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ABSTRACT 

This paper studies the role of star scientists in the knowledge production process. Stars not 

only account for a great proportion of research contributions, but also elevate the output 

trajectories of their co-authors through spillover effects. We estimate these effects based on 

a comprehensive dataset with more than 15.6 million publication records. More specifically, 

we are able to delineate a group of 162 stars that died both prematurely and unexpectedly. 

In the aftermath of these lethal shocks, treated co-authors are exposed to a publication and 

citation deficit that ranges from 4.2 to 7.8% relative to a matched control group. However, 

neither do these effects emerge over the entire subject spectrum, nor are they traceable to 

one common origin. Stars enhance their colleagues’ performance most visibly in life sciences 

and to a lesser extent in physical and health sciences. Moreover, we discover an interplay of 

three main effect channels. In certain fields, spillovers are driven by spatial elements and 

both eminent co-authors and co-authors with markedly different field expertise than their 

star are more severely affected upon the death event. 
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1 Introduction 

Some stars collapse straight into darkness (Adams, Kochanek, Gerke, Stanek, & Dai, 2017).  

Our understanding of these rare events is limited in an astronomical sense, as it is of the 

consequences for the scientific community once it loses its brightest minds. The present 

paper adds to the second line of inquiry. Star scientists are known to play a central role in  

the production of knowledge (Zucker & Darby, 1996), hereby fostering economic growth  

and social welfare (Romer, 1990). If their contributions were to end abruptly, what scars 

would be left behind? 

Our attempt to answer this question revolves around the fate of scientists that formerly 

collaborated with a star. Unlike the romantic ideal, innovation is rarely achieved through  

the creativity of lone genius. Instead, teamwork has become increasingly prevalent and 

impactful in today’s science and technology (Bercovitz & Feldman, 2011; Singh & Fleming,  

2010; Wuchty, Jones, & Uzzi, 2007). Star scientists, in particular, are embedded in large  

co-author networks (de Solla Price & Beaver, 1966; Zuckerman, 1967). Given the level of 

freedom scientists are provided with, it can reasonably be assumed that these networks 

result from active search-and-matching processes (see e.g., Stephan, 2012, Chapter 4); in 

other words, they are formed endogenously. The end of a collaborative tie, in contrast,  

might occur exogenously and therefore open up a pathway for causal inference. To be  

more precise, we use the premature and unexpected death of outstanding scientists as  

a quasi-experiment and explore empirically how these lethal shocks affect the research 

productivity and quality of former co-authors. In doing so, we shed light on the nature of 

interpersonal knowledge spillovers. 

The process of human capital formation is central for any modern society, but, as the  

stock of knowledge grows, also demands more and more effort from scientists on their  

way to the research frontier. As a consequence, it might be suspected that innovative  

phases are on the decline (Jones, 2009). Against this background, it appears all the more 

important to investigate spillover effects as a potential means to spur scientific progress.  

In approaching this topic, we build on a number of studies, most notably the work of  

Azoulay, Graff Zivin, and Wang (2010) who laid the conceptual foundations by disclosing  

how collaborators fare in the aftermath of “superstar extinction”. Yet, we aim to extend  

the existing literature along several dimensions. First, hitherto evidence is drawn from 

specific scientific areas including physical sciences (Waldinger, 2012, 2016), life sciences 

(Azoulay et al., 2010), medicine (Mohnen, 2018), economics (Ductor, Fafchamps, Goyal, & 

van der Leij, 2014) mathematics (Borjas & Doran, 2012, 2015; Waldinger, 2010) or even  

more narrow disciplines such as evolutionary biology (Agrawal, McHale, & Oettl, 2017) or 

immunology (Oettl, 2012). In contrast, our dataset allows us to examine spillover effects  

over the entire subject spectrum and further compare the fields of life, health, physical,  

and social sciences within a uniform framework. Second, we offer new insights into the 
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origins of spillover effects. In particular, we explore the extent of knowledge flows through 

interdisciplinary avenues and inspect in how far results are confined to the science system  

in the United States, which served as the focal point for most previous studies. 

Our analysis builds on a (dynamic) conditional difference-in-difference (DiD) design, where 

the treatment originates from the unexpected passing of 162 star scientists. We identify  

these stars from a larger group of eminent scientists that either belong to the National 

Academy of Sciences (NAS) or possess outstanding publication records. In order to define  

the latter criterion, we compile a rich bibliometric dataset from Scopus, which comprises 

meta-information of 15.6 million publications over the period from 1996 to 2015. These  

core data are further complemented with information from Google Maps and GenderAPI, 

which enables us to follow the scientific footprints of 9.2 million individuals. Moreover, we  

can assign star status by means of performance indicators such as the H-Index or citation  

metrics. Delineating star scientists is not only required for the treatment identification, but 

also essential for the effect estimation. More specifically, we use the set of stars, who did  

not pass away, and their respective co-authors to assemble a matched control group for  

the scientists that experience the unexpected loss of a star collaborator. 

On aggregate, we discover that the abrupt ending of a star collaboration causes a lasting 

decline of 4.2% in published articles of treated scientists. Accounting for output quality,  

we find a pronounced effect in form of a 7.8% decrease in citation-weighted articles. In 

neither case are recovery patterns observable. However, field-specific estimations reveal  

that the aggregate view masks substantial variation across the scientific spectrum. While  

life sciences is characterised by increased treatment effects in both output dimensions, we  

solely denote a quality-adjusted effect in physical sciences and nuanced, but no overall, 

effects in health sciences. Lastly, we cannot detect any statistically significant treatment 

consequences in social sciences. In the subsequent course of analysis, we focus on the 

mechanisms behind these effects. It hereby becomes evident that the omission of future 

cooperation is only a partial treatment aspect. Similarly, neither the frequency nor the  

timing of interaction before the stars’ death offers an explanation for the effect origins.  

Exploring further effect channels also leads us to reject a gatekeeping story based on  

editorial goodwill. Yet an interplay of three main effect drivers becomes apparent. First, 

spillovers are in part spatially confined. More concretely, co-location is related to steeper 

output declines in physical sciences, while, on a broader geographical scale, dyads within  

the United States largely account for the effects in life and health sciences. Second, we  

find horizontal spillovers (or peer effects) in life sciences since the treatment especially 

affects scientists that are likewise stars. Third, in health and physical sciences, we further 

discover that the break-up of dyads with markedly different field expertise induces more 

severe effects, which underlines the relevance of interdisciplinary knowledge transmission. 
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Our paper is linked to several strands of literature. Importantly, we adopt the research  

design of Azoulay et al. (2010) who discover that spillovers are primarily transmitted in  

idea space. The work of both Oettl (2012) and Mohnen (2018) is methodologically close,  

but focuses on different effect channels. The former study reveals that helpful stars play  

a crucial role for the performance of collaborators, while the latter study yields a similar 

conclusion for stars with central network positions. In a related setting, Jaravel, Petkova,  

and Bell (2018) investigate how inventors are affected by the premature death of a (star)  

co-inventor and document long-lasting declines in patents and earnings. Further research  

on scientific spillovers has utilised identification strategies other than death events. For 

instance, Waldinger draws findings from the expulsion of scholars during the Nazi regime 

(2010, 2012, 2016) and World War II bombing campaigns (2016), while Borjas and Doran 

(2012, 2015) exploit the collapse of the Soviet Union as a natural experiment. Moreover,  

our paper relates to the growing “science of team science” literature, which is bound by  

the question of how to enhance the effectiveness of collaborative research (see Hall et  

al., 2018, for a recent review). Team composition and especially team diversity are vital 

aspects of this debate (National Research Council, 2015), to which our results contribute. 

Thematic overlap also exists with the work of Akcigit, Caicedo, Miguelez, Stantcheva, and 

Sterzi (2018), König, Lorenz, and Zilibotti (2016), and Lucas and Moll (2014) who examine 

interaction-based spillover effects through the lens of endogenous growth models. Lastly, 

our paper belongs to a wider literature that uses (premature) death cases as a source of 

identification (apart from the aforementioned studies, see Aizenman and Kletzer, 2011,  

Jäger and Heining, 2019, Jones and Olken, 2005, or Nguyen and Nielsen, 2010). 

The remainder of the paper is structured as follows. Section 2 describes our data and the 

research design. Section 3 details the econometric approach and presents our aggregate 

results. Section 4 focuses on effect heterogeneity across scientific disciplines and further 

explores different channels through which the diffusion of scientific knowledge operates. 

Section 5 offers a discussion of our findings and concludes. 

2 Data and Research Design 

2.1 Data Compilation 

Our research design is centred on star scientists and their potential spillovers onto 

collaborators. With this approach in mind, we assembled our core data laying focus on  

the science systems in North America and Europe, the latter extended by Israel. Especially 

US-based scientists and inventors have been the subject of previous studies, while their 

European counterparts have received markedly less attention in this stream of literature. 

Constructing a dataset that spans both continents therefore helps to fill a void, but also  

offers the opportunity to examine whether spillover effects could be rooted in structural 
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differences between the North American and European scientific landscapes (see e.g.,  

Aghion, Dewatripont, Hoxby, Mas-Colell, & Sapir, 2010). 

Within the US, we rely on the Carnegie Classification of Institutions of Higher Education  

and in particular on the category of doctoral universities to delineate our set of research 

institutions. As of 2015, this category listed 334 institutions, which we manually linked to 

their Scopus profiles. Elsevier’s database covers a wide range of scientific literature and 

enables us to collect metadata for each publication with affiliative ties to (at least one of)  

these research institutions. We proceeded in a similar manner with regard to Europe’s  

higher education sector using the European Tertiary Education Register (ETER) as the start 

point. From this database, we compiled a set of 724 institutions from 26 countries that  

were consistently classified as universities based on their right to grant doctoral degrees.1  

Lastly, we added universities from both Israel and Canada to the institutional collective  

given that both countries are home to internationally renowned scientific communities  

and geographically adjacent. The outlined procedure resulted in an overall list of 1,146 

research institutions, on which grounds we collected 15.6 million publication records over 

the period from 1996 to 2015, each comprising a citation horizon until 2016. 

In the following step, we constructed an author-centric dataset for the over 9.2 million 

academics listed on these publications. The depth of available metadata already allowed 

depicting publication activities, co-author networks, affiliation histories, or research topics. 

Yet we further queried Scopus for each author to access data beyond our observation  

period, e.g., the year of first publication in order to proxy career starts. In addition, we 

complemented our core data with gender predictions from Gender API, site coordinates  

from Google Maps, and biographic information from the NAS, which will be explained in  

more detail over the next subsections. Taken together, our data approach enables us to  

track a multitude of academic careers over 20 years in time. 

2.2 The Scientific Elite 

Our decision to focus on the brightest scholars is guided by a fundamental property of 

scientific progress. As already observed by Lotka (1926), the distribution of scientific output 

is remarkably skewed, illustrating that a prolific minority is responsible for a great amount  

of contributions. In a similar vein, as Newton claimed, science is found to largely advance  

“on the shoulders of giants” (Bornmann, De Moya Anegón, & Leydesdorff, 2010; Cole &  

Cole, 1972). Considering their dominant role in the production of knowledge, star scientists 

                                                                 

1 Access to Scopus is limited by quotas. Thus, instead of collecting data for the entire university sample 
from ETER, we focused on institutions from Austria, Belgium, Bulgaria, Croatia, Cyprus, the Czech Republic, 
Denmark, Estonia, Finland, France, Germany, Greece, Iceland, Ireland, Italy, Latvia, Lithuania, Malta, the 
Netherlands, Norway, Poland, Portugal, Spain, Sweden, Switzerland, and the United Kingdom. We feel 
confident that this sample provides an adequate level of star power for our empirical purposes. 
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are (most) likely to shine on their surroundings and thus provide a natural starting point  

to investigate spillover effects. 

A first look at our raw data underlines the importance of elite scientists. Within the cohort 

that first published in the year 2000, we find the median scientist to record three career 

publication, whereas the marginal star, defined as the scientist that marks the start of the  

top percentile, accumulates 145 publications. Their equivalents with regard to the citation 

distribution see themselves separated by a comparable margin of 66 versus 3,485 career 

citations. Defining stardom based on relative performance is indeed common practice.2 We 

follow this approach and maintain the top percentile as the threshold for awarding star 

status. However, we rely on a more refined set of metrics to measure accomplishments.  

We begin by delineating a set of stars according to their H-Index, which we calculate over 

both a 5-year window for publications and citations. For instance, our first star cohort is 

compiled in 2001 and comprises the group of scholars with the highest H-Indices based  

on their research output from 1996 to 2000. To account for different timings in output, we 

include citations if they accrued within the first five years after publication. The H-Index is 

essentially designed to provide a balanced measure of research quantity and quality, so that 

stars of either domain are not captured by it. While we are not concerned with omitting 

scientists that only generate large quantities of work, we do intend to include scientists  

that even occasionally shift the research frontier through seminal papers. Thus, we add 

forward citations (i.e., citation-weighted publication counts) as a second star criterion to  

our performance catalogue, again employing 5-year windows for calculation. 

Next, we extend our star criteria with co-author adjusted versions of both metrics. We are 

generally in favour of measures that account for variations in team size. Yet when it comes 

to classifying star scientists, unadjusted metrics are likely to be thought of as providing 

complementary value. More specifically, they carry a network component and may help 

identifying stars that are very well positioned and possibly facilitate knowledge flows by 

connecting numerous co-authors (Mohnen, 2018).3 

  

                                                                 

2 Rothaermel and Hess (2007) assign star status to scientists that accumulate publications and citations 
three standard deviations above the mean. Using similar outcome measures, Jaravel et al. (2018) refer to 
stars upon exceeding the 98th percentile, while Waldinger (2016) sets the cut off at the 95th percentile. 

3 In case of forward citations, we divide the number of citations of each publication by the number of its 
authors before aggregating these counts at the scientist level. As for the H-Index, we use a modification 
that counts publications fractionally, again according to the number of listed authors (see Schreiber, 2008, 
for details). It is worth noting, however, that adjusted and unadjusted metrics do not capture achievement 
in a completely different sense since almost half of the final star sample satisfy both types of criteria. 
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Based on these four performance criteria, we identify stars on a yearly basis from 2001  

to 2012. Since publishing practices differ considerably across the scientific spectrum, we  

do so separately by field. We hereby follow Elsevier’s classification system and assign 

scientists to one of 26 scientific fields (see Appendix A)4 based on the distribution of their 

past publications. More specifically, these distributions denote how often scientists have 

published in each specific field, i.e., in journals that are classified under a given field. We 

assign scientists to their mode field and, if necessary, break ties at random. Moreover, we  

restrict the star delineation to research articles to ensure that a certain editorial standard  

is met by all papers, but also to avoid potential double counting of articles and former 

conference papers. Overall, this procedure yields a set of 154,205 eminent scientists. As a 

fifth and final criterion, we define 3,458 members of the NAS as stars, who are among  

our author collective.5 Accounting for the overlap, the final sample consists of 155,720 

scientists, which corresponds to 1.7% of the observable scientific community. It should be 

stated though that the composition of the star sample changes over time. Scientists are 

referred to as stars as of the year they fulfil a performance criterion or are inducted to the 

NAS, yet once proven keep their status thereafter. 

