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Abstract

We document that updates to macroeconomic expectations among professional fore-

casters are: (i) negatively serially correlated at the individual level, (ii) positively seri-

ally correlated at the aggregate level, and (iii) exhibit an offsetting pattern. To explain

these facts, we build and estimate a model featuring annual smoothing and a require-

ment that quarterly predictions be jointly consistent with the annual forecast. Relative

to existing theories, our model provides a unified explanation for these facts as well as

other forms of over- and underadjustment. Furthermore, our model suggests that an-

nual forecasts exhibit more information rigidity than quarterly forecasts, with a larger

role for sticky information relative to noisy information.
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1 Introduction

Professional forecasters commit predictable mistakes. While individual predictions have been

shown to exhibit overreactions (Bordalo et al., 2019, 2020; Broer and Kohlhas, 2019; Bürgi,

2016), aggregate forecasts are characterized by inertia (Coibion and Gorodnichenko, 2015;

Dovern et al., 2015). Both forms of error predictability are incompatible with full information

rational expectations (FIRE), a benchmark assumption made in macroeconomics. Conse-

quently, theories of non-rational expectations as well as models of imperfect information have

been devised to explain over- and underadjustments.1

In this paper, we document three key facts relating to survey expectations. First, fixed-

event revisions are negatively serially correlated among individual forecasters. Second, fixed-

event revisions are positively serially correlated at the consensus-level. Third, forecast re-

visions across horizons exhibit an offsetting pattern. The third fact, which has not been

previously documented in the literature, cannot be reconciled with existing theories of ex-

pectation formation. We develop a model of long-run smoothing that can reproduce all of

these empirical patterns.

Our model is a version of a hybrid sticky-noisy information model as in Andrade and Bi-

han (2013) with a focus on the interaction between quarterly and annual forecasts. Two key

assumptions are responsible for generating overreactions: temporal consistency (i.e. quar-

terly forecasts aggregate up to annual forecasts) and stronger smoothing of annual expec-

tations relative to quarterly expectations. With these two assumptions, an upward revision

in the near-term must be offset by a downward revision later in the year, as in the data.2

These overrevisions introduce volatility to quarterly updates which generate overreactions.

We begin by providing empirical evidence relating to overreactions, underreactions, and

1Bordalo et al. (2020) for instance present a model of diagnostic expectations while Woodford (2001),
Sims (2003), and Mankiw and Reis (2002) present theories of imperfect information.

2In the event that forecasts are rounded, quarterly updates would need to be sufficiently large to generate
offsetting revisions. At the same time, revisions should not be too large that they lead to a full outlook
revision (Baker et al., 2020). While these factors may be present in the data, we nonetheless uncover robust
evidence of offsetting revisions, leading us to abstract from rounding and state dependent updating in our
model.
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annual smoothing based on data from the U.S. Survey of Professional Forecasters (SPF).

With regard to overadjustments, we document a robust negative autocorrelation of revisions

(Nordhaus, 1987). We repeat this exercise at the aggregate level, documenting a positive

autocorrelation of consensus revisions.3 Finally, we find that when a forecaster revises upward

today, she simultaneously revises downward further along her forecasted annual path. We

interpret this result as evidence of annual smoothing, and note that existing models of

expectation formation cannot flexibly account for offsetting revisions across horizons.

Motivated by these facts, we devise a noisy information model with heterogeneous updat-

ing rates by frequency. Forecasters issue quarterly and annual forecasts based on private and

public signals. Quarterly and annual updating are separate activities governed by distinct

Calvo-like probabilities. Furthermore, forecasters are subject to a consistency constraint

which requires that a forecaster’s sequence of quarterly predictions aggregate up to her an-

nual forecast.4

Excess inattention with respect to annual forecasts can reflect deeper real-world features

of professional forecasting. For instance, reputational considerations can generate annual

smoothing.5 Alternatively, time and resource constraints associated with widespread model

revisions can generate infrequent annual updating. In both of these settings, forecasters

could find it optimal to revise high frequency forecasts while keeping their low frequency

outlooks stable.

The source of overreactions in our model comes from forecasters introducing past errors

into their reported predictions through the annual consistency constraint.6 Suppose, for in-

3We focus on revision auto-correlation in line with Nordhaus (1987) or Baker et al. (2020), as these over-
and underadjustments can be determined ex ante. However, all our results also hold for alternative ex post
measures like errors on revisions (Nordhaus, 1987; Coibion and Gorodnichenko, 2015; Bordalo et al., 2020)
or errors on actual releases (Kohlhas and Walther, 2021) as shown in the main text and appendix.

4While the SPF requires forecasters to produce consistent predictions, Bürgi and Ortiz (2021) document
that this is also the case for most forecasters when it is not required. Bürgi and Ortiz (2021) also shows that
most forecasts almost immediately reflect the latest data releases.

5Ways to model such reputational considerations include adjustment costs as in Kucinskas and Peters
(2019) or the game theory framework in Ehrbeck and Waldmann (1996).

6Similar to the explanation for an apparent forecast bias at the individual level in Bürgi (2017), the
overreaction here is consistent with standard forecasting methods.
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stance, that a forecaster periodically makes full updates to her GDP forecast and story. In

between these full updates, she replaces the quarterly predictions with actual releases, and

then offsets the prediction error so as to ensure annual consistency and preserve her accom-

panying narrative. These offsetting revisions in turn generate a negative autocorrelation of

fixed-event updates since forecasters trade off accuracy with consistency.

Annual smoothing is therefore a key ingredient which allows our model to generate in-

dividual overadjustments. While traditional models of forecast smoothing (Scotese, 1994;

Woodford, 2001; Mankiw and Reis, 2002; Sims, 2003) can only deliver underreactions, our

multi-frequency approach allows us to match quarterly overreactions while preserving aggre-

gate underreactions.

We estimate the model using a minimum distance approach. In particular, we estimate

the six parameters of our model by targeting eight micro moments in the panel of real GDP

forecasts from the SPF. Our estimated model successfully fits both targeted and non-targeted

moments in the data. Overall, our estimates imply that sticky long-run expectations can

explain meaningful share of observed overadjustments depending on the testable implication

considered. The estimated model can also replicate underreactions in consensus forecasts.

In an effort to quantify the importance of our mechanism relative to other theories, we

estimate a version of the model with diagnostic expectations Bordalo et al. (2020).7 When

we add diagnostic expectations to our model, we find that our model explains around 40%-

80% of overreactions, depending on the specific metric used. This indicates that annual

smoothing is an important contributor to overreactions, alongside other forces.

Finally, we use the model to study information rigidities in survey expectations. Our

estimates reveal that information frictions differ across frequencies and are more pervasive

at the annual level. This might help explain why Andrade and Bihan (2013) find different

levels of inattention for annual predictions depending on the specific method used. When

averaging across the two frequencies, we recover implied information frictions similar to pre-

7Several alternative theories of non-rational expectations can explain overreactive behavior (Daniel et al.,
1998; Broer and Kohlhas, 2019). At the same time, overreactions can arise through optimizing behavior
subject to attention or memory constraints (Kohlhas and Walther, 2021; Azeredo da Silvera et al., 2020).
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vious estimates documented in the literature (Coibion and Gorodnichenko, 2015; Ryngaert,

2017). In addition, the interplay between the frequencies in our model allows us to decom-

pose the friction into noisy and sticky information. We find that noisy information is the

dominant source of information frictions at the quarterly frequency while sticky information

is the driver of information frictions at the annual frequency.

The rest of the paper is organized as follows. Section 2 documents motivating empiri-

cal evidence relating to overadjustments, underadjustments, and annual smoothing. Section

3 presents the hybrid sticky-noisy information model with differential rates of updating.

Section 4 discusses the estimation approach and the estimated parameters. Section 5 quan-

tifies the extent to which long-run rigidity can explain short-run overadjustments. Section 6

discusses the implications for information frictions. Section 7 concludes.

2 Facts About Over- and Underadjustments

We first document some empirical facts about professional forecasts. The patterns that we

highlight in the data serve as motivating evidence for the model introduced in the subsequent

section. Furthermore, we revisit some of these moments when assessing the estimated model’s

ability to explain observed overadjustments.

The data that we use come from the SPF, a quarterly survey managed by the Federal

Reserve Bank of Philadelphia. The survey began in the fourth quarter of 1968, and pro-

vides forecasts from several forecasters across a range of macroeconomic variables over many

horizons, h. The SPF reports current-year annual predictions which the survey requires to

be consistent with the averages of the quarterly forecasts. In this sense, the consistency

constraint that we impose in our model is directly motivated by the data.

5



2.1 Individual Overreactions

First, professional forecasters exhibit overreactive behavior. To show this, we run two sets

of panel regressions: revisions on past revisions and errors on revisions.8 Both regressions

were first introduced as a test of weak efficiency in Nordhaus (1987). Let xt+h denote real

GDP growth at time t + h. Furthermore, let Fit(xt+h) denote forecaster i’s prediction for

xt+h devised at time t. With this notation defined, the revision autocorrelation regression is:

Fit(xt+h)− Fit−1(xt+h) = γi + γ1,h
[
Fit−1(xt+h)− Fit−2(xt+h)

]
+ εit+h. (1)

In words, we focus on a fixed-event and project the current forecast revision on its previous

value. We are interested in the coefficient in front of the lagged revision, γ1,h. A nega-

tive value of γ1,h indicates that an upward forecast revision yesterday predicts a downward

forecast revision today.

