the [0.1,0.9] using the grid of 50 equally spaced

points, and calculating the sum of the absolute distances between the values that functions take

in these points.
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