Only a small circle of the scientific elite is of immediate interest for our research design.  

To allow for a causal interpretation of spillover effects, we focus on stars whose careers  

ended abruptly due to unexpected death at a maximum age of 65 years. We identify these 

cases by inspecting publication histories. Once a star’s publication activity falls off rapidly 

while being at a career age where retirement appears doubtful, we manually search for 

bibliographic information online. This approach leads to 594 stars that died between 2001 

and 2012. After imposing the age constraint, we further exclude scientists whose research 

efforts already came to a halt before their death and, most importantly, scientists whose 

passing might have been anticipated from prolonged illnesses. We draw the distinction 

between unexpected and anticipated deaths primarily based on information provided by 

obituaries, but also from personally contacting former colleagues in a few unclear cases. 

Altogether, we end up with 162 deceased stars to constitute the origin of our treatment  

(see Appendix B). From a field perspective, we note that 40 stars belong to life sciences,  

44 to health sciences, 54 to physical sciences, and 24 to social sciences. It further becomes 

apparent that heart attacks and accidents are mentioned most frequently among the 

treatment cases, while cancer is the dominating cause of death among the (unreported)  

group of anticipated deaths. 

                                                                 

4 We omit the narrow field of multidisciplinary studies, which is not part of either of the main fields, i.e., 
life sciences, health sciences, physical sciences, and social sciences. 

5 We sort NAS members into our four-field taxonomy based on their affiliated section and the scheme 
reported in Appendix A. NAS sections are thus given priority over our publication-based classification, yet 
both approaches agree on 3,438 of 3,458 cases. 
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Tab. 1: SUMMARY STATISTICS ON TREATMENT STARS 

Notes: The sample consists of 162 star scientists whose active careers ended abruptly between 

2001 and 2012 due to unexpected death at a maximum age of 65 years. All time-varying variables 

refer to the year preceding the death event. Article, citation, and distinct co-author numbers are 

aggregated over a prior 5-year span. 

Table 1 depicts the sample of treatment stars. On average, these stars died at 53.4 years  

of age. Almost precisely one half was affiliated with a research institution located in the US 

and the vast majority was male. Female underrepresentation is fairly unsurprising in view  

of the collective evidence on scientific gender gaps (Ding, Murray, & Stuart, 2006; Shen, 

2013).6 Moreover, star scientists published an average of 25.3 articles, worked with 67.2 

different co-authors, and received just over 800 citations over the course of five years prior 

to their passing.7 

2.3 Matching Approach 

Identifying 162 deceased star scientists allows us to circumscribe the treatment group,  

i.e., their former co-authors. While this task is straightforward, more diligence is needed  

to find an appropriate control group. On which outcome trajectory would the treatment 

group be, had they not been exposed to the death of a star collaborator? 

One possibility would be to rely on the full population of scientists to derive an answer. 

However, treated co-authors likely form a positive selection, as star collaborations are not 

random. Instead, we expect assortative matching by both age and ability, which makes it 

doubtful to assume that the full population were to provide an accurate projection for the 

treatment group’s outcome path (even conditional on a variety of fixed effects). A second 

option would be to employ an implicit control group composed of treated co-authors that 

experience the death at either earlier or later points in time. Yet, this approach could also 

pose threats to identification if, for instance, the death event leads to a change in outcome  

                                                                 

6 Differences in health status (Williams, 2003) and risk attitude (Hartog, Ferrer-i-Carbonell, & Jonker, 2002) 
could also play a part. To be clear, a heart attack or stroke might be a sudden and unexpected event, but 
still dependent on lifestyle factors. 

7 Cumulative figures are calculated over a fixed range to account for staggered death years. 

Variable P5 P25 P50 Mean P75 P95 SD 

Age at death 37 48 55 53.41 60 64 8.12 

Female 0 0 0 0.049 0 0 0.217 

U.S. affiliated 0 0 0 0.494 1 1 0.502 

No. of distinct co-authors 5 16 42 67.22 92 183 72.99 

No. of articles 3 11 21.5 25.32 34 63 18.57 

No. of citations 75 214 431.5 801.1 1,024 2,608 972.5 

Year of death 2001 2004 2007 2006.6 2009 2012 3.18 
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trends. Azoulay et al. (2010) discuss this methodological issue and present a strategy to 

circumvent it. We follow their example and therefore build our control group based on a  

one-to-one matching procedure. 

Although the matching algorithm iterates over the years from 2001 to 2012, we focus on  

the year 2005 for illustration purposes. We begin by compiling the pool of potential control 

scientists, which consists of scientists that essentially meet two conditions. First, as of 2005, 

they must have collaborated with a star scientist who does not pass away, regardless of  

cause. Second, at no time do they become co-authors of one of the 162 deceased stars  

(i.e., they remain spared from treatment). For each treated scientist with an associated  

death in 2005, we aim to select an appropriate control scientist from the defined pool. In 

order to be matched, we require that treated and control scientists have similar career ages, 

are embedded in co-author networks of comparable size, and show congruent outcome 

trends up to 2004. In addition to individual characteristics, we include further criteria to 

ensure that both groups are balanced regarding features of their star relationship, i.e., the 

number of past collaborations and the elapsed time since last collaborating, and their  

stars’ standing as proxied by the amount of citations received until 2004. Before deferring 

further (technical) details to Appendix C, we note that the algorithm is implemented year  

by year, separately for the four main scientific fields, without replacement, and utilises the 

idea of coarsened exact matching introduced by Iacus, King, and, Porro (2011, 2012). 

Finally, we add two constraints to ensure that we are exploring spillover effects between 

established scientists. Junior scientists and PhD students, to begin with, might experience a 

conceptually different treatment effect in the sense that the death of a senior colleague or 

supervisor could have career-ending consequences. We thus restrict the analysis to (both 

treated and control) scientists with a career age of at least five years at the time of death. 

Moreover, we exclude a small number of scientists whose career starts coincide with the 

beginning of their star collaboration to prevent our results from being intertwined with 

mentoring effects.8 

The outlined procedure leads to a set of 9,297 matched collaborator pairs representing a 

successful matching rate of 93.6%. Summary statistics are reported in Table 2. Note that 

control collaborators inherit the year of star death from their matched counterparts, so  

that treatment timing is identically distributed in both groups. Time-varying variables are 

again calculated as of the year preceding the (inherited) year of star death to depict the 

sample right before treatment onset. Overall, we detect only minor differences between 

treated and control collaborators. The average treated collaborator published 14.5 articles, 

received 517 citations, and held co-authorship ties to 65.9 scientists over a past five-year 

period, while his/her control group pendant recorded 14.1 articles, 503 citations, and 65.2  

                                                                 

8 Both Waldinger (2010) and Azoulay, Liu, and Wang (2017) provide insights into this strand of literature. 



Collapsing Stars and the Diffusion of Scientific Knowledge 

- 9 - 

co-authorship ties. The performance balance is further reflected by the share of stars in  

both groups – 25.8% of the treated and 25.0% of the control collaborators are considered 

stars, which indicates that assortative matching influences network formation in science.  

We also document a close resemblance in career ages, i.e., publication activities in both 

groups span 18.2 years on average. Achieving a high age balance is clearly important for  

our research design since scientific output typically follows life cycle patterns (Levin & 

Stephan, 1991). 

Tab. 2: SUMMARY STATISTICS ON MATCHED COLLABORATORS 

Notes: The sample consists of 9,297 pairs of treated and control collaborators. All time-varying 

variables refer to the year preceding the (inherited) year of star death. Article, citation, and 

distinct co-author numbers are aggregated over a prior 5-year span. Gender information are 

inferred through name and country data and are available for 85.3% of the sample. 

Turning to the dyadic variables, we first note that the mean number of collaborations (i.e., 

jointly published articles) between stars and co-authors amounts to 2.29 in the treated  

and to 2.23 in the control group. However, and to some degree surprising, the median  

dyad in both groups denotes only one collaboration. Moreover, an average of 4.04 years 

passed since stars and treated co-authors last collaborated, while 3.96 years elapsed in the  

  

Variable Group P5 P25 P50 Mean P75 P95 SD 

Career age 
Treated 6 11 17 18.24 25 34 8.78 

Control 5 11 17 18.17 25 34 8.88 

Female prediction 
Treated 0 0 0 0.239 0 1 0.426 

Control 0 0 0 0.256 1 1 0.437 

U.S. affiliated 
Treated 0 0 0 0.425 1 1 0.494 

Control 0 0 0 0.409 1 1 0.492 

Star status 
Treated 0 0 0 0.258 1 1 0.438 

Control 0 0 0 0.250 0 1 0.433 

No. of distinct co-authors 
Treated 5 16 37 65.92 81 227 82.78 

Control 5 17 38 65.20 86 212 76.67 

No. of articles 
Treated 1 3 8 14.53 18 49 18.92 

Control 1 3 8 14.12 18 48 17.91 

No. of citations 
Treated 6 58 189 517.0 549 2,053 1,018.7 

Control 4 64 203 503.0 552 1,908 937.6 

No. of collaborations 
Treated 1 1 1 2.29 2 7 3.87 

Control 1 1 1 2.23 2 7 3.95 

Years since last collaboration 
Treated 0 1 3 4.04 6 11 3.61 

Control 0 1 3 3.96 6 11 3.53 

No. of citations (star) 
Treated 202 517 1,133 1,642.3 2,178 5,839 1,546.9 

Control 158 512 1,033 1,495.5 1,901 4,449 1,613.8 
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control group. The reported time gaps in Table 2 are indeed long enough to assume that 

neither the average nor the median co-author was engaged in ongoing research projects  

with their star at the time of death. Another observation is related to the star scientists’ 

standing. In particular, we find both treated and control stars to receive more citations  

than the initial star sample portrayed in Table 1. What might seem striking at first glance is 

merely due to a (harmless) selection effect. Deceased stars with greater citation numbers 

usually record both higher article and co-author numbers, which causes them to appear  

more frequently in the matched sample. Treated stars are slightly more accomplished than 

control stars, but the magnitude is not concerning.9 

We further achieve balance on two variables that were not part of the matching process.10 

First, about one quarter of the collaborator sample is predicted to be female. Neither does 

Scopus provide gender information nor is it feasible to collect these data manually (as we  

did for deceased stars). For these reasons, we rely on the gender inference by GenderAPI, 

which has been found to offer the most accurate application for this task (Santamaría  

& Mihaljević, 2018). In essence, gender data are inferred from first names, optionally in 

combination with a country information. While our Scopus data cover first names, there is 

no direct country indication. We thus derive a home country proxy from the affiliations  

listed on the earliest publication records. In sum, we hereby manage to classify 85% of our 

sample.11 Probing the validity of this approach, we find gender predictions to be correct  

for over 99% of the full sample of deceased stars. Second, we observe a little over 40%  

of the collaborators to be US-affiliated. Again, we denote slight uncertainty regarding this 

number, as some collaborators are linked with multiple affiliations as of their most recent 

publications (note that our data do not include within-year publication dates). In these  

instances, we infer a collaborator’s location based on his/her mode affiliation(s), breaking 

possible ties at random. 

In view of our field-specific estimations in Section 4, we lastly note that the described 

matching approach also creates balance between treated and control groups if the sample  

is split by fields (see Appendix D for corresponding summary statistics). 

                                                                 

9 Besides, we would expect that the benefits of having a star collaborator increase with his/her standing. 
Building a control group with stars that received fewer citations than their treated counterparts should 
therefore rather serve as a conservative estimation approach. 

10 The number of matching variables is limited due to the curse of dimensionality. In other words, it would 
become considerably more difficult to find matches if we extended our variable set any further. 

11 We started by querying first names only and considered gender predictions valid if GenderAPI reported 
an accuracy of over 98%. In a second step, we used first names combined with the home country proxy to 
classify the remaining collaborators, hereby setting the accuracy threshold to 95%. 
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3 Identification of Main Effects 

3.1 Outcome Paths 

To set the stage for the DiD framework, we begin with a purely graphical illustration of  

the treatment impact. To be more precise, we plot the publication output of treated and 

(matched) control collaborators before and after the star scientists’ death. This approach 

gives a basic yet compelling impression of the stars’ influence on the outcome trajectory  

of their co-authors without the need for parametric assumptions. 

Figure 1 displays the output trends centred symmetrically around the time of death.12 We 

will confine our assessment of publication output to two main measures, i.e., article count 

and forward citations, both adjusted for co-authorships. As depicted in the upper panel of 

Figure 1, treated and control collaborators show hardly any difference in article counts  

before the year of star death. On average, both groups vary synchronically between 0.50  

and 0.55 annual articles. After the treatment, however, an evident gap emerges in favour  

of the group of scientists that does not experience the sudden passing of an outstanding  

co-author. The relative performance deficit of the treatment group is apparent in every  

year after the death event and thus, albeit slight variations in magnitude, permanent. The  

graphic further underlines the importance of the matching design. As can be seen, article 

counts tend to rise over time, even for the treatment group, which could be reflective of  

life cycle and/or year fixed effects. In absence of the counterfactual output path provided  

by the matched collaborator sample, it would remain ambiguous how to disentangle these 

effects from the actual treatment effect. 

It is conceivable that collaborators adjust to the treatment shock by raising their effort  

devoted to each published paper. In this scenario, scientists would (try to) maintain their 

overall quality of output despite experiencing a decline in productivity in form of lower  

article counts. We explore this possibility by plotting citation-weighted article counts, i.e.,  

forward citations, in the lower panel of Figure 1. This measure provides a common proxy  

for scientific quality (see e.g., Jaravel et al., 2018, or Kahn and MacGarvie, 2016).13 At first  

sight, we note that both groups show decreasing forward citation trends, which can be  

  

                                                                 

12 The number of yearly observations monotonically decreases as the temporal distance to the year of 
death increases, which can lead to imprecisely estimated effects at both ends of the observation period. 
Uncertainty in later years can also arise from collaborators becoming inactive, likely due to retirement.  
In line with Jaravel et al. (2018), we address these concerns by confining observations to a nine-year 
window around star death and by excluding observations if collaborators exceed a career age of 45 years. 
Note that we apply the age constraint simultaneously to each matched pair to ensure that treated and 
control collaborators keep their balance in calendar and experimental time. 

13 Following the cited literature, we employ winsorized forward citations. We apply this adjustment at the 
99.9th percentile, separately for each year and scientific field (life, health, physical, and social sciences). 
Robustness checks in Appendix E show that our results do not rely on winsorizing. 
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Fig. 1: OUTCOME PATHS AROUND STAR DEATH 

Notes: The sample consists of 9,297 pairs of treated and control collaborators confined to a  

nine-year window around the (inherited) year of star death. The panel is equally unbalanced  

for treated and control collaborators. Both output measures are co-author adjusted. Forward 

citations are winsorized at the 99.9th percentile. 

attributed to the truncated nature of the variable. Stated differently, forward citations 

represent the total number of citations received as of 2016 by all articles published in a  

given year, which makes high numbers at the end of the observation period less likely. 