Table 1 reports the results across three horizons which imply that forecasters overrevise

their predictions. For current quarter forecasts, a one percentage point upward revision

today predicts a 0.17 percentage point downward revision tomorrow. Forecasters tend to

overrevise more strongly at the one- and two-step ahead horizons, with point estimates

hovering at around -0.30.

The second set of results, also reported in Table 1, relate to errors-on-revisions. We run

the following regression:

xt+h − Fit(xt+h) = βi + β1,h
[
Fit(xt+h)− Fit−1(xt+h)

]
+ εit+h. (2)

When β1,h < 0, an upward revision predicts a more negative subsequent forecast error, imply-

ing that forecasters overreact to new information when updating their predictions. Table 1

reproduces these estimates in our sample. Across horizons, we find that a one percentage

point upward forecast revision predicts a roughly -0.23 to -0.30 percentage point more neg-

8We provide an additional estimate of overreactions based on Kohlhas and Walther (2021) in Appendix
A.
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Table 1: Overreaction Among Individual Forecasters

h = 0 h = 1 h = 2

Revision Error Revision Error Revision Error

Previous revision -0.174*** -0.264*** -0.359***
(0.036) (0.036) (0.054)

Revision -0.249*** -0.228*** -0.302***
(0.071) (0.066) (0.051)

Forecasters 254 283 254 254 253 250
Observations 4,752 5,859 4,736 4,811 4,494 4,690

Note: The table reports panel regression results from SPF forecasts of real GDP growth based on regressions
(1) and (2). Each set of columns refers to a different horizon, from the current quarter to two quarters
ahead. Forecaster fixed effects are specified in each regression, and Driscoll and Kraay (1998) standard
errors are reported in parentheses. *** denotes 1% significance, ** denotes 5% significance, and * denotes
10% significance.

ative subsequent forecast error. These estimates are broadly in line with the estimates in

Bordalo et al. (2020) and Bürgi (2016).

2.2 Aggregate Underreactions

Whereas individual forecasters appear to overreact, consensus predictions exhibit underad-

justments. Such aggregate inertia has been an empirical moment of interest to the literature

studying information rigidities. Table 2 reports the results based on the time series analogs of

(1) and (2), where, instead of specifying individual forecasts, we focus on consensus forecasts.

The estimates in Table 2 provide some evidence of underadjustments at the aggregate-

level. For instance based on a simple model of noisy information, the estimated errors-on-

revisions coefficient at the one-quarter ahead horizon implies that forecasters place a weight

of 1− 1
1+0.685

≈ 0.59 on their prior when updating their prediction.9 These estimated underre-

actions are consistent with Coibion and Gorodnichenko (2012), Coibion and Gorodnichenko

(2015), Bürgi (2016), Baker et al. (2020), and Bordalo et al. (2020).

9As stated in Coibion and Gorodnichenko (2015), the Kalman gain arising from such a model is κ = 1
1+β1,h

.
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Table 2: Underreaction in Consensus Forecasts

h = 0 h = 1 h = 2

Revision Error Revision Error Revision Error

Previous revision 0.360*** 0.380*** -0.011
(0.106) (0.095) (0.074)

Revision 0.354** 0.685** 0.667*
(0.179) (0.313) (0.385)

Observations 200 201 200 200 195 200

Note: The table reports panel regression results from SPF forecasts of real GDP growth based on regressions
(1) and (2). Each set of columns refers to a different horizon, from zero steps ahead (current quarter) to
two steps ahead. Newey-West standard errors are reported in parentheses. *** denotes 1% significance, **
denotes 5% significance, and * denotes 10% significance.

2.3 Offsetting Revisions

Having documented simultaneous over- and underreactions in the survey data, we turn to

providing motivating evidence for our mechanism. If forecasters have a tendency to smooth

their annual predictions, then multi-horizon revisions should exhibit an offsetting pattern.

For instance, if a forecaster receives positive news today, then she will wish to revise her

forecast upward. However, if she is inattentive to her annual forecast (or otherwise wishes

to smooth it), then she will have to revise upward subject to the adding up constraint. In

order for her newly-issued quarterly predictions to reflect her unchanged annual outlook, the

upward revision today must be offset by a downward revision elsewhere along her predicted

path.

Directly testing for annual smoothing in the data by running Coibion and Gorodnichenko

(2015) regressions with annual forecasts and comparing them to the quarterly estimates is

not readily feasible for a number of reasons. First, the annual is constructed using the

average of the quarterly predictions (in levels) that result in the annual potentially appearing

smoother than without this additional channel. Rounding can exacerbate this effect. Second,

the horizon of the annual prediction changes with every survey and reduces the sample

substantially. For this reason, we devise a model in which annual smoothing is the mechanism

through which offsetting revisions arise, and demonstrate that such a model can better fit
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Table 3: Offsetting Revisions Among Individual Forecasters

Three-quarter ahead revision

Two-quarter ahead revision 0.332***
(0.025)

One-quarter ahead revision 0.083***
(0.011)

Current-quarter revision -0.019**
(0.008)

Fixed effects Forecaster, Variable, Time
Observations 65,913

Note: The table reports panel regression results from SPF forecasts based on regression (3). Forecaster,
macro variable, and time fixed effects are specified, and Driscoll and Kraay (1998) standard errors are
reported in parentheses. *** denotes 1% significance, ** denotes 5% significance, and * denotes 10% signif-
icance.

the data than a model without annual smoothing.10

We provide two sets of results lending support to the notion that forecasters offset their

revisions. First, pooling across a range of macroeconomic variables, we show that an upward

revision today predicts a contemporaneous downward revision to the three-quarter ahead

forecast. Second, we focus on real GDP forecasts and demonstrate that current-quarter

revisions move in the same direction as a surprise (proxied by data revisions to GDP) while

three-quarter ahead revisions move in the opposite direction.

We begin by regressing the three-quarter ahead revision devised at time t on the current-

quarter revision, controlling for the one- and two-quarter ahead revisions as well as forecaster

(i), macroeconomic variable (j), and time (t) fixed effects:

Fijt(xjt+h+3)−Fijt−1(xjt+h+3) = αi+αj+αt+
2∑

k=0

αk
[
Fijt(xjt+h+k)−Fijt−1(xjt+h+k)

]
+νijt (3)

The results are reported in Table 3.

Across a range of variables, and controlling for unobserved heterogeneity at the forecaster,

variable, and time levels, we find that the current-quarter revision covaries negatively with

10In Appendix D, we also consider an alternative driver of offsetting revisions such as a richer driving
process, with little qualitative effect on our results.
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the three-quarter ahead revision. In traditional rational expectations models, forecasters

optimally update their predicted trajectories. Amid positive news, forecasters would revise

their trajectories upward, with the magnitude of the revision over longer horizons regulated

by the persistence of the driving process. Importantly, such models do not accommodate for

the offsetting pattern suggested by the results in Table 3.

Next, we narrow our focus to real GDP forecasts and dig deeper by examining exogenous

surprises. In particular, we analyze the response of forecast revisions to a surprise in the

target variable, proxied by statistical data revisions. Macroeconomic variables are subject

to frequent data revisions that are made by statistical agencies. We construct a series of real

GDP data revisions by computing the difference across vintages: dt = xnewt − xoldt . For each

horizon, we regress forecast revisions devised at time t on realized data revisions observed

at time t, controlling for forecaster fixed effects:

Fit(xt+h)− Fit−1(xt+h) = αi + α1dt + εit. (4)

Figure 1 plots the point estimates across horizons, with 95% confidence intervals. The

estimates indicate that an upward revision to real GDP induces forecasters to revise their

current-quarter predictions upward and concurrently revise their three-quarter ahead pre-

dictions downward. This figure accords with the estimates reported in Table 3, and indicate

that forecast revisions exhibit an offsetting behavior indicative of long-horizon smoothing.

Taken together, professional forecasts exhibit overreactions and inertia. Furthermore,

forecasters appear to offset near-term revisions over their longer-term trajectories. We argue

that this latter finding can explain some of the observed overrevisions in the data, and

explicitly model offsetting revisions in next section.

3 A Model of Offsetting Revisions

We begin by detailing our hybrid sticky-noisy information model. Our model is inspired

by Andrade and Bihan (2013) and features annual and quarterly forecasts, each subject to
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Figure 1: Effect of Data Revisions on Forecast Revisions
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Note: The figure reports 95% confidence estimates of the α1 coefficient in regression (4) across four horizons.
Driscoll and Kraay (1998) standard errors are specified in the regressions.

a distinct updating probability. Derivations of our results can be found in Appendix B.

After outlining the model, we discuss how overreactions arise through annual smoothing and

temporal consistency. Finally, we analyze a series of comparative statics in order to examine

the ways in which the regression coefficients estimated in the previous section depend on the

model parameters.

3.1 Model Setup

The model is populated by professional forecasters. Forecasters issue predictions about a

macroeconomic variable, which in part reflects the latent state of the economy, subject to

the realization of noisy signals. Forecasters issue both quarterly and annual forecasts which

they differentially update subject to an adding up constraint which requires that quarterly

forecasts jointly respect the annual forecast in every period.

More formally, forecasters aim to predict a macroeconomic variable xt, which is defined
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as a function of two components:

xt = st + et, et ∼ N(0, σ2
e).

The underlying state of the economy, st, follows an AR(1) process:

st = (1− ρ)µ+ ρst−1 + wt, wt ∼ N(0, σ2
w)

with unconditional mean µ, persistence ρ, and variance σ2
w

1−ρ2 . The state of the economy

is unobserved to forecasters and to the econometrician. The transitory component, et, is

normally distributed noise with variance σ2
e .

Forecasters are interested in forecasting the quarterly and annual realizations of the

macroeconomic variable, xt. Forecaster i’s quarterly k-step ahead forecast devised at time t

is x̂it+k|t. Her annual forecast devised at time t is 1
4

∑3
h=0 x̂

i
t+h|t.

11

When updating their predictions, forecasters observe the previous realization of the macro

variable, xt−1, as well as a contemporaneous private signal:

yit = st + vit, vit
i.i.d.∼ N(0, σ2

v)

In this linear Gaussian set up, forecasters can employ the Kalman filter to determine the

optimal forecast, consistent with the conditional expectation. However, forecasters cannot

flexibly update their forecasts every period. Instead, in a given period, a forecaster is only

able to revise her quarterly prediction with probability q, and annual outlook with probability

p.

Infrequent annual updating (p < 1) can be motivated by institutional, reputational,

or economic considerations. Anecdotally, forecasting institutions avoid revising their annual

figures in each month or quarter, opting instead to implement infrequent large model revisions

11In general, a forecaster may be interested in predicting some realization of x over an arbitrary horizon,
H. In this case, the forecaster will be interested in forecasting 1

H+1

∑H
h=0 xt+h.
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a couple of times per year. A probability p < 1 can be attributed to time or resource

constraints associated with undertaking such large model revisions. Alternatively, more

rigid annual updating can reflect the value in sticking to a particular “story” to narrate to

clients rather than revising in different directions each period. For our purposes, all of these

explanations are embedded in the probability p.

The Calvo-like probabilities, q and p, give rise to four distinct cases:

Case 1: With probability (1− q)(1− p), the forecaster does not update at all.

Case 2: With probability q(1 − p), the forecaster updates the quarterly forecast, but not

the annual. In this case, she updates the quarterly forecast based on the signals received

and subject to an adding up constraint.

Case 3: With probability (1− q)p, the forecaster updates her annual forecast, but not the

quarterly. We interpret this case as a scenario in which the forecaster simply “brings in” the

latest macro release xt−1 and updates her annual prediction accordingly. Importantly, the

forecaster does not touch the rest of the projected quarterly forecasts.12

Case 4: With probability pq, the forecaster can update both types of forecasts. These

forecasts are both updated based on the two signals they receive, and constitute an overall

revision of the forecast.

3.2 Quarterly Overreactions

From the perspective of the model, quarterly overreactions are due to Case 2 forecasting.

As a result, the probability q(1− p) will govern the sign and magnitudes of the coefficients

reported in Table 1. For general forms of long-run smoothing, the reported Case 2 prediction

is:

x̂it+k′|t+k = Eit+k(xt+k′) +
1

H + 1

H∑
h=0

[
Ei,t+k−j(xt+h)− Eit+k(xt+h)

]
, (5)

where x̂it+k′|t+k denotes forecaster i’s reported forecast in period t + k for some future

12This scenario does not play an important role in our findings. The estimated baseline model in the next
section implies that Case 3 occurs only 4% of the time. In addition, a version of this model which assumes
flexible quarterly updating, q = 1, delivers similar conclusions.
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period, t + k′. The subscript t + k − j refers to period in which the long-run forecast was

last updated. Finally, H + 1 refers to the length of the horizon over which forecasts are

smoothed. The reported forecast is the sum of the optimal conditional expectation and a

term capturing the gap between the path of the outdated annual forecast and what it should

be based on the latest information.

Because our central focus is on quarterly and annual updating, we set the relevant horizon

length to be H = 3. Note, however, that as H →∞, the second term in (5) vanishes and the

reported forecast converges to the conditional expectation. This is intuitive: as the horizon

over which a forecaster smooths her forecasts expands, the forecaster has more degrees of

freedom along which to adjust the trajectory in order to preserve temporal consistency. As

a result, she is more flexibly able to report a prediction that is consistent with the optimal

forecast.

We can rearrange (5) in order to more transparently characterize the source of overreac-

tions:

x̂it+k′|t+k =
3

4
Eit+k(xt+k′) +

1

4
Et+k−j(xt+k′)︸ ︷︷ ︸

Traditional smoothing motive

+
1

4

∑
h6=k′

[
Eit+k−j(xt+h)− Et+k(xt+h)

]
︸ ︷︷ ︸

Source of overreactions

.

The first two terms on the right-hand side of the above expression reflect averaging between

current and past forecasts that arises in traditional forecast smoothing models. The last term

is responsible for generating overreactions in our model. This sum reflects the differences in

the conditional expectations between t+k and t+k− j for the other quarters that comprise

the annual path. As current-year events unfold, this sum incorporates past forecast errors.

To see this, note that (5) can be re-written as:

x̂it+k′|t+k = Eit+k(xt+k′) +
1

4

k−1∑
h=0

[
Eit+k−j(xt+h)− xt+h

]
+

1

4

3∑
h=k

[
Eit+k−j(xt+h)− Eit+k(xt+h)

]
,

where the second term now reflects relevant past forecast errors.

Overreactions arise because annual inattention and temporal consistency introduce past
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mistakes into the reported prediction. Suppose, for simplicity, that forecasters last updated

their predictions in the previous period so that j = 1. Then, the above expression becomes:

x̂it+k′|t+k = Eit+k(xt+k′) +
1

4

[
Eit+k−1(xt+k−1)− xt+k−1

]
+

1

4

3∑
h=k

[
Eit+k−j(xt+h)− Eit+k(xt+h)

]
.

Based on the second term, if xt+k−1 comes in higher than expected, then forecasters will

place downward pressure on their current forecast in order to preserve consistency. As a

result, a positive rational expectations error today predicts a positive ex-post forecast error

tomorrow. These excessive overrevisions are later corrected as new and relevant information

arrives in the next period, generating negatively autocorrelated revisions. The trade-off

between accuracy and consistency is therefore responsible for producing overreactions in our

model.13

Figure 2 highlights the key distinction between a model with annual smoothing and

temporal consistency relative to a traditional model of imperfect information. The figure

plots regression coefficients estimated off simulated data in the two models based on (3).

According to a traditional imperfect information model, the three-quarter ahead forecast

revision is positively related to the current-quarter revision. In addition, controlling for the

current-quarter revision, one- and two-quarter ahead revisions hold no predictive power over

the three-quarter ahead revision. Intuitively, in a model with Bayesian updating, the k-

quarter ahead revision is equal to the current-quarter revision, multiplied by the persistence

of the driving process, raised to the k-th power.14

On the other hand, with annual smoothing, the model is able to generate a negative

relation between the three-quarter ahead revision and the current-quarter revisions, and a

positive relation between the three-quarter ahead revision and the one- and two-quarter

ahead revisions. This offsetting pattern, which our model is able to generate, will be respon-

13This mechanism is able to generate initial underreaction and “delayed” overreaction, a feature of the
data explored in Angeletos et al. (2020) and Bianchi et al. (2021b). See Appendix B for additional details.

14Technically, based on the no annual smoothing model, there is perfect multicollinearity as two of the
regressors are a linear combination of the third.
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Figure 2: Offsetting with Annual Smoothing

Note: The figure plots the estimated coefficients from simulated regressions based on (3). The red line
denotes the model with annual smoothing and the blue line denotes a model without annual smoothing.

sible for producing quarterly overreactions.

3.3 Analyzing the Model

The model features rich dynamics across horizon, frequency, and level of aggregation. As a

result, the coefficients studied in Section 2 are complex functions of the underlying model pa-

rameters. To extract intuition from the model, we therefore focus on simulated comparative

statics.

We focus on the autocorrelation of revisions, though we note that in the same qualita-

tive findings arise when simulating the errors-on-revisions coefficient. Figure 3 plots these

coefficients across a range of different parameter values collectively governing the state and

signals. For each panel, the left axis plots the individual-level coefficient while the right axis

plots the consensus-level coefficient.

Panel 1 displays results for the persistence of the state. As the persistence of the state
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Figure 3: Revision Autocorrelation Model Parameters

Note: The figure plots comparative statics of one-quarter ahead revision autocorrelation to each model
parameter. The black line (left axis) plots the individual pooled autocorrelation of revisions while the
dashed red line (right axis) plots the consensus-level autocorrelation coefficient.

approaches one, we find that the scope for overreactions declines. This is consistent with

Bordalo et al. (2020) and Afrouzi et al. (2021) who note that overreactions are decreasing in

ρ. From the lens of our model, a more persistent target variable will reduce the magnitude

of the forecast errors thereby reducing the scope for past forecast errors to influence current

predictions through the consistency constraint. Furthermore, the aggregate autocorrelation

of revisions rises as the persistence of the state rises. At the consensus-level, the imper-

fect information environment generates greater persistence in aggregate beliefs with a more

persistent driving process.

Panel 2 reports the results for the state volatility, σw. Here, we find that the scope

for overreactions is decreasing in state innovation volatility. Consistent with the intuition
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discussed for Panel 1, the rate of learning is increasing in the variance of the latent state.