However, this mechanical effect can be neglected since treatment and control scientists 

cover the exact same time spans. More importantly, both groups closely resemble each  
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other until the year of death, yet treated collaborators are again outperformed by their 

matched counterparts in all subsequent years. 

The presented evidence suggests that scientists suffer in the realms of both productivity  

and quality after the abrupt end of a star collaboration. Figure 1 is indeed a (raw) preview  

of our main results that further underlines the effectiveness of our matching approach  

by visually confirming the parallel course of pre-trends. We evaluate these findings in more 

econometric detail over the next subsections. 

3.2 Econometric Model 

We apply a straightforward econometric methodology that has been employed in related 

contexts (Azoulay, Fons-Rosen, & Graff Zivin, 2019; Jäger & Heining, 2019; Jaravel et al.,  

2018). Assured through the matching procedure, treated scientists are paired with control 

scientists that possess a multitude of similar characteristics. Moreover, matched scientists 

are also temporally aligned, implying that each control scientist inherits a counterfactual  

death year from his/her treated counterpart. These design properties allow us to estimate  

a dynamic DiD equation, where the causal effect of star death is identified through yearly 

differences in the research output of both groups (adjusted for a range of fixed effects).  

Our econometric approach takes the following form: 

𝑌𝑖𝑡 = 𝑒𝑥𝑝 [𝛼 + ∑ 𝛽𝑘
𝐴𝑙𝑙  𝟙 (𝐿𝑖𝑡 = 𝑘)

9

𝑘=−9

+ ∑ 𝛽𝑘
𝑅𝑒𝑎𝑙  𝟙 (𝐿𝑖𝑡 = 𝑘)

9

𝑘=−9

× 𝑇𝑟𝑒𝑎𝑡𝑒𝑑𝑖

= 𝑎𝑏𝑘  + 𝜗𝑖𝑡 + 𝛿𝑡 + 𝛾𝑖 + 𝜖𝑖𝑡], 

 

(1) 

 

where 𝑌𝑖𝑡  denotes either the article count or forward citations of co-author 𝑖 in calendar  

year 𝑡. Both dependent variables are bound by a considerable fraction of zero values. We 

therefore estimate Equation (1) by means of Poisson pseudo-maximum likelihood (PPML) 

techniques. Apart from handling the skewed, non-negative distribution of the dependent 

variables, the PPML estimator offers compelling robustness properties. Importantly, it can  

be ensured that coefficient estimates are consistent as long as the conditional mean of  

the dependent variable is correctly specified (Gourieroux, Monfort, & Trognon, 1984). The 

data generating process is thus not required to be Poisson. In addition, employing robust 

standard errors, clustered at the star level in our application, allows for correct inference 

irrespective of any form of serial correlation (Wooldridge, 1997).14 

We address the staggered treatment onset by including lead and lag terms, denoted by  

𝐿𝑖𝑡, in Equation (1). Each of these terms represents an indicator variable that switches to  

                                                                 

14 For the estimation in Stata, we employ the ppmlhdfe command by Correira, Guimarães, and Zylkin 
(2019), which implements PPML regressions with multiple high-dimensional fixed effects. In contrast to 
conventional commands, ppmlhdfe proves robust to typical convergence issues in Poisson contexts. 
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1 if an observation is 𝑘 years apart from the death event. As shown by Jaravel et al. (2018),  

the first set of leads and lags, whose effects will be identified by the 𝛽𝑘
𝐴𝑙𝑙 coefficients,  

fulfils a role similar to the post dummy in classic DiD frameworks. Its practical relevance  

stems from the concern that career age fixed effects (𝜗𝑖𝑡), calendar year fixed effects (𝛿𝑡), 

and individual fixed effects (𝛾𝑖) may not entirely capture trends in productivity or research 

quality around the time of star death.15 One possible cause for such trends could refer to  

the sample construction, where we condition on star collaboration, which could coincide  

with unobservable factors that may change regardless of the star’s passing (e.g., funding 

outlooks or work environments). Any of these transitory processes are absorbed by the 

common lead and lag terms. The second set of leads and lags, which is interacted with the 

indicator variable for treatment status, 𝑇𝑟𝑒𝑎𝑡𝑒𝑑𝑖, therefore isolates the causal treatment 

effect. We split the overall effect into yearly elements, each of which will be identified by 

their respective 𝛽𝑘
𝑅𝑒𝑎𝑙 coefficient. 

The key identifying assumption of our model is that star deaths are exogenous conditional  

on the covariates in Equation (1), which implies that treated and control scientists would  

have developed parallel output paths if the death event had not occurred. Ensuring this 

assumption motivates our research design, which builds on manually screened obituaries  

and a thorough matching procedure. While it is not possible to verify the parallel trends 

assumption post-treatment, its validity can be bolstered by means of pre-treatment data. 

Specifically, Equation (1) enables testing if death events are accompanied by preceding  

effect patterns, which would render the analysis doubtful. Apart from that, decomposing  

the effect post-death allows us to explore treatment consequences in dynamic fashion.  

We present our estimation results in the following subsection and note that any of these 

estimates can be interpreted as semi-elasticities after coefficients are exponentiated and 

decreased by one. 

3.3 Results 

Figure 2 provides a graphical depiction of the annual 𝛽𝑘
𝑅𝑒𝑎𝑙 coefficients by plotting point 

estimates along with 95% confidence intervals derived from Equation (1). The upper panel 

depicts the treatment dynamics in terms of article counts, while the lower panel refers to 

forward citations. Technically, the point estimate that corresponds to the year preceding  

the treatment year is normalised to zero, implying that this lead marks the reference point 

for the presented effects. 

                                                                 

15 Career age fixed effects account for output shifts over the course of a scientist’s career, while calendar 
year fixed effects capture all time-related influence factors such as the expansion of academic journals. 
Finally, individual fixed effects control for variation that originates from characteristics that are constant 
across individual scientists, e.g., innate ability, but also cover time-invariant dyadic features as, e.g., the  
age gap between stars and collaborators. Given that the three classes of fixed effects induce collinearity, 
we omit two (out of 45) career age fixed effects, which is standard practice (Jaravel et al., 2018). 
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Fig. 2: TREATMENT EFFECT DYNAMICS 

Notes: The sample consists of 9,297 pairs of treated and control collaborators confined to a  

nine-year window around the (inherited) year of star death. The panel is equally unbalanced  

for treated and control collaborators. Both output measures are co-author adjusted. Forward 

citations are winsorized at the 99.9th percentile. Collaborators without variation in output over 

the observation period are dropped by the estimation routine. For the econometric approach, 

refer to Section 3.2. 

In view of the effect patterns for article counts, we first note the absence of pre-trends.  

While most point estimates leading up to the treatment year are slightly positive, neither  

of them is statistically significant, which is in line with the non-parametric résumé. After  

the death event, we notice a gradual shift in point estimates, which turn consistently 
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negative. The productivity decline induced by the treatment shock appears to increase in  

the long run, but the picture is not entirely conclusive. The 6th lag is associated with a 

statistically significant effect that translates into a 6.2% reduction (𝑒𝑥𝑝 [−0.064] − 1)  

in article counts, but the remaining lags are smaller in magnitude and not statistically  

significant. Despite statistical uncertainty on the annual level, the aggregate perspective 

clearly indicates that the unexpected passing of a star leads to a moderately diminished 

productivity for co-authors without signs of a rebound effect. 

As for forward citations, our proxy for output quality, we discover a broadly comparable 

picture to the article count analysis but with amplified effect magnitudes. Again, our  

research design finds support through insignificant point estimates for all leads, which 

underlines parallel pre-treatment trends. After the treatment, however, point estimates 

markedly decrease, implying that the stars’ death puts collaborators on career paths  

with less impactful publications. In six out of nine post-treatment years, we estimate a  

statistically significant decline in forward citations. Reduced output quantity could play  

into this finding, but the absolute effect sizes are notably higher. In fact, they tend to  

rise over time, peaking in the 9th year where the treatment effect equates to a 17.7% 

decrease in forward citations. This again illustrates that the star loss unfolds long-term 

consequences that transcend the mere disruption of ongoing projects. From comparing  

both panels of Figure 2, it can be inferred that the treatment impact becomes more 

pronounced when output quality is taken into consideration. 

4 Variations over the Scientific Spectrum 

4.1 Main Field Effects 

The identification of treatment effects over the complete sample sets the baseline for our  

next analysis steps, in which we exploit the rich diversity of our data. An integral part of  

the upcoming investigation is to compare effects across the scientific spectrum. We start  

with field-specific treatment effects, derived from the following specification: 

𝑌𝑖𝑡 = 𝑒𝑥𝑝 [𝛼 + 𝛽𝐴𝑙𝑙𝐴𝑓𝑡𝑒𝑟𝐷𝑒𝑎𝑡ℎ𝑖𝑡 + 𝛽𝑅𝑒𝑎𝑙𝐴𝑓𝑡𝑒𝑟𝐷𝑒𝑎𝑡ℎ𝑖𝑡 × 𝑇𝑟𝑒𝑎𝑡𝑒𝑑𝑖

= ∑ 𝑘 + 𝜗𝑖𝑡 + 𝛿𝑡 + 𝛾𝑖 + 𝜖𝑖𝑡], 

 

(2) 

 

which mirrors Equation (1) with the exception of the 𝐴𝑓𝑡𝑒𝑟𝐷𝑒𝑎𝑡ℎ𝑖𝑡 variable that takes  

the place of the former lead and lag terms. 𝐴𝑓𝑡𝑒𝑟𝐷𝑒𝑎𝑡ℎ𝑖𝑡 denotes an indicator variable  

that switches to 1 in the year of star death. Its interaction with the 𝑇𝑟𝑒𝑎𝑡𝑒𝑑𝑖 variable  

allows us to determine the treatment effect in a time-averaged form, i.e., pooled over all 

leads and lags. The 𝛽𝑅𝑒𝑎𝑙 coefficient will identify this effect, while the 𝛽𝐴𝑙𝑙 coefficient will 

capture all side effects that relate to the treatment timing but not the actual event. The 

advantage of Equation (2) lies in the ease of discussing total effect magnitudes but also  

in the improved statistical power. The latter aspect is particularly relevant for estimations  
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on smaller datasets, which applies to the present setting, where the overall sample will  

be split according to the stars’ field classification. Equation (2) will therefore be estimated 

separately for the four fields of life, health, physical, and social sciences, although we will  

also report the outcome of a pooled estimation, which corresponds to our main (dynamic) 

results. Apart from that, we adopt the inclusion of fixed effects, the level of standard error 

clustering, and the use of the PPML estimator from Equation (1). 

 Overall 

Sample 

Life 

Sciences 

Health 

Sciences 

Physical 

Sciences 

Social 

Sciences 

  Article count as dependent variable 

After death  treated -0.043 * -0.066 * -0.044  -0.026  -0.062  

 (0.022)  (0.030)  (0.034)  (0.030)  (0.151)  

Log pseudo-likelihood -189,139  -52,754  -79,330  -53,894  -3,021  

No. of observations 275,344  83,541  118,212  69,107  4,484  

No. of dyads 18,542  5,585  7,940  4,711  306  

  Forward citations as dependent variable 

After death  treated -0.081 ** -0.114 ** -0.043  -0.104 * -0.015  

 (0.028)  (0.041)  (0.038)  (0.043)  (0.205)  

Log pseudo-likelihood -2,800,261  -809,005  -1,154,988  -784,720  -40,122  

No. of observations 275,166  83,526  118,148  69,008  4,484  

No. of dyads 18,527  5,584  7,934  4,703  306  

Tab. 3: IMPACT OF STAR DEATH ON COLLABORATORS’ OUTPUT 

Notes: The overall sample consists of 9,297 pairs of treated and control collaborators confined  

to a nine-year window around the (inherited) year of star death. The panel is equally unbalanced  

for treated and control collaborators. Both output measures are co-author adjusted. Forward 

citations are winsorized at the 99.9th percentile. Collaborators without variation in output over 

the observation period are dropped by the estimation routine. Field delineation is based on  

the stars’ publication profile or, if available, derived from the classification of the NAS. Robust 

standard errors are in parentheses, clustered at the level of the star. 

* 𝑝 < 0.05, ** 𝑝 < 0.01, and *** 𝑝 < 0.001. 

Table 3 depicts the results derived by means of Equation (2). From the upper panel, it 

becomes apparent that, regarding the overall sample, the death of a star affects article  

counts to a statistically significant extent. The effect equates to a 4.2% decline, which 

represents the pooled counterpart of the dynamic effects that are displayed in Figure 2 

(upper panel). However, a closer look at the single fields reveals that this productivity  

shock can only be confirmed for life sciences, where treated collaborators face an even 

stronger drop of 6.4%. As for the other fields, negative effects may be measured, but  

point estimates do not reach statistical significance at conventional levels. Turning to the 

lower panel of Table 3, we find treatment effects to increase once publication quality  
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is factored in. Overall, co-authors experience a statistically significant reduction of 7.8% in 

forward citations. This effect, again, becomes more pronounced in both magnitude and 

statistical significance for life sciences dyads, where the loss of an eminent scientist is 

followed by a 10.8% reduction. In case of forward citations, a similar observation can  

be made for physical sciences, where a 9.9% deficit is identified. Yet, in accordance with  

the article count results, no evident effects can be stated for the fields of both health  

and social sciences.16 

 Overall 

Sample 

Life 

Sciences 

Health 

Sciences 

Physical 

Sciences 

Social 

Sciences 

  Article count excl. star collaboration as dependent variable 

After death  treated -0.026  -0.051  -0.028  -0.007  -0.054  

 (0.022)  (0.032)  (0.032)  (0.032)  (0.160)  

Log pseudo-likelihood -181,703  -50,560  -76,254  -51,936  -2,808  

No. of observations 268,794  81,844  115,561  67,138  4,251  

No. of dyads 18,000  5,446  7,717  4,549  288  

  Forward citations excl. star collaboration as dependent variable 

After death  treated -0.062 ** -0.112 ** -0.017  -0.080  0.021  

 (0.028)  (0.040)  (0.035)  (0.042)  (0.224)  

Log pseudo-likelihood -2,630,686  -760,591  -1,088,715  -735,906  -34,288  

No. of observations 268,314  81,780  115,383  66,947  4,204  

No. of dyads 17,961  5,440  7,702  4,534  285  

Tab. 4: IMPACT OF STAR DEATH ON COLLABORATORS’ OUTPUT BEYOND JOINT PRODUCTION 

Notes: The overall sample consists of 9,297 pairs of treated and control collaborators confined  

to a nine-year window around the (inherited) year of star death. The panel is equally unbalanced  

for treated and control collaborators. Both output measures are co-author adjusted. Forward 

citations are winsorized at the 99.9th percentile. Collaborators without variation in output over 

the observation period are dropped by the estimation routine. In comparison to Table 3, this  

also applies to collaborators that solely published together with their star. Field delineation is 

based on the stars’ publication profile or, if available, derived from the classification of the NAS. 