As information becomes more precise, there is less scope of overreactions. We also find that

the autocorrelation coefficient increases at the aggregate level as the volatility of the state

increases. We uncover similar results when simulating the consensus errors-on-revisions re-

gression coefficient. This finding is at odds with Coibion and Gorodnichenko (2015) which

finds that a larger coefficient at the consensus-level is indicative of greater information fric-

tions. Here, the opposite is the case since the Kalman gain is increasing in the volatility of

the state.

On the other hand, Panels 3 and 4 show that the forecaster-level coefficients are decreasing

in public and private noise. This is because, at the individual level, additional noise raises the

variance of the forecast error and reduces the rate of learning. As a result, annual forecast

smoothing promotes overadjustments. At the aggregate level, however, the autocorrelation of

revisions depends on the type of noise. In particular, the aggregate autocorrelation coefficient

falls as common noise becomes more pervasive.15. Private noise however, washes out in the

cross-section, so the aggregate autocorrelation coefficient actually rises with elevated levels of

σv. The standard noisy information logic applies here: higher private noise variance reduces

the signal-to-noise ratio and the Kalman gains thereby generating inertia in expectation

formation.

3.4 Updating Probabilities

An important feature of our model is the differential rates of updating for quarterly and

annual forecasts. To assess the role that infrequent annual updating plays in driving observed

overreactions, we focus on the frequency of Case 2 forecasting.

Figure 4 illustrates how individual overadjustments depend on the quarterly and annual

updating probabilities. On the left axis, the figure plots simulated estimates of the auto-

correlation of forecast revisions. The right axis plots the aggregate revision autocorrelation

15This is consistent with the discussion in Coibion and Gorodnichenko (2015) on the bias in the OLS
errors-on-revisions coefficient under a common noise assumption.
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Figure 4: Revision Autocorrelation and Updating Probabilities

Note: The figure plots the simulated revision autocorrelation coefficients as a function of the probability of
Case 2 forecasting. The left axis plots the individual-level coefficient while the right axis plots the aggregate
coefficient.

coefficient. Finally, the horizontal axis plots the probability of Case 2 updating.

Focusing first individual autocorrelation coefficient, we see that as the probability of Case

2 updating rises, forecasters’ quarterly predictions more intensely overreact. This is because

forecasters increasingly find themselves in a scenario in which they wish to update based on

news they receive, but cannot adjust the annual outlook. In this case, forecasters respond to

news, but offset their sequence of revisions so as to preserve temporal consistency. The ex-

cessive revising that occurs along the annual path is responsible for generating overreactions.

Turning to the right axis, we note that the simulated aggregate autocorrelation coefficient

is also decreasing in the probability of Case 2 updating. As more forecasters engage in Case

2 updating, the role imperfect information in generating inertia diminishes.
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4 Model Estimation

Having analyzed the model’s ability to reproduce over- and underreactions, we next turn to

estimating the model with micro data from the SPF. We fit the model to real GDP growth

forecasts between 1968Q4-2019Q4. Of the seven parameters, we first fix the unconditional

mean, µ = 2.4, consistent with the sample mean of real-time real GDP growth over this

period.

We estimate the remaining six parameters via a minimum distance estimation approach.

The parameters to be estimated are θ = (ρ σw σe σv q p)
′. These parameters are chosen

to match eight data moments: the covariance matrix of current-quarter and current-year

forecasts, the covariance matrix of current-quarter forecast revisions and last period’s forecast

error, and the mean squared errors associated with current quarter predictions and current

year predictions.

4.1 Identification

As with any other estimation approach, a discussion of identification is imperative. Here,

there is a joint mapping between parameters and moments, however, some moments are

especially important for identifying certain parameters. Figure C2 illustrates some important

comparative statics that lend support to the choice of target moments.

The underlying persistence of the latent state, ρ, is in part identified by the covariance

between the current-quarter forecast and the current-year forecast. With a highly persistent

data generating process, the covariance between current-quarter and current-year forecasts

will be strongly positive. Instead, if the process is i.i.d., then this covariance will be closer

to zero. This is seen in Panel 1 of Figure C2. Moreover, Panels 5 and 6 of the figure confirm

that the probabilities of updating, q and p, inform the relevant mean squared errors.

The dispersion parameters, σw, σe, and σv require further discussion. Two of these

parameters reflect noise variance (σe and σv) while the other (σw) reflects the variance of the

underlying state. The distinction between noise and signal is crucial in the identification of
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these parameters.

First, the variance of the underlying state, σw, is identified in part from the variance

of the current-year forecast. Recall that the current-year forecast is: 1
4

∑3
h=0 x̂

i
t+h|t. As the

end of the year approaches, more and more realizations of xt within the year figure into the

optimal current-year projection, replacing the filtered forecasts that are subject to noise. For

this reason, an increase in σw raises the variance of the current-year forecast.

Moreover, elevated levels of public signal noise, σe, contribute to a larger forecast error

variance. The link between common noise and the variance of errors is intuitive since the

macro variable being predicted is a linear function of the common noise, et.

Lastly, private noise variance, σv, informs the covariance between revisions and lagged

errors. Based on the model, the filtered current-quarter forecast revision is:

xit|t − xit|t−1 = κ1(y
i
t − xit|t−1) + κ2(xt−1 − xit−1|t−1).

where κ1 and κ2 denote the Kalman gains. An increase in σv reduces the Kalman gain weight

placed on the private signal, κ1. As σv rises, fluctuations in the current-quarter revision are

increasingly driven by lagged forecast errors, thereby strengthening the covariance between

the revision and the lagged error. In other words, with less informative private signals,

forecasters trust yit less and instead base more of their revisions on the news gleaned from

yesterday’s error.16

4.2 Estimation Results

The parameters obtained via the minimum distance estimation approach are precisely es-

timated and are reported in Panel A of Table 4. The underlying persistence of real-time

GDP growth is estimated to be about 0.54. In addition, the dispersion in state innovations

is 2.37 while the dispersion in public and private noise are 1.66 and 0.72, respectively. These

16Figure C3 in Appendix C helps assess the sources of identification by reporting the sensitivity of each
of the six parameters to changes in a given moment, based on Andrews et al. (2017). These figures confirm
the intuition laid out above.
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estimates imply a signal-to-noise ratio of about σ2
w

σ2
e+σ

2
v
≈ 1.72. Furthermore, the probabil-

ity of quarterly updating is about 0.93, indicating that forecasters update their quarterly

predictions nearly every period. Lastly, the probability of annual updating is estimated to

be 0.61, meaning that forecasters update their annual predictions for at most three out of

four quarters. Put another way, in any given quarter, roughly 61% of forecasters update

their annual forecasts. These estimates are significantly below one, indicating that there is

scope for the model to generate both over- and underadjustments. Our estimates imply that

annual smoothing is a meaningful friction in the model. In the absence of infrequent annual

updating, the root mean squared error for current-quarter predictions would fall by about

10%.

The model is able to successfully replicate the targeted features of the data. Panel B of

Table 4 reports the model-implied moments and the empirical moments, scaled to correlations

and standard deviations. The fourth column of Panel B reports t-statistics which indicate the

model moments are statistically indistinguishable from their empirical counterparts. A test

of overidentifying restrictions delivers a p-value of 0.146, failing to reject the null hypothesis

thereby lending additional support to the validity of the estimates.

5 Annual Smoothing and Overadjustments

Having evaluated the estimated model and assessed its fit to the targeted moments, we next

turn to analyzing its ability to replicate the patterns of over- and underadjustments observed

in the data.

5.1 Simulated Regression Coefficients

The model is able to successfully replicate the negative autocorrelation of revisions observed

in the data. Figure 5 plots the autocorrelation of revisions across horizons both in the

data and in the model. The simulated model-based estimates nearly always lie within 95%

confidence interval of the estimated coefficients, both at the individual (top figure) and
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Table 4: Model Estimation Results

Panel A: Parameter Estimates

Parameter Estimate Standard error

Persistence of latent state ρ 0.535 0.028
State innovation dispersion σw 2.369 0.210
Public signal noise σe 1.657 0.154
Private signal noise σv 0.721 0.139
Probability of quarterly update q 0.929 0.065
Probability of annual update p 0.609 0.052

Panel B: Moments

Model moment Data moment t-statistic

Standard deviation of nowcast 2.322 2.399 -0.602
Correlation of nowcast with annual forecast 0.747 0.745 -0.509
Standard deviation of annual forecast 1.577 1.622 -0.477
Standard deviation of revision 2.061 1.999 0.503
Correlation of revision with lagged error 0.139 0.147 -0.166
Standard deviation of lag error 2.101 2.128 -0.288
RMSE nowcast 2.129 2.150 -0.245
RMSE annual forecast 1.463 1.477 -0.225

Note: Panel A reports the model parameters with point estimates reported in the third column and standard
errors reported in the fourth column. Panel B reports the model vs. data moments with t-statistics reported
in the fourth column.

aggregate (bottom figure) levels.