Robust standard errors are in parentheses, clustered at the level of the star. 

* 𝑝 < 0.05, ** 𝑝 < 0.01, and *** 𝑝 < 0.001. 

A first hypothesis as to what could drive the effects reported in Table 3 concerns the role  

of collaborative output. Naturally, the death of a star scientist renders future cooperation 

impossible. If we removed this portion from the control collaborators’ publication résumé,  

how would the assessment of treatment consequences change? We explore this question  

                                                                 

16 Based on similar research designs, Azoulay et al. (2010), Oettl (2012), and Mohnen (2018) document 
declines of 8.2%, 12.4%, and 14.3% in impact factor weighted publication counts, respectively, whereas 
Jaravel et al. (2018) report a 15.6% drop in forward citations of patents. 
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in Table 4. Technically, we use modified dependent variables that solely comprise articles  

that were not co-authored by the star. As can be seen from Table 4, treatment effects are 

less accentuated in this scenario. What might have been expected becomes particularly  

visible in case of articles counts (upper panel) where point estimates derived from neither  

life sciences nor the overall sample remain statistically significant. The productivity decrease 

in Table 3 can therefore largely be attributed to the unrealised potential of joint work.17 

However, repeating the analysis with forward citations (lower panel) leads to a different 

conclusion. With regard to the overall sample, the point estimate slightly increases, but  

the effect stays statistically significant. Physical sciences adjusts in a comparable manner, 

although the effect lies at the margin of significance (𝑝-value of 0.056); and life sciences 

remains virtually unaffected. In summary, control scientists are thus found to accumulate 

more forward citations than treated scientists do, even after subtracting co-publications  

with their star. Importantly, this finding illustrates that the sudden death of a star clearly 

unfolds consequences that span beyond the omission of joint work. 

In Appendix E, we present a series of robustness checks that result from modifying  

Equation (2). First, we technically delay the beginning of the after-death period by one  

year. Including the year of death into the pre-death period could be justified on grounds  

of publication lags or if death events occur towards the end of the year. Strictly speaking,  

the death year can be considered a transition year, where the treatment consequences  

start to emerge. Second, we follow Azoulay et al. (2010) and Oettl (2012) by capturing life 

cycle patterns with career age cohort dummies, which could mitigate collinearity concerns 

between year, age, and individual fixed effects. Third, we extend our fixed effects arsenal  

by including interacted calendar year and career age fixed effects, thereby probing the 

implicit separability assumption in Equation (2). Fourth, we explore if clustering standard 

errors at the collaborator level instead of the star level affects our results. Fifth, we re-

estimate treatment effects on a (substantially) shortened panel of collaborators that are 

traceable for a full seven years before and after the death year. Using a balanced panel 

addresses the concern that collaborators with a surplus of either pre- or post-treatment 

observations might have a confounding influence on the estimation of true effects. Sixth,  

we employ forward citations without winsorizing. Taken together, we detect only minor 

changes in our results due to these alterations. In health and physical sciences, we both  

note one instance with a statistically significant article count effect, but these singular 

findings may not be overstated. Importantly, it can be confirmed that the main effects 

reported in Table 3 prove robust to a range of different model specifications. 

                                                                 

17 To be clear, the results in Table 4 do not imply that treatment effects are non-existent. They rather show 
how effects shift if joint work is taken out of the equation. In this setting, control collaborators are mainly 
penalised (post-death), although delayed publications are also removed for treated collaborators. 
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4.2 Distinct Effect Channels 

The death of an outstanding scientist affects the performance of former co-authors to an 

appreciable extent. The documented effects are mainly driven by collaborations in the  

fields of life and physical sciences and in part, but by no means fully, explainable by the 

deprivation of future cooperation. Within this section, we aim for a deeper understanding  

of the effect formation. If we were to determine subgroups of the treated scientists that 

experience the star death to a particularly great extent, we would have strong evidence  

for the origins of the treatment effect. Stated differently, where does the star’s death  

leave its primary mark? We explore heterogeneity in the treatment effect employing the 

following estimation equation: 

𝑌𝑖𝑡 = 𝑒𝑥𝑝 [𝛼 + 𝛽𝐴𝑙𝑙𝐴𝑓𝑡𝑒𝑟𝐷𝑒𝑎𝑡ℎ𝑖𝑡 + 𝛽𝑅𝑒𝑎𝑙𝐴𝑓𝑡𝑒𝑟𝐷𝑒𝑎𝑡ℎ𝑖𝑡 × 𝑇𝑟𝑒𝑎𝑡𝑒𝑑𝑖

+ ∑ 𝑘 + 𝜂𝐴𝑙𝑙 Ζ𝑖 × 𝐴𝑓𝑡𝑒𝑟𝐷𝑒𝑎𝑡ℎ𝑖𝑡 + 𝜂𝑅𝑒𝑎𝑙 Ζ𝑖 × 𝐴𝑓𝑡𝑒𝑟𝐷𝑒𝑎𝑡ℎ𝑖𝑡 × 𝑇𝑟𝑒𝑎𝑡𝑒𝑑𝑖

+ ∑ 𝑘 + 𝜗𝑖𝑡 + 𝛿𝑡 + 𝛾𝑖 + 𝜖𝑖𝑡], 

 

(3) 

 

where Ζ𝑖 constitutes a time-invariant indicator variable, which we expect to be insightful  

for the magnitude of the treatment effect. To be clear, Ζ𝑖 will vary over the course of the 

analysis and delineate different sets of collaborations based on either individual or dyadic 

characteristics. The overall treatment effect will, according to this distinction, be divided  

into a common (𝛽𝑅𝑒𝑎𝑙) and a specific (𝜂𝑅𝑒𝑎𝑙) component. The coefficient of interest in this 

setting becomes 𝜂𝑅𝑒𝑎𝑙, which isolates the differential treatment effect that is additionally  

yet exclusively felt by the delineated group of collaborators. Consistent with our former  

models, we incorporate Ζ𝑖 not only as part of an interaction for treated dyads, but also  

within a second interaction, which is common to all dyads and thus accounts for general 

outcome shifts that are attributable to Ζ𝑖. All further estimation aspects of Equation (1)  

and (2) remain unchanged, as does our strategy to distinguish between scientific fields. 

We first direct attention to collaborative features, which could play a moderating role. 

Intuitively, the assumption would be that scientists that maintained an intensive work 

relation with their star experience more severe treatment consequences than sporadic 

dyads. Two reasons lend support for this claim. First, co-authorships are not randomly 

assigned. Instead, they are more likely to result from a thorough matching process. 

Collaborations that turn out to be fruitful should thus embody higher chances of being 

continued. Second, even if we overstated the freedom in choosing co-authors and took 

potential lock-in effects into consideration (Boudreau et al., 2017), one might still expect 

repeated collaborations to be more valuable through accumulating team-specific capital 

(Jaravel et al., 2018). However, there are opposing arguments to be raised too. Notably, 

upholding a star collaboration could have benefits, e.g., in form of acquired knowledge  
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 Overall 

Sample 

Life 

Sciences 

Health 

Sciences 

Physical 

Sciences 

Social 

Sciences 

  Article count as dependent variable 

After death  treated -0.047 * -0.054  -0.053  -0.029  -0.185  

 (0.022)  (0.030)  (0.034)  (0.035)  (0.182)  

After death  treated  0.015  -0.039  0.036  0.015  0.349  

dyad frequency in 3. tertile (0.032)  (0.048)  (0.053)  (0.059)  (0.278)  

Log pseudo-likelihood -189,136  -52,753  -79,329  -53,892  -3,019  

No. of observations 275,344  83,541  118,212  69,107  4,484  

No. of dyads 18,542  5,585  7,940  4,711  306  

  Forward citations as dependent variable 

After death  treated -0.083 ** -0.089 * -0.066  -0.098 * -0.172  

 (0.027)  (0.044)  (0.038)  (0.044)  (0.253)  

After death  treated  0.008  -0.080  0.090  -0.019  0.438  

dyad frequency in 3. tertile (0.048)  (0.069)  (0.066)  (0.096)  (0.404)  

Log pseudo-likelihood -2,800,245  -808,892  -1,154,831  -784,652  -40,019  

No. of observations 275,166  83,526  118,148  69,008  4,484  

No. of dyads 18,527  5,584  7,934  4,703  306  

Tab. 5: EFFECT HETEROGENEITY BY COLLABORATION FREQUENCY 

Notes: The overall sample consists of 9,297 pairs of treated and control collaborators confined  

to a nine-year window around the (inherited) year of star death. The panel is equally unbalanced  

for treated and control collaborators. Both output measures are co-author adjusted. Forward 

citations are winsorized at the 99.9th percentile. Collaborators without variation in output over 

the observation period are dropped by the estimation routine. Field delineation is based on  

the stars’ publication profile or, if available, derived from the classification of the NAS. Robust 

standard errors are in parentheses, clustered at the level of the star. 

* 𝑝 < 0.05, ** 𝑝 < 0.01, and *** 𝑝 < 0.001. 

or access to superior networks, that increase outside options and eventually allow for  

an easier transitioning towards new collaborations. Turning to our empirical assessment  

in Table 5, we can infer that frequent collaborators, defined as those that belong to the  

upper third of the distribution of co-authorships with their respective star, do not suffer  

a treatment effect of a markedly different size than the remaining collaborators.18 The  

effect for the former group, with regard to the overall sample, corresponds to a drop of  

3.1% (𝑒𝑥𝑝 [−0.047 + 0.015] − 1) in article counts and 7.2% in forward citations, while  

the latter group experiences a decline of 4.6% (𝑒𝑥𝑝 [−0.047] − 1) in article counts and  

8.0% in forward citations. Importantly, these deviations are not statistically significant, 

                                                                 

18 Analogous to the matching approach, we calculate separate distributions for each treatment year and 
each scientific field (derived from the stars’ classification). Descriptively, frequent collaborators published 
a mean number of 5.8 joint articles with their star. However, due to the large amount of one-time dyads, 
frequent collaborators are oftentimes synonymous with repeated collaborators. 
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neither overall nor in any single field. Additionally, looking into recent collaborations  

yields a similar conclusion, as does repeating the analysis with multi-year collaborations  

(see Appendix F). In sum, we find no evidence that treatment effects depend on any of  

these basic interaction features. 

 Overall 

Sample 

Life 

Sciences 

Health 

Sciences 

Physical 

Sciences 

Social 

Sciences 

  Article count as dependent variable 

After death  treated -0.045  -0.058  -0.049  -0.038  0.010  

 (0.026)  (0.035)  (0.050)  (0.031)  (0.144)  

After death  treated  -0.005  -0.029  0.004  0.083  -0.254  

star wrote editorial (0.049)  (0.069)  (0.069)  (0.086)  (0.420)  

Log pseudo-likelihood -189,128  -52,754  -79,326  -53,890  -3,018  

No. of observations 275,344  83,541  118,212  69,107  4,484  

No. of dyads 18,542  5,585  7,940  4,711  306  

  Forward citations as dependent variable 

After death  treated -0.072 * -0.119 ** -0.020  -0.105 * 0.032  

 (0.033)  (0.050)  (0.054)  (0.046)  (0.205)  

After death  treated  -0.026  0.045  -0.059  0.007  -0.217  

star wrote editorial (0.062)  (0.085)  (0.075)  (0.112)  (0.588)  

Log pseudo-likelihood 2,800,201  -808,972  1,154,930  -784,554  -40,083  

No. of observations 275,166  83,526  118,148  69,008  4,484  

No. of dyads 18,527  5,584  7,934  4,703  306  

Tab. 6: EFFECT HETEROGENEITY BY EDITORIAL INFLUENCE 

Notes: The overall sample consists of 9,297 pairs of treated and control collaborators confined  

to a nine-year window around the (inherited) year of star death. The panel is equally unbalanced  

for treated and control collaborators. Both output measures are co-author adjusted. Forward 

citations are winsorized at the 99.9th percentile. Collaborators without variation in output over 

the observation period are dropped by the estimation routine. Field delineation is based on  

the stars’ publication profile or, if available, derived from the classification of the NAS. Robust 

standard errors are in parentheses, clustered at the level of the star. 

* 𝑝 < 0.05, ** 𝑝 < 0.01, and *** 𝑝 < 0.001. 

We proceed by ruling out a mechanism that would paint a less meritocratic picture of  

the scientific community. In particular, we examine if stars exercise a gatekeeping role, 

thereby elevating the career paths of their collaborators. If this believe turned out to be  

true, one should have less faith in fair academic assessment and instead devote more 

emphasis into forming profitable social ties. Our approach to test this assumption relies  

on data about editorials. From inspecting publication histories, we find that almost a  

quarter of all stars in both groups published at least one editorial over the course of five  

years before the year of death. However, as reported in Table 6, there is no indication  
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that editorial goodwill offers an explanation for the treatment effect. To be more precise,  

co-authors of star scientists with editorial linkage are not subject to a differential effect  

that approaches statistical significance.19 A comparable conclusion is indeed derived by 

Azoulay et al. (2010) who reject the gatekeeping hypothesis from a monetary angle, i.e., 

influence over the funding apparatus of the National Institutes of Health does not cause 

effect variations in their study of US life scientists. 

While control over journal resources is apparently not a driving force, we do discover  

local resources to be in part meaningful. Leaning on Azoulay et al. (2010), we base our 

reasoning on geographical proximity. We pursue an analogous path as in Section 2.3 and  

first assign scientists to institutions as of their most recent publications prior to the  

treatment. In a second step, we query address data for these institutions from Scopus  

and third extend them with geographical data from Google Maps. This ultimately enables  

us to encircle collaborations that were co-located at the time of star death. We refer to  

dyads as co-located if both scientists were located in the same city. Accordingly, we do  

not require them to be linked to the same affiliation, in part because Scopus, in some 

instances, masks (parent) institutions by distinguishing between their sub-entities, which  

would add noise to this classification. Besides, relying on the city-oriented definition does 

take into account that a localised dimension of the treatment effect could encompass  

shared infrastructure facilities (e.g., large computing centres, telescopes, or laboratories). 

Empirically, we find that co-located dyads represent slightly over one fifth of both the  

treated and control sample. Furthermore, we detect a statistically significant interaction  

effect in the productivity sphere of physical sciences, which implies a decline of 13.0%  

in article counts, in addition to the negligible common treatment effect, for co-located 

collaborators following the death event (see Table 7).20 We interpret this geographically 

confined component of the treatment effect as a general reflection of the stars’ role in 

governing research environments. To illustrate this point, one might think of preferential 

access to expensive or highly-specialised equipment that could be at the star’s disposal  

and may be of particular importance in physical sciences (as conjectured by Azoulay et al., 

2019). 

  

                                                                 

19 Colussi (2018) underlines the benefits of being connected to editors of leading economics journals. While 
we are not able to confirm this result in our setting, it might be interesting to note that the differential 
treatment impact is largest among social scientists, although very imprecisely estimated. 

20 From a technical standpoint, one might recall that no aggregate effect was found for this field, which, 
however, does not preclude the possibility of nuanced effects, as presented here. Further examples in 
relation to health sciences follow over the course of this section. 
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 Overall 

Sample 

Life 

Sciences 

Health 

Sciences 

Physical 

Sciences 

Social 

Sciences 

  Article count as dependent variable 

After death  treated -0.029  -0.069 * -0.034  -0.003  0.009  

 (0.023)  (0.030)  (0.037)  (0.032)  (0.179)  

After death  treated  -0.069 * 0.015  -0,050  -0.139 * -0.433  

co-located (0.033)  (0.072)  (0.044)  (0.064)  (0.310)  

Log pseudo-likelihood -188,788  -52,675  -79,144  -53,834  -2,987  

No. of observations 274,210  83,314  117,559  68,907  4,430  

No. of dyads 18,461  5,569  7,892  4,698  302  

  Forward citations as dependent variable 

After death  treated -0.072 * -0.139 *** -0.026  -0.082  0.109  

 (0.031)  (0.042)  (0.043)  (0.044)  (0.250)  

After death  treated  -0.047  0.112  -0.080  -0.136  -0.647  

co-located (0.053)  (0.083)  (0.081)  (0.103)  (0.397)  

Log pseudo-likelihood -2,790,989  -806,053  -1,150,133  -783,394  -39,425  

No. of observations 274,032  83,229  117,495  68,808  4,430  

No. of dyads 18,446  5,568  7,886  4,690  302  

Tab. 7: EFFECT HETEROGENEITY IN GEOGRAPHICAL SPACE, CO-LOCATION CHANNEL 

Notes: The overall sample consists of 9,297 pairs of treated and control collaborators confined  

to a nine-year window around the (inherited) year of star death. The panel is equally unbalanced  

for treated and control collaborators. Both output measures are co-author adjusted. Forward 

citations are winsorized at the 99.9th percentile. Collaborators without variation in output over 

the observation period are dropped by the estimation routine. Field delineation is based on  

the stars’ publication profile or, if available, derived from the classification of the NAS. Robust 

standard errors are in parentheses, clustered at the level of the star. 

* 𝑝 < 0.05, ** 𝑝 < 0.01, and *** 𝑝 < 0.001. 

Co-location sheds some light on the treatment effect origin, but does not deliver a full 

explanation on its own. We thus turn to a distinct mechanisms class that emphasises  

stars as being sources of unique knowledge and skills. After the treatment, collaborators 

might prove incapable of filling the void that star scientists left behind, indicating that  

parts of their expertise might die with them. The permanent nature of this loss could  

explain the long-term impact revealed in Figure 2. In exploring this hypothesis, we draw  

on the literature that examines technological distance between firms based on patent  

data (e.g., Ahuja, 2000, or Rosenkopf and Almeida, 2003). We adapt the methodology  

to our case and employ publications, instead of patents, to position scientists in subject 

space. For this purpose, we first compile subject portfolios for each scientist, which  

are derived from the set of non-dyad publications prior to the treatment year.  
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Overall 

Sample 

Life 

Sciences 

Health 

Sciences 

Physical 

Sciences 

Social 

Sciences 

  Article count as dependent variable 

After death  treated -0.029  -0.061 * -0.015  -0.017  -0.035  

 (0.025)  (0.027)  (0.038)  (0.034)  (0.131)  

After death  treated  -0.060  -0.016  -0.108 * -0.034  -0.113  

subject distance in 3. tertile (0.037)  (0.072)  (0.054)  (0.067)  (0.478)  

Log pseudo-likelihood -187,601  -52,268  -78,768  -53,444  -2,971  

No. of observations 265,707  80,526  114,406  66,550  4,225  

No. of dyads 17,819  5,363  7,648  4,520  288  

  Forward citations as dependent variable 

After death  treated -0.049  -0.116 ** 0.004  -0.058  0.024  

 (0.033)  (0.042)  (0.047)  (0.049)  (0.189)  

After death  treated  -0.141 *** 0.000  -0.190 ** -0.216 * -0.116  

subject distance in 3. tertile (0.050)  (0.081)  (0.073)  (0.097)  (0.604)  

Log pseudo-likelihood -2,761,000  -796,070  -1,139,737  -775,149  -38,745  

No. of observations 265,629  80,526  114,370  66,508  4,225  

No. of dyads 17,812  5,363  7,645  4,516  288  

Tab. 8: EFFECT HETEROGENEITY IN SUBJECT SPACE 

Notes: The overall sample consists of 9,297 pairs of treated and control collaborators confined  

to a nine-year window around the (inherited) year of star death. The panel is equally unbalanced  

for treated and control collaborators. Both output measures are co-author adjusted. Forward 

citations are winsorized at the 99.9th percentile. Collaborators without variation in output over 

the observation period are dropped by the estimation routine. Field delineation is based on  

the stars’ publication profile or, if available, derived from the classification of the NAS. Robust 

standard errors are in parentheses, clustered at the level of the star. 

* 𝑝 < 0.05, ** 𝑝 < 0.01, and *** 𝑝 < 0.001. 

Relying on Elsevier’s most granular journal classification layer, these portfolios are akin  

to vectors with 334 elements, with each of them listing the share of publications in  

a specific subject category. We then calculate the Euclidean distance between these  

vectors, which enables us to quantify the gap that separates stars and their respective 

collaborators in subject dimension. As shown in Table 8, there is strong evidence that  

this measure proves central for understanding how treatment effects unfold. More 

specifically, it becomes apparent that collaborators of subject distant dyads, i.e., the  

upper third of the year- and field-specific distributions, suffer especially steep outcome 

declines in health and physical sciences. The differential effects on quality are large in 

magnitude and imply that these scientists see their forward citations decrease by an 
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additional 17.3% and 19.4% in health and physical sciences, respectively.21 As for the  

former field, we further determine a statistically significant drop in productivity that  

amounts to an extra 10.2%. Considered as a whole, research potential is primarily lost  

in duos that combined distant expertise. Not only does this finding lend support to the  

substitution theory formulated above, since stars should become harder to replace if  

collaborators have less inside knowledge about their colleagues’ field, but it also shows  

that omitted knowledge transmission through interdisciplinary avenues constitutes a  

main treatment effect component. 

 Overall 

Sample 

Life 

Sciences 

Health 

Sciences 

Physical 

Sciences 

Social 

Sciences 

  Article count as dependent variable 

After death  treated -0.016  -0.005  -0.045  0.020  -0.092  

 (0.024)  (0.040)  (0.040)  (0.041)  (0.189)  

After death  treated  -0.044  -0.104 * 0.002  -0.076  0.222  

star-star dyad (0.029)  (0.044)  (0.046)  (0.049)  (0.262)  

Log pseudo-likelihood -189,126  -52,746  -79,328  -53,888  -3,017  

No. of observations 275,344  83,541  118,212  69,107  4,484  

No. of dyads 18,542  5,585  7,940  4,711  306  

  Forward citations as dependent variable 

After death  treated -0.046  -0.011  -0.058  -0.049  -0.079  

 (0.029)  (0.048)  (0.042)  (0.051)  (0.241)  

After death  treated  -0.051  -0.160 ** 0.029  -0.082  0.192  

star-star dyad (0.039)  (0.059)  (0.059)  (0.075)  (0.399)  

Log pseudo-likelihood -2,796,337  -807,991  -1,153,051  -783,440  -40,008  

No. of observations 275,166  83,526  118,148  69,008  4,484  

No. of dyads 18,527  5,584  7,934  4,703  306  

Tab. 9: EFFECT HETEROGENEITY BY COLLABORATOR STATUS 

Notes: The overall sample consists of 9,297 pairs of treated and control collaborators confined  

to a nine-year window around the (inherited) year of star death. The panel is equally unbalanced  

for treated and control collaborators. Both output measures are co-author adjusted. Forward 

citations are winsorized at the 99.9th percentile. Collaborators without variation in output over 

the observation period are dropped by the estimation routine. Field delineation is based on  

the stars’ publication profile or, if available, derived from the classification of the NAS. Robust 

standard errors are in parentheses, clustered at the level of the star. 

* 𝑝 < 0.05, ** 𝑝 < 0.01, and *** 𝑝 < 0.001. 

                                                                 

21 The total decrease in physical sciences is presumably even higher, but cannot be stated with certainty 
since the common part of the treatment effect now turns statistically insignificant. However, estimating 
Equation (2) on the subsample of subject distant dyads yields a precisely estimated total decrease of 24.0%, 
which is almost identical to the additive effect in Table 8. 
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To this point, it remains puzzling, which mechanisms account for the (pronounced)  

treatment consequences faced by life sciences dyads. As will become clear, looking into  

this matter gives rise to a two-fold explanation. We first investigate if scientists of higher  

and lower calibre are differently affected upon the stars’ passing. From a theoretical  

viewpoint, one could emphasise that collaborators of lower calibre may generally be  

more reliant on the stars’ influence and therefore bear the higher costs of treatment. 

However, this influence might not prove to be overly substantial since impact analysis  

shows that the success of collaborative work is rather restrained by lower-ability  

members than lifted by higher-ability members (Ahmadpoor & Jones, 2019). Moreover,  

one might be sceptical about the likelihood of future interactions if dyads comprise a  

(too) severe ability or performance gap. In order to resolve this question empirically, we 

differentiate between collaborators based on their scientific achievement prior to the  

death event. Drawing a line between regular and star co-authors, we discover the latter 

group to take up almost the entire treatment effects in life sciences. As reported in  

Table 9, stars experience additional consequences in form of a dual decrease of 9.9% in  

article counts and 14.8% in forward citations. These differential effects are statistically 

significant yet bound to the life sciences spectrum. The stars’ deaths thus turn out to  

be particularly harmful for related star scientists, indicating that horizontal rather than  

vertical spillovers fuel knowledge production in this field. 

The second channel, which allows insights into the effect formation in life sciences,  

pertains to the (broader) geographical dimension. A priori, it is unclear if variations in  

the treatment impact could be attributed to the science systems in which dyads are 

embedded. This possibility has not been explored by previous studies (Azoulay et al.,  

2010; Mohnen, 2018; Oettl, 2012), yet it seems conceivable that organisational aspects  

as institutional autonomy, competition, or stratification could alter a star’s (external)  

value. We shed light on this matter by focussing on intra-US dyads, i.e., collaborations  

where both scientists are affiliated with an US institution at the time of treatment.  

These dyads represent 35% of the treated sample (versus 33% of the control sample)  

and evidently experience treatment consequences of a higher degree in health and life 

sciences. Given the statistically significant interaction terms in Table 10, we determine a 

differential productivity decline of 12.0% in the former field and a differential quality  

decline of 17.5% in the latter field. Although we remain limited in assessing the exact  

reasons for these effects, the US science system appears to be more star-dependent. 
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 Overall 

Sample 

Life 

Sciences 

Health 

Sciences 

Physical 

Sciences 

Social 

Sciences 

  Article count as dependent variable 

After death  treated -0.013  -0.036  -0.003  -0.017  -0.177  

 (0.028)  (0.042)  (0042)  (0.034)  (0.228)  

After death  treated  -0.090 * -0.076  -0.128 * -0.024  0.265  

US-US dyad (0.036)  (0.054)  (0.055)  (0.062)  (0.304)  

Log pseudo-likelihood -188,782  -52,674  -79,137  -53,836  -2,986  

No. of observations 274,210  83,314  117,559  68,907  4,430  

No. of dyads 18,461  5,569  7,892  4,698  302  

  Forward citations as dependent variable 

After death  treated -0.029  -0.026  -0.009  -0.088  -0.083  

 (0.031)  (0.047)  (0.041)  (0.053)  (0.297)  

After death  treated  -0.141 ** -0.192 * -0.115  -0.044  0.208  

US-US dyad (0.047)  (0.075)  (0.062)  (0.080  (0.412)  

Log pseudo-likelihood -2,789,367  -805,569  -1,149,362  -783,637  -39,389  

No. of observations 274,032  83,299  117,495  68,808  4,430  

No. of dyads 18,446  5,568  7,886  4,690  302  

Tab. 10: EFFECT HETEROGENEITY IN GEOGRAPHICAL SPACE, US CHANNEL 

Notes: The overall sample consists of 9,297 pairs of treated and control collaborators confined  

to a nine-year window around the (inherited) year of star death. The panel is equally unbalanced  

for treated and control collaborators. Both output measures are co-author adjusted. Forward 

citations are winsorized at the 99.9th percentile. Collaborators without variation in output over 

the observation period are dropped by the estimation routine. Field delineation is based on  

the stars’ publication profile or, if available, derived from the classification of the NAS. Robust 

standard errors are in parentheses, clustered at the level of the star. 

* 𝑝 < 0.05, ** 𝑝 < 0.01, and *** 𝑝 < 0.001. 

Finally, our results should be put into perspective. Uncovering heterogeneity in the  

causal effect of star death does not itself permit a causal interpretation. To be more  

concrete, our estimations do not identify how treatment effects would change if 

collaborators were (exogenously) moved along certain covariate dimensions. However,  

our analysis does reveal which types of collaborators, in fact, are exposed to higher  

treatment impacts, thus helping to develop a better understanding of the processes  

that shape scientific advancement. Before we turn to a discussion of our main results,  

we shortly allay some robustness concerns, which are detailed in Appendix F. First,  

horizontal spillovers and intra-US effects operate independently as both interactions  

remain statistically significant if included in the same estimation. Second, intra-US effects  

are neither a mere reflection of intra-country effects nor entangled with the co-location  
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channel. Third, distance in subject space is not to be confounded with distance in topic,  

which is less predictive for the treatment effects. Fourth, our results do not hinge on the 

specific threshold definition that delineates subject distant dyads. 

5 Discussion and Conclusion 

The unexpected and premature death of 162 prolific scientists provides us with a quasi-

experimental setting, in which we investigate how valuable a star collaborator’s presence  

is for individual research performance. We find that scientists suffer average declines of  

4.2% in article counts and 7.8% in forward citations following the exogenous passing of  

a star co-author. Furthermore, there are no signs of recovery patterns. Instead, treatment 

consequences seem permanent and rather increase over time, thus indicating that star 

exposure constitutes an irreplaceable asset. 

Attempting to uncover the origins of the treatment effect, we first perform field-specific 

estimations, which we deem necessary given that cultures and practices differ along the 

scientific spectrum. In the course of this analysis, we generally confirm the findings of  

Azoulay et al. (2010) and Oettl (2012) as we determine a clear treatment impact in the  

field of life sciences, spanning both the productivity and quality sphere. In addition, we  

detect a quantitatively similar quality decrease for physical sciences dyads, which adds to  

the evidence presented by Borjas and Doran (2015) on high-quality mathematicians. On  

the contrary, collaborations in health and social sciences are (initially) found to escape any 

statistically significant treatment consequences. The absence of overall effects in these  

fields might have several reasons, which we cannot ascertain. In case of health sciences,  

for instance, one might argue that formal co-authorship could be less informative about  

true research interaction. Several studies raise the concern that guest or gift authorships  

lead to inflated co-author number in medical journals (Bhopal et al., 1997; Flanagin et al., 

1998; Wislar, Flanagin, Fontanarosa, & DeAngelis, 2011).22 In a separate vein, the death of  

a star scientist, as macabre as it may sound, could also emerge as beneficial for future 

performance. Prestigious research positions, journal space, funding, and accolades are all 

examples of scarce resources in academia, access to which could become less restrictive  

after the star is exempt from competition (Borjas & Doran, 2015). Although we find no  

evidence of positive treatment outcomes, it seems conceivable that the competition  

channel might (partly) offset negative effects. Moreover, we believe that this argument  

could carry particular relevance in fields where elite scientists form a small interlinked  

community, as it tends to the case for social sciences (Goyal, Van Der Leij, & Moraga-

González, 2006). 