Table 5 reports ten additional non-targeted moments. Panel A reports individual-level

regression coefficients of errors-on-revisions at the current quarter as well as one- and two-

quarter ahead horizons (rows 1-4). The fourth row of table reports the estimated coefficient

from a regression of the annual (Q4/Q4) forecast error on the realized actual as in Kohlhas

and Walther (2021). Across these four regressions, the model almost always predicts indi-

vidual overreactions as in the top panel of Figure 5.17

Row 5 of Panel A reports estimates of forecast error persistence. We report this esti-

mate to highlight our model’s ability to reproduce another important feature of the data:

17The model does not generate a negative errors-on-revisions coefficient based on a regression of current-
quarter errors on revisions. This is because the model assumes that the news forecasters receive is about
today. As a result, forecasters place more importance on minimizing current quarter errors, and instead
reshuffle their future forecasts to maintain annual consistency. If instead signals were informative about
future quarters rather than the current quarter, then the model would generate a negative errors-on-revisions
coefficient for current-quarter forecasts.
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Figure 5: Model Fit to Revision Autocorrelation

Note: The figure plots the empirical and model-implied autocorrelation of revisions. The top panel plots
the individual autocorrelation coefficient, and the bottom panel plots the consensus-level autocorrelation
coefficient. 95% confident intervals are displayed with each point estimate.

individual-level forecast error persistence. In a rational setting in which forecasters are able

to observed lagged realizations of the variable of interest, errors should not exhibit persis-

tence.18 Our model is able to generate error persistence precisely because annual smoothing

introduces lagged errors into reported forecasts. We find this to be a desirable feature of our

model as it allows us to match this pattern in the data while allowing lagged realizations to

reside the forecaster’s information set.

Panel B of Table 5 report the aggregate analogs to the estimates in Panel A. The first

three rows in particular, indicate that consensus forecasts exhibit inertia. Taken together, the

results demonstrate that the model is successful in producing empirically relevant magnitudes

of over- and underadjustments.

18The literature has often assumed that forecasters never observe the variable of interest, thereby preserving
error persistence.
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Table 5: Additional Non-targeted Moments

Panel A: Individual-Level
Model Data

β(FECQ,FRCQ) 0.047 (0.043) -0.249 (0.071)
β(FE1Q,FR1Q) -0.115 (0.099) -0.228 (0.066)
β(FE2Q,FR2Q) -0.431 (0.118) -0.302 (0.051)
β(Annual FE, Realized actual) -0.058 (0.080) -0.089 (0.017)
β(FECQ,FECQ−1) 0.159 (0.046) 0.176 (0.046)

Panel B: Aggregate-Level
Model Data

β(FECQ,FRCQ) 0.378 (0.066) 0.354 (0.179)
β(FE1Q,FR1Q) 0.512 (0.220) 0.685 (0.313)
β(FE2Q,FR2Q) 0.347 (0.440) 0.667 (0.385)
β(Annual FE, Realized actual) -0.058 (0.080) -0.076 (0.064)
β(FECQ,FECQ−1) 0.086 (0.060) 0.083 (0.075)

Note: The table reports additional regression coefficients in the model as well in the data. Standard devi-
ations and standard errors are reported in parentheses. ‘FE’ refers to forecast error, ‘FR’ refers to forecast
revision, and ‘CQ, 1Q, 2Q’ refer to current quarter, one-quarter ahead, and two-quarters ahead, respectively.

5.2 Incorporating Non-Rational Expectations

To better understand the quantitative importance of our mechanism as a driver of overad-

justments, we augment our model with a behavioral friction in a supplementary exercise.

We choose a leading theory of non-rational expectations, diagnostic expectations (Bordalo

et al., 2019; Bianchi et al., 2021a; Bordalo et al., 2021; Chodorow-Reich et al., 2021), which

draws from the representativeness heuristic (Tversky and Kahneman, 1974). In particu-

lar, diagnostic forecasters place excess weight on new information such that their reported

current-quarter prediction is:

xi,θt|t = Eit(xt) + θ
[
Eit(xt)− Eit−1(xt)

]
where θ is the degree of diagnosticity. When θ = 0, the model collapses to the standard

noisy information rational expectations model. On the other hand, in a world of diagnostic

expectations, θ > 0.
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Figure 6: Annual Smoothing vs. Diagnostic Expectation Contributions

Note: The figure plots the contributions of annual smoothing and diagnostic expectations, in percent, to
three measures of overreactions. The third measure is first studied in Kohlhas and Walther (2021).

The objective of this exercise is to model two channels of overreaction: (i) annual smooth-

ing and (ii) diagnostic expectations, and to quantify the relative importance of our mecha-

nism. To do so, we re-estimate the model with and without diagnostic expectations while

targeting two additional moments: the contemporaneous covariance of errors and revisions,

and the variance of contemporaneous errors. We add these moments to the estimation pro-

cedure in order to ensure that the model fits a well-known measure of overreactions, the

coefficient of errors on revisions, as closely as possible.

The constrained model without diagnostic expectations, implies that the probability of
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Case 2 updating, q(1 − p), is about 0.46.19 When we incorporate diagnostic expectations,

this probability falls to 0.31. At the same time, our estimate of diagnosticity is 0.45 which

is 25% lower than the estimate obtained in Bordalo et al. (2020) using the same SPF data

and a similar estimation approach. Overall, this indicates that annual smoothing and tem-

poral consistency can contribute a meaningful amount of observed overreactions, even in the

presence of other frictions.

We conclude the exercise by quantifying the importance of our mechanism through a

decomposition exercise. Figure 6 displays three sets of stacked bars, each corresponding to

a distinct measure of overadjustments. The red bar denotes the contribution of our annual

smoothing motive to the overall measure of overadjustments while the blue bar denotes the

contribution of diagnostic expectations. Once again, we find that annual smoothing is a

meaningful, and in this case dominant, mechanism for generating overreactions. While there

are a number of other plausible sources of overadjustments, these results suggest that annual

smoothing can be a quantitatively important driver of overreactions.

5.3 Annual Smoothing Across SPF Variables

We next estimate our baseline model for the range of macroeconomic variables covered in

the SPF. Table 6 reports empirical and simulated estimates of the revision autocorrelation,

our non-targeted moment of choice. In general, we find that our model is broadly successful

in reproducing the negatively autocorrelated revisions observed in the data.

5.4 Annual Smoothing By Forecaster Type

Annual inattention can arise due to reputational considerations or time and resource con-

straints associated with frequent model updating. While we cannot assess the reputational

considerations hypothesis in the data, since the SPF is an anonymous survey, we can examine

the plausibly of resource constraints. To do so, we exploit the SPF classifications of different

19Table D4 reports the parameter estimates.
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Table 6: Estimates Across SPF Variables

Revision Autocorrelation

Model Data

Real GDP -0.230 (0.037) -0.264 (0.036)
Nominal GDP -0.169 (0.026) -0.263 (0.032)
Real Consumer Spending -0.325 (0.027) -0.336 (0.089)
GDP Deflator -0.165 (0.028) -0.305 (0.052)
Real residential investment -0.178 (0.027) -0.230 (0.037)
Real nonresidential investment -0.155 (0.027) -0.186 (0.054)
Real federal spending -0.203 (0.030) -0.273 (0.061)
Real state/local spending -0.178 (0.035) -0.352 (0.071)
Industrial production -0.209 (0.025) -0.279 (0.035)
CPI -0.447 (0.019) -0.395 (0.088)
Unemployment -0.018 (0.057) -0.271 (0.048)
Ten Year Bond -0.422 (0.019) -0.396 (0.030)
3-month bill -0.229 (0.045) -0.301 (0.054)
Housing starts -0.273 (0.026) -0.331 (0.033)

Note: The table reports one-quarter ahead revision autocorrelation coefficients in the model and the data
for various macroeconomic variables covered in the SPF. Bold values are significantly negative at the 5%
level.

forecaster types. Beginning in 1990, the SPF began collecting information on respondents’

industries of employment. Respondents are labeled as either a financial service provider,

a non-financial service provider, or neither. Financial service providers include asset man-

agers, investment bankers, and insurance companies while non-financial forecasters include

academics employed at universities, manufacturers, and consulting firms.20 In general, a

forecaster is able to switch across categories over time.

Assuming that the inattention is costlier among financial service providers, we hypoth-

esize that these types of forecasters should exhibit less Case 2 forecasting from the lens

of our model.21 To assess this hypothesis, we re-estimate the baseline model for financial

20A full list is provided on page 33 of the SPF documentation: https://www.philadelphiafed.org/-/

media/frbp/assets/surveys-and-data/survey-of-professional-forecasters/spf-documentation.

pdf?la=en&hash=F2D73A2CE0C3EA90E71A363719588D205

21Financial service providers could face plausibly higher inattention costs relative to non-financial service
providers for a number of reasons. Many of the client demands among financial service providers require op-
erating with up-to-date information. On the other hand, academics or other non-financial service providers
must complete other tasks on a regular basis that might not require highly updated information on macroe-
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Figure 7: Model Fit to Revision Autocorrelation, by Forecaster Type

Note: The figure plots the empirical and model-implied autocorrelation of revisions. The top two panels plot
the individual autocorrelation coefficient, and the bottom two panels plot the consensus-level autocorrelation
coefficient. The first column of panels refers to the financial industry forecaster subsample while the second
column of panels refers to non-financial forecaters. 95% confident intervals are displayed with each point
estimate.

and non-financial forecasters separately and find the strongest evidence of annual smoothing

among non-financial service providers.22 Figure 7 displays the non-targeted fit of the esti-

mated models to the autocorrelation of revisions. Overall, our estimated models are able

to successfully match the autocorrelation of revisions across either type of forecaster, which

are more strongly negative among non-financial forecasters. These results favor a time or

resource-based interpretation of annual inattention.

conomic developments.

22The estimation results are reported in Table D5 in Appendix D.
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Table 7: Information Frictions Across Models

Probability Implied Sticky info Noisy info
of updating friction contribution contribution

Panel A: Real GDP
Quarterly 0.929 0.143 50.1% 49.9%
Annual 0.609 0.438 89.4% 10.6%

Panel B: Inflation
Quarterly 0.971 0.175 16.8% 83.2%
Annual 0.432 0.633 89.8% 10.2%

Note: The table reports estimated updating probabilities, implied information frictions, and contributions of
sticky and noisy information for real GDP and inflation at quarterly and annual frequencies. Implied informa-
tion frictions are computed based on (6) with model-implied Kalman gains {0.917, 0.007} and {0.800, 0.051}
for real GDP and inflation, respectively. Contributions of sticky and noisy information are computed ac-
cording to (7)

6 Implications for Information Frictions

In addition to serving as a source of observed overadjustments, our model can also speak to

the literature on information frictions. Since our model does not allow us to readily extract a

coefficient of information rigidity from an OLS regression, we simulate the estimated model

in order to quantify the size of information frictions.

6.1 Model-Implied Information Rigidities

Column 3 of Table 7 reports measures of implied information rigidity for SPF forecasts of

real GDP and inflation. Since our model is a hybrid sticky-noisy information model, we

define the implied information friction to be:

Implied friction =
[
1− Pr(update)

]
+ Pr(update)× (1− κ1 − κ2) (6)

where Pr(update) denotes the probability of updating, which reflects the sticky information

feature of the model. This probability varies across quarterly and annual frequencies. More-

over, the role of noisy information in overall information frictions is understood through the
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coefficients {κ1, κ2} which denote the Kalman gains.23 In traditional models of either sticky

information or noisy information, the relevant information rigidity is governed by either the

probability of updating or the Kalman gain(s). Here, the implied friction is a combination

of these two objects. With some probability, forecasters do not update. In this case, they

effectively place a weight of zero on new information (κ1 = κ2 = 0) so that the first term

in (6) is scaled by one. With some probability, forecasters do update, in which case they

weigh new information based on the Kalman gains. Upon updating, the relevant information

friction is one minus the value of these optimal weights. Together, these terms capture the

general notion of an information friction in a hybrid sticky-noisy information model.

To compare our implied information frictions to estimates documented in the literature,

we also report model estimates using inflation forecasts based on the GDP deflator. At a

quarterly frequency, we estimate information frictions to be about 0.18 while, for annual

forecasts, we find that information frictions are higher, at 0.63. For reference, Coibion and

Gorodnichenko (2015) estimate coefficients of information rigidity to be around 0.54 while

to Ryngaert (2017) estimates information frictions to be roughly 0.33. Importantly, whereas

existing estimates imply a single information friction for all frequencies, our analysis indicates

that there is a difference in information rigidities across quarterly and annual frequencies.

We note that the average of our quarterly and annual implied information frictions hover

around these previously documented estimates.

6.2 Contributions of Sticky and Noisy Information

The literature on survey expectations has documented evidence consistent with both sticky

and noisy information. Our results indicate that the data favor a hybrid model featuring

signal extraction and frequency-specific sticky information. In addition to providing esti-

mates of information frictions based on both sticky and noisy information, our model can

also quantify the relative importance of each of these channels. To do so, we normalize the

23In particular, κ1 denotes the weight placed on the private contemporaneous signal and κ2 is the weight
placed on the lagged realization of the macro variable.
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implied information friction to equal one

1 =
1− Pr(update)[

1− Pr(update)
]

+ Pr(update)× (1− κ1 − κ2)︸ ︷︷ ︸
Sticky info contribution

+
Pr(update)× (1− κ1 − κ2)[

1− Pr(update)
]

+ Pr(update)× (1− κ1 − κ2)︸ ︷︷ ︸
Noisy info contribution

.

(7)

The first term in the above expression quantifies the role of sticky information in the

overall measured information rigidity while the second term quantifies the importance of

signal processing. The final two columns of Table 7 report the contributions of each forms

of imperfect information to the implied friction reported in column 3. The results from this

accounting exercise suggest that noisy information is the primary contributor to estimated

information frictions among quarterly inflation forecasts, while sticky information becomes

substantially more important at the annual frequency.

7 Conclusion

We show that professional forecasters exhibit over- and underadjustments, and they appear

to offset their updates. We build a hybrid sticky-noisy information model that can account

for these facts. From the lens of our model, overreactions arise because of annual smoothing

and temporal consistency. When faced with new information, forecasters offset their current

updates further along their annual trajectories. The tradeoff between minimizing errors

and satisfying consistency generates a negative autocorrelation of revisions. The estimated

model successfully fits key micro moments among professional forecasters, and can explain

a meaningful amount of overreactions to real GDP as well as other variables in the SPF.

When comparing our model to a theory of non-rational explanations, we find that annual

smoothing explains much of the overreaction among professional forecasters.

Our results also imply that information frictions and their composition vary by frequency.

Our model mainly attributes the higher information rigidity at the annual level to information

stickiness, while the smaller quarterly frictions are mainly attributed to noisy information.

Future research might be able to provide a deeper microfoundation for annual smoothing, be
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it rational or behavioral. For policymakers, the result that quarterly predictions are updated

almost every quarter, and are contaminated by overadjustments due to annual smoothing,

implies that they should focus on managing medium- and long-term expectations as they

are more informative and persistent.
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Appendix A Empirics

A.1 Summary Statistics

We utilize data from the SPF spanning 1968Q4-2019Q4. Table A1 report summary statistics

of real GDP forecast errors and revisions across horizons, as well as real-time outcomes and

data revisions.

Table A1: SPF Real GDP Summary Statistics

Mean Median Std. deviation 25% 75%

Forecasts

Current quarter 2.364 2.524 2.786 1.416 3.603
One quarter ahead 2.679 2.700 2.437 1.900 3.615
Two quarters ahead 2.906 2.836 2.220 2.082 3.776

Forecast errors

Current quarter 0.021 -0.037 2.460 -1.261 1.260
One quarter ahead -0.310 -0.254 2.923 -1.664 1.068
Two quarters ahead -0.673 -0.348 4.108 -1.826 1.091

Forecast revisions

Current quarter -0.269 -0.119 2.234 -0.994 0.565
One quarter ahead -0.166 -0.036 2.037 -0.637 0.407
Two quarters ahead -0.170 -0.030 2.035 -0.558 0.325

Real GDP

Real-time outcomes 2.408 2.529 2.969 1.310 3.885
Data revisions -0.023 -0.072 0.760 -0.523 0.332

Note: The table reports summary statistics for the relevant variables utilized in the main text. The sample
is constructed from SPF real GDP growth forecast data. The unbalanced panel spans 1968Q4-2019Q4, and
consists of 253 unique forecasters.

A.2 Additional Evidence of Over- and Underreaction

In addition to the regression results presented Section2, Kohlhas and Walther (2021) pro-

vide an additional measure of overreaction based on regressing ex-post forecast errors on

outcomes. Table A2 reports the results from this regression based on our sample.
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Table A2: Overreaction to Realized Output

Annual error Annual error

Realized outcome -0.085*** -0.089***
(0.016) (0.017)

Fixed effects None Forecaster
Observations 4559 4540

Note: The table reports panel regression results from SPF forecasts of real GDP based on the regression
of errors on realized output in Kohlhas and Walther (2021). *** denotes 1% significance, ** denotes 5%
significance, and * denotes 10% significance.
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Appendix B Model

B.1 Deriving the Reported Forecast

Suppose that in each period, professional forecasters devise predictions across a number of

horizons, H. Forecasters in the model wish to minimize the sum of their mean square errors:

min
{x̂i

t+h|t|t+k
}

H∑
h=0

(xt+h − x̂it+h|t+k)2, (8)

where x̂it+h|t+k denote forecaster i’s predictions about xt h-steps into the future, based on

information at time t+ k.

When forecasters are able to freely update quarterly and annual forecasts, they report

x̂it+k′|t+k = Eit+k(xt+k′) ∀k′ ∈ [0, H], and
1

H + 1

H∑
h=0

x̂it+h|t+k

as their quarterly and annual forecasts, respectively.

If the forecaster is able to update her short-run predictions but not her long-run predic-

tions, then she must solve the optimization problem above subject to the requirement that

the updated quarterly forecasts coincide with the outdated annual forecast:

1

H + 1

H∑
h=0

x̂it+h|t+k =
1

H + 1

H∑
h=0

x̂it+h|t+k−j, (9)

where j denotes the period in which the annual forecast was last updated. In this case, the

forecaster solves (8) subject to (9).

The Lagrangian is

L =
H∑
h=0

(xt+h − x̂it+h|t+k)2 − λ
(

1

H + 1

H∑
h=0

x̂it+h|t+k −
1

H + 1

H∑
h=0

x̂it+h|t+k−j

)
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The first order condition with respect to the reported forecast x̂it+k′|t+k implies

x̂it+k′|t+k = Eit+k(xt+k′) +
λ

2(H + 1)
. (10)

Combining the FOC with the definition of the constraint delivers:

1

H + 1

H∑
h=0

x̂it+h|t+k−j =
1

H + 1

H∑
h=0

[
Eit+h(xt+k′) +

λ

2(H + 1)

]
.