                                                                 

22 Our data could be reflective of this phenomenon (to some extent) as we observe health scientists to 
record the highest collaborator numbers (see Table D.1). 
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In a subsequent step, we exploit the rich heterogeneity in individual and dyadic data to 

develop an understanding of the mechanisms that give rise to the treatment effects. There 

are three findings that stand out. First, we provide evidence that knowledge production 

comprises spatial elements. On a broader scale, we determine US-located dyads to be a 

primary effect driver in both life and health sciences. The observation that US scientists  

that lose a star collaborator, who is likewise located in the US, experience steeper output  

declines points to systemic causes. What could cause them to be especially vulnerable?  

A probable answer relates to increased inequality levels in the US biomedical sector as 

documented by Katz and Matter (2019) who highlight rich-get-richer effects in terms of 

patents, publications, and research grants that reinforce the role of elites and limit the  

degree of upward mobility. Star contact could thus be more important for career paths in  

this environment. On a local scale, we further find co-location effects in physical sciences. 

Although several studies underline the general tendency towards distant collaborations 

(Jones, Wuchty, & Uzzi, 2008; Laband & Tollison, 2000; Waltman, Tijssen, & Eck, 2011),  

our analysis suggests that close workspaces can still be a relevant factor for knowledge 

production. More specifically, we find that some part of the spillovers generated by stars  

are locally confined. We take the view that the diverse range of specialised equipment  

and material used in physical sciences could offer an explanation, yet our conclusion is  

not clearly verifiable. Including data on physical capital, similar to Baruffaldi and Gaessler’s   

(2018) approach, would therefore be a promising extension to our analysis. 

Our second main result pertains solely to life sciences collaborations. In stark contrast to 

other fields, we notice that the sudden death of a star primarily casts a shadow on fellow  

star scientists. Horizontal rather than vertical spillovers are thus characteristic for frontier 

research in life sciences. While it lies beyond our scope to determine the exact reasons  

for this finding, we offer two plausible explanations. Unrealised joint production, to begin  

with, appears to play a minor role. Spillovers are, however, by no means restricted to 

activities within conventional research projects, but can likewise originate from informal 

interactions, e.g., from “frequent exchanges with strong minds and powerful scientific 

imaginations that have a deep understanding of the problems one is struggling with”  

(Stigler, 1988, p. 36) or from “testing out new ideas in casual conversations” (Borjas &  

Doran, 2015, p. 1116). We expect informal channels to be shaped by social proximity, so  

that knowledge sharing is primarily facilitated between scientists of similar standing and 

intellectual ability. Strong informal channels could thus explain why stars suffer the main 

treatment effects. An alternative explanation is borrowed from Azoulay et al. (2019) who 

shed light on the nature of entry barriers in life sciences. Following the star’s death, they 

discover an influx of outsiders that, at the expanse of incumbent scientists, successfully 

challenge the leadership in the star’s research domain. These dynamics illustrate that stars, 

while alive, can also serve as a protection that ensures that like-minded scholars keep the 

knowledge reins in their hands. 
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Third, our analysis discloses spillovers in subject space. The idea that linking divergent 

scientific backgrounds can accelerate the innovative process is indeed not new. Models  

of creativity have long highlighted that new ideas typically emerge from a recombination  

or synthesis of existing ideas (Campbell, 1960; Hadamard, 1945; Schumpeter, 1934; Usher, 

1954; Weitzman, 1998). On a historical note, Robert Oppenheimer stated about the rise  

of atomic physics that it “was not the doing of any one man”, but instead “involved the 

collaboration of scores of scientists from many lands” (cited by Becker, 1957, p. 54). More 

recently, several bibliometric studies have explored the relationship between disciplinary 

diversity and citation impact. The conclusions drawn are not entirely consensus, but mostly 

supportive of a positive relation (Larivière, Haustein, & Börner, 2015; Leahey, Beckman, & 

Stanko, 2017; Uzzi, Mukherjee, Stringer, & Jones, 2013; Wang, Thijs, & Glänzel, 2015). 

Interdisciplinary research might not only lead to impactful results, it could also become  

more of a necessity. Scientific collaborations are oftentimes motivated by gaining access  

to specific competences, equipment, or data (Beaver, 2001; Melin, 2000). These reasons  

are rather pragmatic and can be considered to reflect specialisation tendencies in several 

research fields (Katz & Martin, 1997), which likely continue to increase due to the (ever)  

growing stock of knowledge (Jones, 2009). Our results align with this literature. More 

concretely, in health and physical sciences, we find that research potential is mainly lost  

in duos that combine markedly different field expertise, which is indicative of knowledge 

transmission through interdisciplinary avenues. 

Finally, this paper presents the first causal estimation of spillover effects over the entire 

spectrum of scientific fields. On aggregate, we discover that the presence of a star scientist 

benefits the research performance of his or her collaboration network. However, exploring  

the domains of life, health, physical, and social sciences separately reveals that the star  

effect is neither visible in each of these fields nor traceable to one common origin. To this 

end, our study may be viewed as a contribution that can help to develop an improved 

understanding of knowledge production functions and their potentially heterogeneous 

forms. Future research could continue in a similar (or complementary) spirit, but address 

some of our limitations. Importantly, our coverage of social sciences dyads is limited, in  

the first place due to considerably smaller collaboration networks in this field, but also 

because of a moderate number of treatment cases. A related question would arise from  

a change of scenery. Do our findings translate to fields outside of the university sector?  

Oettl (2012) raises this point and illustrates the perception that tech companies typically 

value exceptional engineers to an extent that resembles star status in academia. After all, 

knowing how human capital accumulates by means of interaction would clearly have far-

reaching implications and ultimately shed light on a key component of economic growth 

(Akcigit et al., 2018; Lucas & Moll, 2014). 
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Appendix A. Classification of Scientific Fields 

Tab. A.1: CLASSIFICATION OF SCIENTIFIC FIELDS 

Notes: We divide the scientific spectrum into four main fields based on the All Science Journal 

Classification by Scopus (omitting the field of multidisciplinary studies). Sections in use by the 

National Academy of Sciences are mapped into this taxonomy according to the reported 

scheme so that each of its members can be assigned to either life, health, physical, or social 

sciences. Sections and subfields are listed in alphabetical order. 

  

National Academy of Sciences Scopus Field 

Animal, Nutritional, and Applied Microbial Sciences Agricultural and Biological Sciences 

Biochemistry Biochemistry, Genetics, and Molecular Biology 

Biophysics and Computational Biology Immunology and Microbiology 

Cellular and Developmental Biology Neuroscience 

Cellular and Molecular Neuroscience Pharmacology, Toxicology, and Pharmaceutics 

Evolutionary Biology  

Genetics  

Physiology and Pharmacology  

Plant Biology  

Plant, Soil, and Microbial Sciences  

Systems Neuroscience  

 Life Sciences 

Immunology and Inflammation Dentistry 

Medical Genetics, Hematology, and Oncology Health Professions 

Medical Physiology and Metabolism Medicine 

Microbial Biology Nursing 

 Veterinary 

 Health Sciences 

Applied Mathematical Sciences Chemical Engineering 

Applied Physical Sciences Chemistry 

Astronomy Computer Science 

Chemistry Earth and Planetary Sciences 

Computer and Information Sciences Energy 

Engineering Sciences Engineering 

Environmental Sciences and Ecology Environmental Science 

Geology Materials Science 

Geophysics Mathematics 

Mathematics Physics and Astronomy 

Physics  

 Physical Sciences 

Anthropology Arts and Humanities 

Economic Sciences Business, Management, and Accounting 

Human Environmental Sciences Decision Sciences 

Psychological and Cognitive Sciences Economics, Econometrics, and Finance 

Social and Political Sciences Psychology 

 Social Sciences 

 Social Sciences 
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Appendix B. List of Treatment Stars 

 (continued) 

Personal Data Excerpt from Obituary Field 

KURT JUNGERMANN, 1938 – 2002 

  University of Göttingen 
Died unexpectedly⁺ Life 

ROBERT M. MACNAB, 1940 – 2003* 
  Yale University 

Fell at home Life 

ROBERT J. KADNER, 1942 – 2005 

  University of Virginia 

Died unexpectedly Life 

DAVID S. SEGAL, 1942 – 2005 

  University of California, San Diego 

Very short and aggressive course of pancreatic cancer Life 

JERRY O. WOLFF, 1942 – 2008* 
  St. Cloud State University 

Suicide Life 

DON C. WILEY, 1944 – 2001 

  Harvard University 

Accident Life 

DAVID L. GARBERS, 1944 – 2006 

  University of Texas Southwestern 

Heart attack Life 

UWE CLAUSSEN, 1945 – 2008 
  University of Jena 

Heart attack Life 

REINHART HEINRICH, 1946 – 2006 

  Humboldt University of Berlin 

Died unexpectedly Life 

STEVEN C. HEBERT, 1946 – 2008 

  Yale University 

Sudden death after cardiovascular disease Life 

FRED F. KADLUBAR, 1946 – 2010 
  University of Arkansas for Medical Sciences 

Died unexpectedly Life 

DOMINIQUE DORMONT, 1948 – 2003 
  CEA Fontenay-aux-Roses 

Severe influenza Life 

MARJORIE A. ASMUSSEN, 1949 – 2004 

  University of Georgia 

Bicycle accident Life 

JOHN C. LAWRENCE, 1949 – 2006 
  University of Virginia 

Heart attack Life 

ROBERT W. GOLDBACH, 1949 – 2009* 
  Wageningen University & Research 

Trampled to death by an elephant while bird watching Life 

BARBARA K. BURGESS, 1950 – 2001 

  University of California, Irvine 

Suicide Life 

EBBE S. NIELSEN, 1950 – 2001 
  Australian National Insect Collection 

Heart attack Life 

DALE J. BENOS, 1950 – 2010 
  University of Alabama at Birmingham 

Died suddenly while on a walk with his wife Life 

FRANÇOIS TILLEQUIN, 1950 – 2011 

  Paris Descartes University 

Died unexpectedly Life 

THOMAS V. DUNWIDDIE, 1951 – 2001 
  University of Colorado Medical Campus 

Accident while rock climbing Life 

ROBERT B. DICKSON, 1952 – 2006 
  Georgetown University 

Ruptured aorta Life 

VINCENT R. FRANCESCHI, 1953 – 2005 

  Washington State University 

Died unexpectedly Life 

DONALD W. THOMAS, 1953 – 2009 
  University of Sherbrooke 

Stroke Life 

JEFFERY W. WALKER, 1954 – 2010* 
  University of Arizona 

Died suddenly and unexpectedly Life 

BAHMAN EGHBALL, 1956 – 2004* 

  University of Nebraska-Lincoln 

Swimming accident Life 
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 (continued) 

Personal Data Excerpt from Obituary Field 

BRIAN M. J. FOXWELL, 1956 – 2008 

  Imperial College London 

Died unexpectedly Life 

RAWIE I. HOLLINGSWORTH, 1956 – 2012 

  Michigan State University 

Collapsed in a hallway due to pulmonary emboli Life 

ANDREAS J. HELBIG, 1957 – 2005 
  University of Greifswald 

Late diagnosed cancer, short illness Life 

ANGEL A. ALONSO, 1957 – 2005 

  McGill University 

Infection with viral encephalitis Life 

KENJI TAKABAYASHI, 1957 – 2006 

  University of California, San Diego 
Died unexpectedly⁺ Life 

JASON D. MORROW, 1957 – 2008* 
  Vanderbilt University 

Died suddenly Life 

LLOYD R. KELLAND, 1958 – 2008* 
  The Institute of Cancer Research, London 

Died suddenly and unexpectedly Life 

ALAN P. WOLFFE, 1959 – 2001 

  National Institutes of Health, NICHD 

Road accident Life 

STEFAN ROSEWICZ, 1960 – 2004 
  Charité – Berlin University of Medicine 

Died suddenly and unexpectedly Life 

MICHAEL BRÜSS, 1961 – 2006 
  University of Bonn 

Died suddenly and unexpectedly Life 

ALAA E. EL-HUSSEINI, 1962 – 2007 

  University of British Columbia 

Drowned while on vacation Life 

MARCO F. RAMONI, 1963 – 2010 
  Boston Children’s Hospital 

Heart failure Life 

ANDREA TONTINI, 1966 – 2012 
  University of Urbino 

Suicide Life 

CHARLES A. LOCKWOOD, 1970 – 2008 

  University College London 

Motorcycle accident Life 

EKARAT JANTRATID, 1975 – 2010 
  Goethe University Frankfurt 

Died unexpectedly⁺ Life 

LAWRENCE D. JACOBS, 1938 – 2001 
  University at Buffalo 

Brief battle with cancer Health 

SIGRID POSER, 1941 – 2004 

  University of Göttingen 

Died unexpectedly Health 

RICHARD H. WARD, 1943 – 2003 
  University of Oxford 

Died suddenly of cardiac causes Health 

OLOF JOHNELL, 1944 – 2006* 
  Malmö University 

Died suddenly and unexpectedly Health 

LARS JANZON, 1944 – 2007* 

  Lund University 

Short illness Health 

HAIM RING, 1944 – 2008 
  Tel Aviv University 

Short and serious illness Health 

MICHAEL J. REED, 1944 – 2009 
  St Mary's Hospital London 

Died suddenly Health 

SEPPO S. SANTAVIRTA, 1945 – 2005 

  Helsinki University 

Heart attack Health 

WILLIAM C. KOLLER, 1945 – 2005* 
  University of North Carolina at Chapel Hill 

Sudden cardiac problems Health 

WAYNE A. HENING, 1945 – 2008 
  Rutgers University 

Brief struggle with pulmonary fibrosis Health 

AXEL PERNECZKY, 1945 – 2009 

  University of Mainz 

Died suddenly and unexpectedly Health 
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 (continued) 

Personal Data Excerpt from Obituary Field 

MASSIRAO CHIARIELLO, 1945 – 2010* 

  University of Naples Federico II 

Short struggle with cancer Health 

MARIO STEFANELLI, 1945 – 2010 
  University of Pavia 

Haemorrhagic stroke Health 

ROBERT M. ADRIAN, 1946 – 2007 
  Georgetown University 

Died suddenly Health 

JECKONIAH O. NDINYA-ACHOLA, 1946 – 2010 

  University of Nairobi 

Sudden kidney failure Health 

JEFFERY M. ISNER, 1947 – 2001 
  Tufts University 

Heart attack Health 

DAVID B. LARSON, 1947 – 2002* 
  Duke University 

Heart attack Health 

JOHN L. BEARD, 1947 – 2009 

  Pennsylvania State University 

Died suddenly Health 

JOB J. BWAYO, 1948 – 2007 
  University of Nairobi 

Murdered by carjackers Health 

WERNER A. BAUTZ, 1949 – 2008 
  University of Erlangen-Nuremberg 

Heart attack Health 

GARY J. MILLER, 1950 – 2001 

  University of Colorado Medical Campus 

Died suddenly while jogging Health 

DANIEL P. SCHUSTER, 1950 – 2007 
  Washington University in St. Louis 

Died suddenly while playing racquetball Health 

GREG R. ALEXANDER, 1950 – 2007 
  University of South Florida 

Heart failure Health 

ELIZABETH S. WILLIAMS, 1951 – 2004 

  University of Wyoming 

Traffic accident Health 

HELMUT DREXLER, 1951 – 2009 

  Hannover Medical School 

Accident during race biking Health 

GERD HAUSDORF, 1952 – 2001 
  University of Göttingen 

Died unexpectedly Health 

HANS J. SCHWANITZ, 1952 – 2004 

  Osnabrück University 

Died unexpectedly Health 

RICHARD L. WALKER, 1952 – 2008 

  University of California, Davis 

Probable suicide Health 

HELMUT MAXEINER, 1952 – 2009 
  Charité – Berlin University of Medicine 

Bicycle accident Health 

RICHARD W. SCHWARTZ, 1952 – 2010* 

  University of Kentucky 

Very brief battle with lung cancer Health 

BARRY M. KACINSKI, 1953 – 2003 

  Yale University 

Heart attack Health 

TONY S. KELLER, 1955 – 2006* 
  University of Vermont 

Died of gunshots, apparent homicide Health 

FRANS W. J. ALBERS, 1955 – 2007 

  University of Groningen 

Brief illness Health 

ALAN J. FLISHER, 1956 – 2010* 

  University of Cape Town 

Brief struggle with leukaemia Health 

ROBERT B. DUNCAN, 1957 – 2007 
  Virginia-Maryland College of Veterinary Medicine 

Died suddenly Health 

JASON D. MORROW, 1957 – 2008* 

  Vanderbilt University 

Died suddenly Health 

JEFFREY W. TYLER, 1957 – 2009 

  University of Missouri-Columbia 

Died unexpectedly Health 
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 (continued) 

Personal Data Excerpt from Obituary Field 

JAE-YOUNG RHO, 1958 – 2002 

  University of Memphis 

Heart attack Health 

WALTER J. MUIR, 1958 – 2009 
  University of Edinburgh 

Died suddenly and unexpectedly Health 

BERNIE J. O’BRIEN, 1959 – 2004 
  University of Edinburgh 

Died tragically while jogging Health 

HERMAN T. YEE, 1959 – 2011 

  New York University 

Died suddenly Health 

KEVIN P. GRANATA, 1961 – 2007 
  Virginia Polytechnic Institute and State University 

Victim of university campus shooting Health 

JEFFREY W. BERGER, 1963 – 2001 
  University of Pennsylvania 

Stomach cancer, died two weeks after diagnose Health 

SERGIO VIDAL, 1966 – 2003 

  University of Santiago de Compostela 

Sudden illness Health 

JAN KWIECINSKI, 1938 – 2003 
  Polish Academy of Sciences 

Died suddenly during a cycling trip Physical 

JAMES R. HOLTON, 1938 – 2004 
  University of Washington 

Stroke and heart attack during a mid-day run Physical 

LORENZ KRAMER, 1941 – 2005 

  University of Bayreuth 

Died unexpectedly Physical 

DAVID J. FAULKNER, 1942 – 2002 
  University of California, San Diego 

Complications after heart surgery Physical 

JIN AU KONG, 1942 – 2008 
  Massachusetts Institute of Technology 

Complications from pneumonia Physical 

PAUL GRANGE, 1943 – 2003 

  University of Louvain 

Heart attack Physical 

JÜRGEN O. BESENHARD, 1944 – 2006 

  Graz University of Technology 

Stroke while returning from conference Physical 

ANDREI YAKOVLEV, 1944 – 2008 
  University of Rochester 

Heart attack Physical 

REX E. SHEPHERD, 1945 – 2003 

  University of Pittsburgh 

Heart attack Physical 

TADEUSZ PAKULA, 1945 – 2005 

  Max Planck Institute for Polymer Research 

Short and severe illness Physical 

ROBERT F. DENNO, 1945 – 2008 
  University of Maryland 

Heart attack Physical 

STEPHEN H. SCHNEIDER, 1945 – 2010 

  Stanford University 

Heart attack Physical 

ROBERT A. SCHOMMER, 1946 – 2001 

  Cerro Tololo Inter American Observatory 

Suicide Physical 

RICHARD E. EWING, 1946 – 2007 
  Texas A&M University 

Heart attack Physical 

MICHAEL J. WEAVER, 1947 – 2002 

  Purdue University 

Died unexpectedly Physical 

HANS J. RATH, 1947 – 2012 

 University of Bremen 

Short and severe illness Physical 

YORAM J. KAUFMAN, 1948 – 2006 
  NASA Goddard Space Flight Center 

Bicycle accident Physical 

PAUL G. SILVER, 1948 – 2009 

  Carnegie Institution of Washington 

Car accident Physical 

CHARLES E. HOYLE, 1948 – 2009 

  University of Southern Mississippi 

Died unexpectedly Physical 
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 (continued) 

Personal Data Excerpt from Obituary Field 

JOHN P. HUCHRA, 1948 – 2010 

  Harvard University 

Heart attack Physical 

PHILIPPE FLAJOLET, 1948 – 2011 
  INRIA at Rocquencourt 

Died suddenly and unexpectedly Physical 

IOANNIS VARDOULAKIS, 1949 – 2009 
  National Technical University of Athens 

Gardening accident Physical 

ULRICH M. GÖSELE, 1949 – 2009 

  Max Planck Institute of Microstructure Physics 

Found dead in his apartment Physical 

ISAAC GOLDHIRSCH, 1949 – 2010 
  Tel Aviv University 

Died unexpectedly Physical 

GERHARD H. JIRKA, 1944 – 2010 
  Karlsruhe Institute of Technology 

Heart attack Physical 

HASSAN AREF, 1950 – 2011 

  Virginia Polytechnic Institute and State University 

Aortic dissection Physical 

SHENG YU, 1950 – 2012 
  Western University 

Unexpectedly Physical 

JAAP G. SNIJDERS, 1951 – 2003 
  University of Groningen 

Died unexpectedly due to short-term illness Physical 

JEAN-PIERRE MAELFAIT, 1951 – 2003 

  University of Ghent 

Died suddenly and unexpectedly Physical 

PAUL F. BARBARA, 1953 – 2010 
  University of Texas at Austin 

Complications following cardiac arrest Physical 

IAN P. ROTHWELL, 1955 – 2004 
  Purdue University 

Car accident Physical 

STRATIS V. SOTIRCHOS, 1956 – 2004 

  University of Rochester 

Car accident Physical 

RICHARD C. PLAYLE, 1956 – 2005 

  Wilfrid Laurier University 

Heart failure after brief illness Physical 

STEPHEN P. HOPKIN, 1956 – 2006 
  University of Reading 

Car accident Physical 

ZLATKO B. TES   ANOVIĆ, 1956 – 2012 

  Johns Hopkins University 

Heart attack Physical 

IAN I. KOGAN, 1958 – 2003 

  University of Oxford 

Heart attack Physical 

ADOLFO PARMALIANA, 1958 – 2008 
  University of Messina 

Suicide Physical 

PETER G. DUYNKERKE, 1959 – 2002 

  Utrecht University 

Tragic accident Physical 

LEOPOLDO P. FRANCA, 1959 – 2012 

  University of Colorado Denver 

Heart attack Physical 

IAN H. LANGFORD, 1961 – 2002* 
  University of East Anglia 

Suicide or home accident Physical 

WILLIAM D. ARMSTRONG, 1961 – 2006 

  University of Wyoming 

Plane crash Physical 

TIL AACH, 1961 – 2012 

  RWTH Aachen University 

Died unexpectedly Physical 

WERNER S. WEIGLHOFER, 1962 – 2003 
  University of Glasgow 

Struck by an avalanche Physical 

ALEXANDER E. FARRELL, 1962 –2008 

  University of California, Berkeley 

Died unexpectedly Physical 

RAJEEV MOTWANI, 1962 – 2009 

  Stanford University 

Accidental drowning Physical 
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 (continued) 

Personal Data Excerpt from Obituary Field 

MANUEL FORESTINI, 1963 – 2003 

  University of Grenoble 

Heart attack Physical 

ROBERT HEITZ, 1964 – 2003 
  Technical University of Berlin 

Cardiac aneurysm Physical 

EDOARDO CAPELLO, 1965 – 2009* 
  Polytechnic University of Milan 

Heart attack while skiing Physical 

FEMKE OLYSLAGER, 1966 – 2009 

  University of Ghent 

Died unexpectedly Physical 

LUIS SERRANO-ANDRÉS, 1966 – 2010* 
  University of Valencia 

Died unexpectedly Physical 

JOAKIM H. PETERSSON, 1968 – 2002 
  Linköping University 

Died suddenly and unexpectedly Physical 

KEITH FAGNOU, 1971 – 2009 

  University of Ottawa 

Complications from influenza Physical 

SAM T. ROWEIS, 1972 – 2010 
  New York University 

Suicide Physical 

KEVIN E. STRECKER, 1974 – 2012 
  Rice University 

Heart attack Physical 

FRANS M. DIELEMAN, 1942 – 2005 

  Utrecht University 

Died suddenly and unexpectedly Social 

DENNIS A. RONDINELLI, 1943 – 2007 
  Duke University 

Died unexpectedly⁺ Social 

ROB KLING, 1944 – 2003 
  Indiana University 

Unexpectedly due to cardiovascular disease Social 

VICTOR FLORIAN, 1945 – 2002 

  Bar-Ilan University 
Died unexpectedly⁺ Social 

DICK R. WITTINK, 1945 – 2005 

  Yale University 

Diabetic seizure while swimming in his pool Social 

MICHAEL W. PFAU, 1945 – 2009 
  University of Oklahoma 

Brief illness Social 

KENNETH A. KAVALE, 1946 – 2008 

  Regent University 

Died unexpectedly Social 

PETER GOLDIE, 1946 – 2011 

  University of Manchester 

Brief illness Social 

PHILLIP L. WALKER, 1947 – 2009 
  University of California, Santa Barbara 

Died unexpectedly Social 

IVAN MERVIELDE, 1947 – 2011 

  University of Ghent 

Short illness Social 

PETER W. JUSCZYK, 1948 – 2001 

  Johns Hopkins University 

Heart attack Social 

SUMANTRA GHOSHAL, 1948 – 2004 
  London Business School 

Brain haemorrhage Social 

LYNDA L. KAID, 1948 – 2011 

  University of Florida 

Died unexpectedly Social 

M. THEA SINCLAIR, 1950 – 2006 

  University of Nottingham 

Riding accident Social 

MARK S. JOHNSON, 1950 – 2007* 
  Montclair State University 

Died suddenly Social 

GEORGE M. ZINKHAN, 1952 – 2009 

  University of Georgia 

Suicide after being prime suspect in a triple homicide Social 

PETER LIPTON, 1954 – 2007 

  University of Cambridge 

Collapsed after a squash game Social 
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Tab. B.1: LIST OF TREATMENT STARS 

Notes: The list comprises 162 outstanding scientists whose active careers ended abruptly 

between 2001 and 2012 due to unexpected death at a maximum age of 65 years. Asterisks 

indicate that the year of birth could not be ascertained and was instead estimated based 

on the year of death and the reported death age. Plus signs indicate that the death cause 

was verified after personal consultation with former colleagues. Affiliations are selected 

as of the last held job position. 

  

Personal Data Excerpt from Obituary Field 

BRIAN D. MULLEN, 1955 – 2006 

  Syracuse University 

Died unexpectedly Social 

STEVEN C. POE, 1960 – 2007 
  University of North Texas 

Heart attack Social 

JEAN O. LANJOUW, 1962 – 2005 
  University of California, Berkeley 

Renal cancer, died three months after first symptoms Social 

JÖRG SCHUMACHER, 1962 – 2010 

  University of Leipzig 

Died unexpectedly Social 

RODNEY CLARK, 1967 – 2006 
  Wayne State University 

Died unexpectedly Social 

ALASDAIR CROCKETT, 1968 – 2006 
  University of Essex 

Suicide Social 

STEPHEN O. GYIMAH, 1968 – 2012* 

  Queen's University 

Unexpectedly due to brief illness Social 
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Appendix C. Detailed Matching Procedure 

Technically, the matching procedure is performed at the star-collaborator dyad level. This 

implies that although the majority of covariates refers to the collaborator, characteristics of 

the star scientist and features of their collaboration are equally important to account for.  

The overall goal is to construct a control group that mirrors the treatment group in these 

three dimensions and thus determines the hypothetical outcome path for the latter group 

had they not experienced the unexpected star death. We proceed by detailing our matching 

algorithm in three main steps. 

Step 1: Identifying treatment and potential control dyads 

Our bibliometric data cover substantial network information. We apply several constraints  

to identify treatment and control dyads therein. First, we only consider established star 

collaborations. Thus, as of the year of death, stars must have fulfilled a star criterion (as 

defined in Section 2.2) and collaborations must have emerged through jointly published 

articles.23 Second, we require collaborators to be research-active at the time of death. We 

implement this constraint by confining the matching sample to dyads where collaborators 

are below 40 career years and have not ended their publication activities prior to the year  

of death. Third, we focus on established collaborators. This leads us to exclude collaborators 

with less than five career years and collaborators who simultaneously began their careers  

and star collaborations. Fourth and lastly, we remove collaborators that died, regardless of  

cause, as documented by our treatment case search. 

These general constraints are common to both treatment and control dyads. In order to  

draw the distinction between the two groups, we lean on the star scientists. Treatment stars 

died unexpectedly at a maximum age of 65 years. We impose two additional constraints  

to infer that they were engaged in research activities at the time of their death. First, their 

obituaries do not indicate that they entered any kind of retirement phase. Second, they 

published at least one article over the two years preceding the year of death. Control stars, 

in contrast, must not die. Deceased stars, as disclosed through our treatment search, are 

therefore not eligible to be part of control dyads. From the remaining pool of potential 

control dyads, we first remove stars with career ages of over 35 years, which resembles the 

age threshold applied to treatment stars on the assumption that scientific careers start at  

the age of 30.24 Second, we restrict the control pool to stars who continued publishing for a  

                                                                 

23 This essentially excludes a small number of treatment dyads that are solely verifiable through delayed 
publications, i.e., after the year of death. In these cases, it remains unclear if collaboration actually took 
place or if the co-author possibly served as a replacement for the deceased star. 