Rearranging, we obtain:

λ = 2(H + 1)

[
1

H + 1

H∑
h=0

x̂it+h|t+k−j −
1

H + 1

H∑
h=0

Eit+k(xt+k′)
]

Substituting this expression for the Lagrange multiplier into the FOC for the reported fore-

cast, we obtain an intuitive expression:

x̂it+k′|t+k = Eit+k(xt+k′) +

[
1

H + 1

H∑
h=0

x̂it+k′|t+k−j −
1

H + 1

H∑
h=0

Eit+k(xt+k′)
]

or, equivalently,24

x̂it+k′|t+k = Eit+k(xt+k′) +
1

H + 1

H∑
h=0

[
Eit+k−j(xt+k′)− Eit+k(xt+k′)

]
. (11)

B.2 Analytical Characterization of Individual Revisions

We can split the second term in (11) to distinguish events that have come to pass (before

t+ k) from events that have yet to pass (on or after t+ k):

24This follows from the fact that whenever the forecaster constructed her outdated annual, she did so
optimally, based on the conditional expectation as of date t+ k − j.
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x̂it+k′|t+k = Eit+k(xt+k′) +
1

H + 1

k−1∑
h=0

[
Eit+k−j(xt+h)− xt+h

]
+

1

H + 1

H∑
h=k

[
Eit+k−j(xt+h)− Eit+k(xt+h)

]
.

The middle term reflects lagged forecast errors while the last term reflects forecast revisions.

The previous period forecast for the same horizon (t+ k′) is

x̂it+k′|t+k−1 = Eit+k−1(xt+k′) +
1

H + 1

k−2∑
h=0

[
Eit+k−`(xt+h)− xt+h

]
+

H∑
h=k−1

[
Eit+k−`(xt+h)− Eit+k−1(xt+h)

]
.

The forecast revision is therefore:

x̂it+k′|t+k − x̂
i
t+k′|t+k−1 = Eit+k(xt+k′)− Eit+k−1(xt+k′)

+
1

H + 1

{ k−1∑
h=0

[
Eit+k−j(xt+h)− xt+h

]
−
k−2∑
h=0

[
Eit+k−`(xt+h)− xt+h

]}

+
1

H + 1

{ H∑
h=k

[
Eit+k−j(xt+h)− Eit+k(xt+h)

]
−

H∑
h=k−1

[
Eit+k−`(xt+h)− Eit+k−1(xt+h)

]}
,

Or, equivalently,

x̂it+k′|t+k − x̂
i
t+k′|t+k−1 = Eit+k(xt+k′)− Eit+k−1(xt+k′)

− 1

H + 1

{[
xt+k−1 − Eit+k−j(xt+k−1)

]
+

k−2∑
h=0

[
Eit+k−j(xt+h)− Eit+k−`(xt+h)

]}

+
1

H + 1

{[
Eit+k−1(xt+k−1)− Eit+k−`(xt+k−1)

]
+

H∑
h=k

[
Eit+k(xt+h)− Eit+k−1(xt+h)

]
−

H∑
h=k

[
Eit+k−j(xt+h)− Eit+k−`(xt+h)

]}
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B.3 Initial Underreaction, Delayed Overreaction

The model is also capable of generating the initial underreaction and delayed overreaction

dynamics recently documented in the literature (Angeletos et al., 2020; Bianchi et al., 2021b).

Figure B1 plots the simulated response of aggregate forecast errors to shock to the underlying

state, st, in our model (solid red line) and a model without annual inattention (dashed blue

line). The figure corroborates the intuition highlighted above by demonstrating that errors

inherit the excess volatility in revisions that arise with Case 2 updating.

Figure B1: Dynamics of Annual Smoothing

Note: The figure plots simulated impulse responses to a one standard deviation shock to wt in the model.
The solid red line plots the impulse response in our model with annual smoothing and temporal consistency
while the dashed blue line plots the impulse response without annual smoothing.
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Appendix C Estimation

The model is estimated via the simulated method of moments. Operationally, this is done by

simulating a balanced panel of 250 forecasters over 40 periods, consistent with the average

number of quarterly forecasts that a unique forecaster contributes throughout the history

of the survey.25 For each iteration, the target moments are computed, averaged across

simulations, and compared to their empirical analogs. The six-dimensional parameter vector,

θ, is selected to minimize the weighted distance between simulated moments and empirical

moments, where the asymptotically efficient weighting matrix is specified.

Formally, we search the parameter space via a particle swarm routine to find the θ̂ that

minimizes the following objective

min
θ

(
m(θ)−m(X)

)′
W
(
m(θ)−m(X)

)
where m(θ) denotes the simulated moments, m(X) denotes the empirical moments, and W

denotes the weighting matrix. The limiting distribution of the estimated parameter vector

θ̂ is
√
N(θ̂ − θ) d→ N (0,Σ)

where

Σ =

(
1 +

1

S

)[(
∂m(θ)

∂θ

)′
W

(
∂m(θ)

∂θ

)]−1
and S = 100. Standard errors are obtained by numerically computing the partial derivative

of the simulated moment vector with respect to the parameter vector.

C.1 Identification

The eight moments jointly determine the six parameters that reside in vector θ. To sup-

plement the discussion on monotone relationships reported in Figure C2, we additionally

25Similar results are obtained when mimicking the unbalanced nature of the panel data by simulating a
larger set of forecasters and matching missing observations.
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report the sensitivity of each of the parameters to changes in each of the moments in Fig-

ure C3. These sensitivities are an implementation of Andrews et al. (2017). In particular,

the sensitivity of θ̂ to m(θ) is

Λ = −
[(

∂m(θ)

∂θ

)′
W

(
∂m(θ)

∂θ

)]−1(
∂m(θ)

∂θ

)′
W.

I transform this matrix so that the estimates can be interpreted as elasticities of the param-

eters with respect to moments.

Figure C2: Comparative Statics

Note: Each panel displays a monotonic relationship between the parameter on the horizontal axis and a
given moment (or pair of moments). The vertical axis measures the percent deviation of the given moment
from its estimated value in Table 4.
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Figure C3: Sensitivity
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Note: The figure computes the elasticities of estimated parameters to moments as in Andrews et al. (2017).
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Appendix D Additional Robustness Exercises

In this section, we consider a variety of robustness checks. First, we examine the role that

rounding plays in the parameter estimates. We then augment our model with diagnostic

expectations to assess the relative importance of our mechanism in generating overadjust-

ments. Next, we report the results for across forecaster type, and then report the estimates

based on real GDP forecasts from the Bloomberg Survey as well as SPF inflation forecasts.

Following this, we undertake a sub-sample analysis, estimating the baseline model before

and after 1990. Finally, we consider an alternate data generating process for the underlying

state.

D.1 Rounding

We first report parameter estimates under the assumption that forecasters round their pre-

dictions to the nearest 0.10 percentage point. We find that this rounding assumption does

not meaningfully change our parameter estimates (see Table D3).26

26Studying more traditional Gaussian measurement error introduces an identification problem between
the measurement error dispersion and private signal noise dispersion, σv. At the same time, rounding is a
well understood phenomenon in survey expectations. For this reason, we focus on this form of measurement
error.
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Table D3: Model Estimation Results, Rounding Reported Forecasts to Nearest 0.1pp

Panel A: Parameter Estimates

Parameter Estimate Standard error

Persistence of latent state ρ 0.534 0.028
State innovation dispersion σw 2.372 0.209
Public signal noise σe 1.659 0.154
Private signal noise σv 0.725 0.139
Probability of quarterly update q 0.929 0.065
Probability of annual update p 0.609 0.052

Panel B: Moments

Model moment Data moment t-statistic

Standard deviation of nowcast 2.322 2.399 -0.599
Correlation of nowcast with annual forecast 0.747 0.745 -0.518
Standard deviation of annual forecast 1.576 1.622 -0.483
Standard deviation of revision 2.063 1.999 0.519
Correlation of revision with lagged error 0.138 0.147 -0.162
Standard deviation of lag error 2.104 2.128 -0.260
RMSE nowcast 2.131 2.150 -0.214
RMSE annual forecast 1.464 1.477 -0.210

Note: Panel A reports the model vs. data moments with t-statistics reported in the fourth column. Panel
B reports the model parameters with point estimates reported in the third column and standard errors
reported in the fourth column.
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D.2 Incorporating Diagnostic Expectations

Table D4: Model Estimation Results, Diagnostic Expectations

Parameter Unconstrained Constrained
Persistence of latent state ρ 0.606 0.634

(0.034) (0.035)
State innovation dispersion σw 1.935 1.853

(0.192) (0.184)
Public signal noise σe 1.324 1.289

(0.167) (0.183)
Private signal noise σv 0.041 1.011

(0.008) (0.175)
Probability of quarterly update q 0.655 1.000

(0.083) (0.116)
Probability of annual update p 0.528 0.537

(0.059) (0.066)
Diagnosticity θ 0.451 0.000

(0.083) -

Note: The table reports parameter estimates of the baseline model with and without diagnostic expectations.
The “Unconstrained” column refers to the full model with annual inattention and diagnostic expectations.
The “Constrained” column refers to the model with only annual inattention. Standard errors are reported
in parentheses.
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D.3 Financial vs. Non-Financial Forecasters

Table D5: Model Estimation Results, By Forecaster Type

Parameter Financial Industry Non-financial Industry
Persistence of latent state ρ 0.491 0.617

(0.114) (0.060)
State innovation dispersion σw 1.365 1.339

(0.137) (0.120)
Public signal noise σe 1.162 0.958

(0.240) (0.239)
Private signal noise σv 1.015 1.130

(0.142) (0.123)
Probability of quarterly update q 0.999 0.999

(0.113) (0.527)
Probability of annual update p 0.989 0.435

(0.432) (0.173)

Note: The table reports parameter estimates of the baseline model, estimated separately over a sample of
financial industry forecasters and non-financial industry forecasters, respectively.
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D.4 Bloomberg Real GDP Forecasts

Table D6: Model Estimation Results, Real GDP Forecasts

Panel A: Parameter Estimates

Parameter Estimate Standard error

Persistence of latent state ρ 0.613 0.042
State innovation dispersion σw 1.169 0.060
Public signal noise σe 1.045 0.046
Private signal noise σv 0.002 0.0003
Probability of quarterly update q 0.888 0.049
Probability of annual update p 0.736 0.077

Panel B: Moments

Model moment Data moment t-statistic

Standard deviation of nowcast 1.322 1.759 -6.427
Correlation of nowcast with annual forecast 0.794 0.743 -4.835
Standard deviation of annual forecast 0.979 1.213 -4.603
Standard deviation of revision 1.099 1.222 -2.839
Correlation of revision with lagged error 0.099 0.160 -2.648
Standard deviation of lag error 1.178 1.195 -1.048
RMSE nowcast 1.191 1.198 -0.414
RMSE annual forecast 0.763 0.827 -2.423

Note: Panel A reports the model vs. data moments with t-statistics reported in the fourth column. Panel
B reports the model parameters with point estimates reported in the third column and standard errors
reported in the fourth column.
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D.5 Inflation Forecasts

Table D7: Model Estimation Results, Inflation Forecasts (Deflator)

Panel A: Parameter Estimates

Parameter Estimate Standard error

Persistence of latent state ρ 0.638 0.044
State innovation dispersion σw 1.546 0.114
Public signal noise σe 0.877 0.152
Private signal noise σv 0.793 0.127
Probability of quarterly update q 0.971 0.079
Probability of annual update p 0.432 0.056

Panel B: Moments

Model moment Data moment t-statistic

Standard deviation of nowcast 1.559 1.603 -0.510
Correlation of nowcast with annual forecast 0.796 0.777 -0.315
Standard deviation of annual forecast 1.135 1.176 -0.558
Standard deviation of revision 1.258 1.407 -1.588
Correlation of revision with lagged error 0.200 0.225 -0.964
Standard deviation of lag error 1.405 1.505 -1.467
RMSE nowcast 2.048 2.294 -1.349
RMSE annual forecast 1.165 1.371 -1.343

Note: Panel A reports the model vs. data moments with t-statistics reported in the fourth column. Panel
B reports the model parameters with point estimates reported in the third column and standard errors
reported in the fourth column.
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D.6 Sub-sample Analysis (Pre- and Post-1990)

The SPF, as well as broader macroeconomic dynamics, experienced important changes be-

tween 1968-2019. In this section, we estimate the model for two sub-periods: 1968-1989

(Table D8) and 1990-2019 (Table D9). Overall, we find that our headline conclusions hold

across the sub-samples with the estimated parameters differing across samples as expected.

For instance, we estimate underlying state to be less persistent and more volatile between

1969-2019.

Table D8: Model Estimation Results (1968-1989)

Panel A: Parameter Estimates

Parameter Estimate Standard error

Persistence of latent state ρ 0.498 0.034
State innovation dispersion σw 3.684 0.499
Public signal noise σe 2.493 0.495
Private signal noise σv 0.566 0.128
Probability of quarterly update q 0.915 0.122
Probability of annual update p 0.615 0.064

Panel B: Moments

Model moment Data moment t-statistic

Standard deviation of nowcast 3.552 3.678 -0.693
Correlation of nowcast with annual forecast 0.728 0.746 -0.919
Standard deviation of annual forecast 2.366 2.483 -0.773
Standard deviation of revision 3.189 3.101 0.427
Correlation of revision with lagged error 0.098 0.110 -0.156
Standard deviation of lag error 3.084 3.050 0.220
RMSE nowcast 3.127 3.215 -0.554
RMSE annual forecast 2.169 2.299 -0.976

Note: Panel A reports the model vs. data moments with t-statistics reported in the fourth column. Panel
B reports the model parameters with point estimates reported in the third column and standard errors
reported in the fourth column.
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Table D9: Model Estimation Results (1990-2019)

Panel A: Parameter Estimates

Parameter Estimate Standard error

Persistence of latent state ρ 0.587 0.022
State innovation dispersion σw 1.400 0.117
Public signal noise σe 1.044 0.087
Private signal noise σv 1.009 0.181
Probability of quarterly update q 0.998 0.065
Probability of annual update p 0.478 0.055

Panel B: Moments

Model moment Data moment t-statistic

Standard deviation of nowcast 1.308 1.472 -3.037
Correlation of nowcast with annual forecast 0.766 0.741 -1.460
Standard deviation of annual forecast 0.957 0.992 -0.796
Standard deviation of revision 1.115 1.181 -1.602
Correlation of revision with lagged error 0.195 0.243 -1.879
Standard deviation of lag error 1.497 1.520 -0.647
RMSE nowcast 1.516 1.551 -0.992
RMSE annual forecast 0.969 0.994 -0.821

Note: Panel A reports the model vs. data moments with t-statistics reported in the fourth column. Panel
B reports the model parameters with point estimates reported in the third column and standard errors
reported in the fourth column.
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D.7 Alternate Data Generating Process

Whereas offsetting revisions can be an artifact of annual smoothing, these patterns could

also arise under a more general data generating process. If so, then we might be erroneously

attributing the empirical finding to annual smoothing. In this section, we provide results in

support of our mechanism under richer dynamics.

We extend our model to feature an AR(2) process for real GDP growth. We select an

AR(2) process for three reasons. First, we find that the AR(2) fits real GDP growth best

in the sense that it delivers the lowest information criteria.27 Second, an AR(2) is highly

feasible to estimate with the current SMM approach as it only adds one parameter to the

model. Third, an AR(2) allows us to remain consistent with others in the literature who

similarly examine alternate data generating processes for their models (Bordalo et al., 2020).

The key modification relative to the baseline model detailed in the main text is that the

underlying latent state now evolves as follows:

st = (1− ρ1 − ρ2)µ+ ρ1st−1 + ρ2st−2 + wt, wt ∼ N(0, σ2
w)

where ρ1 and ρ2 govern the persistence of the state. We impose the usual assumptions on

these two parameters to ensure stationarity.

There are now seven parameters to be estimated. We estimate these parameters by

targeting the same eight moments described in the main text. As a result, our estimator is

still an overidentified SMM estimator. The results are reported in Table D10.

All the parameters are precisely estimated and the model fits the empirical moments well.

We estimate ρ1 > 0 and ρ2 < 0, indicating that AR(2) dynamics can account for some of

the offsetting revisions and observed overreactions in the data. With that said, we note that

controlling for adjacent revisions, there is still evidence of offsetting revisions over longer

horizons. While such patterns cannot arise with an AR(2) process, they can arise under

27In this unreported exercise, we considered AR(2), AR(4), ARMA(1,1), ARMA(2,1) and ARMA(2,2)
models.
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Table D10: Model Estimation Results under AR(2) Dynamics

Panel A: Parameter Estimates

Parameter Estimate Standard error

Persistence of latent state ρ1 0.699 0.057
Persistence of latent state ρ2 -0.203 0.077
State innovation dispersion σw 2.193 0.259
Public signal noise σe 1.813 0.157
Private signal noise σv 0.454 0.285
Probability of quarterly update q 0.883 0.057
Probability of annual update p 0.760 0.109

Panel B: Moments

Model Data t-statistics

Standard deviation of nowcast 2.390 2.399 -0.067
Correlation of nowcast with annual forecast 0.745 0.745 -0.061
Standard deviation of annual forecast 1.617 1.622 -0.056
Standard deviation of revision 2.012 1.999 0.103
Correlation of revision with lagged error 0.145 0.147 -0.035
Standard deviation of lag error 2.122 2.128 -0.068
RMSE nowcast 2.147 2.150 -0.030
RMSE annual forecast 1.477 1.477 0.000

Note: Panel A reports the model vs. data moments with t-statistics reported in the fourth column. Panel
B reports the model parameters with point estimates reported in the third column and standard errors
reported in the fourth column.

55



annual smoothing and temporal consistency.

Moreover, estimates of the state innovation and public noise variances are similar to

those in Table 4. The private signal noise variance and the quarterly updating probability

are estimated to be lower than the baseline estimates, while the annual updating probability

is estimated to be higher. Relative to Table 7, these estimates imply a roughly similar level

of information rigidity in quarterly real GDP forecasts, 0.152, and a meaningfully lower level

of information rigidity in annual real GDP forecasts, 0.269. While the scope for overreactions

declines in the AR(2) model, it is still capable of reproducing about 60% of the overreactions

generated in the AR(1) model.
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