24 Jones (2010) points out that the age at which eminent scientists and inventors become research-active 
has notably increased over the past. He documents a mean age of 31 years for the end of the 20th century 
and further shows that age patterns are very similar across scientific fields. 
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minimum of five years after the considered death year. We expect these stars to be alive 

besides being involved in further research activities. Third and analogous to the treatment 

case, control stars are required to have published one article over the past two years. 

Together, these constraints allow us to determine treatment dyads and to narrow down 

potential control dyads. As for the former group, we make a final adjustment by excluding 

collaborators that experience more than one treatment event. These cases are relatively  

rare,25 but still problematic from a methodological standpoint since it would be hardly 

possible to isolate the individual treatment effects. 

Step 2: Matching field-by-field and year-by-year 

This step aims to identify counterparts for each treatment dyad. We begin by splitting  

the confined sample into four distinct groups according to the stars’ field classification  

(life, health, physical, and social sciences). Within each field, we iterate over the years from 

2001 to 2012. Every treatment year is hereby associated with a disjoint subgroup of the  

full set of treatment dyads. Potential control dyads, in contrast, can be linked to more than 

one year. To be clear, a dyad pictures a collaboration over time. Control dyads thus serve  

as feasible matches in any given year, in which they meet the criteria stated above. We 

proceed by matching treatment and control dyads field-by-field and year-by-year. Note  

that treatment dyads can initially match with multiple control dyads as we postpone the 

implementation of the one-to-one and without replacement features to Step 3. 

Dyads form a match if they belong to the exact same stratum derived from partitioning  

the support of the joint distribution of the following covariates, with optional percentile  

cut-offs in parentheses: 

 DYAD LEVEL: no. of joint articles (50th; 85th), years since last joint article (25th; 75th) 

 STAR LEVEL: no. of received citations (25th; 75th), field classification26 

 COLLABORATOR LEVEL: no. of distinct co-authors (25th; 75th), adjusted forward citations  

in each of the last five years and aggregated over a max. 5-year period prior to that  

(50th; 80th; 98th), career age in 5-year intervals 

The selection of cut-offs is strongly guided by distributional features and therefore hard  

to determine a priori. For instance, we discover that casual dyads that collaborate once  

or twice are very common,27 which allows us to choose a relatively high first cut-off for the 

number of joint articles, i.e., the 50th percentile. This decision is motivated on theoretical 

                                                                 

25 They account for 3% of the treated collaborator sample. Among them, an unfortunate group of eight 
collaborators is exposed to the maximum of three death events. 

26 The stars’ field constitutes an implicit covariate since we opt to match dyads field-by-field. 

27 This finding is indeed not new. For instance, Azoulay et al. (2010) depict a very similar distribution of  
co-authorship intensity for US life scientists. 
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grounds, as we attempt to separate casual dyads from (more) regular ones, but is also 

reasonable on pragmatic grounds, as broad stratifications usually improve the chances of 

successful matches. Moreover, the assessment of collaboration intensity likely changes 

depending on the time horizon. To illustrate this point, in 2001, one might label a dyad 

frequent if more than five collaborations occurred from 1996 onwards. Yet this absolute 

threshold is probably not suitable to classify dyads as of 2010 given that our data (still)  

span until 1996. Relative cut-off points are hence preferred and eventually determined in  

an iterative process that intends to maximise both the degree of covariate balance and  

the overall matching rate. 

Step 3: Selecting final control dyads 

In line with the related literature (Azoulay et al., 2010; Jaravel et al., 2018), we employ  

a one-to-one matching without replacement. More specifically, control collaborators can 

only be matched once irrespective of multiple occurrences within different control dyads.  

In slight deviation to previous studies that have pursued a purely chronological approach,  

we select control dyads by first considering all allocation possibilities. This offers two 

advantages. First, it allows executing each matching year simultaneously and can thus  

lead to substantial timesavings if parallel computing resources are available. Second, it  

gives us the opportunity to inspect if some collaborators, who are allocated more than  

once, constitute mandatory matches for certain treatment dyads (in possibly later years). 

We begin by locking mandatory matches, i.e., we assign control dyads that are without 

alternatives. In case that control collaborators are part of multiple mandatory dyads, we 

prioritise earlier treatment years and, if necessary, break ties at random. After removing  

all other occurrences of these collaborators, we proceed chronologically. In other words,  

we restrict all remaining control collaborators to their first match, again breaking ties at 

random. At this stage, matching is realised without replacement. In order to implement the 

one-to-one feature, we lastly select control dyads randomly in the event that treatment 

dyads are presented with multiple options. In sum, we manage to find a definite match for 

93.6% of all treatment dyads, hereby employing 8,406 distinct strata. 
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Appendix D. Additional Summary Statistics 

Tab. D.1: SUMMARY STATISTICS ON MATCHED COLLABORATORS BY SCIENTIFIC FIELD 

Notes: The table reports a breakdown of mean values by scientific field and treatment status. 

All time-varying variables refer to the year preceding the (inherited) year of star death. Article, 

citation, and distinct co-author numbers are aggregated over a prior 5-year span. Gender 

information are inferred through name and country data and are available for 85.3% of the 

sample. 

  

Variable Life Sciences Health Sciences Physical Sciences Social Sciences 

 Treated Control Treated Control Treated Control Treated Control 

Career age 18.52 18.44 18.57 18.54 17.42 17.33 16.94 16.96 

Female prediction 0.268 0.291 0.273 0.283 0.140 0.163 0.293 0.279 

U.S. affiliated 0.459 0.424 0.422 0.414 0.375 0381 0.630 0.468 

Star status 0.243 0.253 0.265 0.251 0.269 0.253 0.175 0.104 

No. of distinct co-authors 60.09 60.09 77.95 74.71 54.95 58.10 21.54 18.55 

No. of articles 13.26 12.53 15.26 14.56 15.25 15.72 7.71 7.33 

No. of citations 524.7 522.5 531.9 519.4 505.6 475.7 166.5 145.3 

No. of collaborations 2.03 1.93 2.49 2.40 2.31 2.32 1.63 1.68 

Years since last collaboration 4.40 4.30 3.77 3.67 4.07 4.01 4.20 4.27 

No. of citations (star) 1,621.6 1,660.3 1,643.2 1,393.4 1,712.6 1,601.2 209.0 213.3 

No. of collaborators 5,598 7,950 4,738 308 
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Appendix E. Robustness Checks 

 Main Model Variant 1 Variant 2 Variant 3 Variant 4 Variant 5 Variant 6 

Overall Sample)  Article count as dependent variable 

After death  treated -0.043 * -0.045 * -0.043 * -0.043 * -0.043 ** -0.073 ** n/a  

 (0.022)  (0.021)  (0.022)  (0.022)  (0.013)  (0.028)  n/a  

Log pseudo-likelihood -189,139 -189,135 -189,227 -189,138 -189,780 -67,906 n/a  

No. of observations 275,344  275,344  275,344  275,344  275,344  90,600  n/a  

No. of dyads 18,542  18,542  18,542  18,542  18,542  6,040  n/a  

Overall Sample)  Forward citations as dependent variable 

After death  treated -0.081 ** -0.087 ** -0.081 ** -0.081 * -0.080 ** -0.087 ** -0.081 ** 

 (0.028)  (0.029)  (0.028)  (0.028)  (0.019)  (0.034)  (0.030)  

Log pseudo-likelihood -2,800,261 -2,799,841 -2,804,363 -2,799,577 -2,819,493 -964,785 -2,873,838  

No. of observations 275,166  275,166  275,166  275,166  275,166  90,585  275,166  

No. of dyads 18,527  18,527  18,527  18,527  18,527  6,039  18,527  

Life Sciences)  Article count as dependent variable 

After death  treated -0.066 * -0.065 * -0.065 * -0.066 * -0.063 ** -0.079 * n/a  

 (0.030)  (0.030)  (0.030)  (0.030)  (0.024)  (0.036)  n/a  

Log pseudo-likelihood -52,754 -52,755 -52,776 -52,752 -52,948 -23,952 n/a  

No. of observations 83,541  83,541  83,541  83,541  83,541  34,770  n/a  

No. of dyads 5,585  5,585  5,585  5,585  5,585  2,318  n/a  

Life Sciences)  Forward citations as dependent variable 

After death  treated -0.114 ** -0.119 ** -0.113 ** -0.115 ** -0.114 ** -0.107 * -0.122 * 

 (0.041)  (0.044)  (0.041)  (0.041)  (0.034)  (0.046)  (0.053)  

Log pseudo-likelihood -809,005 -808,823 -810,045 -808,285 -813,795 -337,475 -835,832  

No. of observations 83,526  83,526  83,526  83,526  83,526  34,770  83,526  

No. of dyads 5,584  5,584  5,584  5,584  5,584  2,318  5,584  

 (continued) 
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 Main Model Variant 1 Variant 2 Variant 3 Variant 4 Variant 5 Variant 6 

Health Sciences)  Article count as dependent variable 

After death  treated -0.044  -0.042  -0.044  -0.044  -0.047 * -0.065  n/a  

 (0.034)  (0.034)  (0.034)  (0.034)  (0.021)  (0.046)  n/a  

Log pseudo-likelihood -79,330 -79,327 -79,369 -79,327 -79,603 -27,978 n/a  

No. of observations 118,212  118,212  118,212  118,212  118,212  37,125  n/a  

No. of dyads 7,940  7,940  7,940  7,940  7,940  2,475  n/a  

Health Sciences)  Forward citations as dependent variable 

After death  treated -0.043  -0.039  -0.044  -0.043  -0.047  -0.050  -0.030  

 (0.038)  (0.040)  (0.038)  (0.038)  (0.027)  (0.043)  (0.038)  

Log pseudo-likelihood -1,154,988 -1,154,805 -1,156,912 -1,154,597 -1,164,565 -390,776 -1,176,750  

No. of observations 118,148  118,148  118,148  118,148  118,148  37,110  118,148  

No. of dyads 7,934  7,934  7,934  7,934  7,934  2,474  7,934  

Physical Sciences)  Article count as dependent variable 

After death  treated -0.026  -0.033  -0.026  -0.026  -0.027  -0.089 * n/a  

 (0.030)  (0.029)  (0.030)  (0.030)  (0.025)  (0.043)  n/a  

Log pseudo-likelihood -53,894 -53,892 -53,936 -53,890 -54,089 -15,207 n/a  

No. of observations 69,107  69,107  69,107  69,107  69,107  17,580  n/a  

No. of dyads 4,711  4,711  4,711  4,711  4,711  1,172  n/a  

Physical Sciences)  Forward citations as dependent variable 

After death  treated -0.104 * -0.121 ** -0.106 * -0.104 * -0.102 ** -0.121 * -0.115 ** 

 (0.043)  (0.040)  (0.042)  (0.043)  (0.038)  (0.060)  (0.044)  

Log pseudo-likelihood -784,720 -784,690 -787,455 -784,029 -791,293 -218,597 -808,717  

No. of observations 69,008  69,008  69,008  69,008  69,008  17,580  69,008  

No. of dyads 4,703  4,703  4,703  4,703  4,703  1,172  4,703  

 (continued) 
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 Main Model Variant 1 Variant 2 Variant 3 Variant 4 Variant 5 Variant 6 

Social Sciences)  Article count as dependent variable 

After death  treated -0.062  -0.133  -0.061  -0.063  -0.051  0.043  n/a  

 (0.151)  (0.157)  (0.153)  (0.151)  (0.146)  (0.211)  n/a  

Log pseudo-likelihood -3,021 -3,020 -3,034 -3,017 -3,042 -706 n/a  

No. of observations 4,484  4,484  4,484  4,484  4,484  1,125  n/a  

No. of dyads 306  306  306  306  306  75  n/a  

Social Sciences)  Forward citations as dependent variable 

After death  treated -0.015  -0.137  -0.013  -0.012  -0.017  0.206  -0.015  

 (0.205)  (0.222)  (0.205)  (0.206)  (0.187)  (0.356)  (0.205)  

Log pseudo-likelihood -40,122 -40,192 -40,612 -39,909 -40,837 -12,103 -40,127  

No. of observations 4,484  4,484  4,484  4,484  4,484  1,125  4,484  

No. of dyads 306  306  306  306  306  75  306  

Tab. E.1: ROBUSTNESS CHECKS 

Notes: The table reports the results of a series of robustness checks that probe our main model 

defined by Equation (2). In Variant 1, we prolong the pre-treatment period to include the death 

event, thus delaying the start of the post-treatment period to the first full calendar year after 

the stars’ passing. In Variant 2, we switch to an alternative career age specification and employ 

5-year brackets to capture life cycle effects. In Variant 3, we include interacted calendar year 

and career age fixed effects instead of inserting them separately. In Variant 4, we shift the level 

of standard error clustering from the star to the collaborator level. In Variant 5, we estimate 

effects based on a balanced panel of collaborators that are traceable for exactly seven years 

before and after their respective death year. In Variant 6, we abstain from winsorizing forward 

citations. Any further estimation features and variable definitions are maintained from the 

main model. Robust standard errors are in parentheses. 

* 𝑝 < 0.05, ** 𝑝 < 0.01, and *** 𝑝 < 0.001. 
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Appendix F. Supplementary Estimations 

This section provides further estimations that are useful for probing the robustness of  

the findings presented in Section 4.2. Methodologically, we rely on Equation (3) or on a 

slightly modified version thereof, which contains either multiple three-way interactions or 

continuous interaction terms.  

Basic Interaction Measures. Frequency, timing, and length of a collaborative relationship 

provide intuitive starting points for exploring treatment effect heterogeneity. However, 

frequency was not found to be a relevant factor. We draw similar conclusions with regard  

to the other two interaction measures, as reported in Tables F.1 and F.2. As for timing, we 

distinguish recent collaborations, who published a joint article either in the year of death  

or in the year before, from older collaborations. The former group comprises slightly over 

30% of both the treated and control sample. In the absence of any statistically significant 

interaction terms (see Table F.1), we find no reliable link between recency and treatment 

effect levels, thus indicating that the disruption of ongoing research projects plays a  

negligible role. As for collaboration length, we separate collaborations that published joint 

articles over multiple years (30% in both samples) from one-year collaboration. As can be 

seen from Table F.2, treatment effect differences between these groups are statistically 

insignificant. 

Horizontal Spillovers & Intra-US Effects. We address the concern that the effects estimated 

for star-star dyads and US-US dyads might be entangled by combining both interactions 

(together with their common terms) in the same specification. As shown in Table F.3, results 

hardly change under this scenario. More concretely, both effect channels stay statistically 

significant in life sciences despite slight reductions in absolute point estimates. In case of 

health sciences, we see a minor increase in both effects sizes and precision, which causes  

the differential quality effect for US-US dyads to become statistically significant at the five-

percent level (former 𝑝-value was 0.064). 

Intra-US Effects & Other Physical Proximity Effects. Our measures of physical proximity at  

the city-level (co-located) and at the country-level (US-US) partly overlap. We thus test the 

potential dependence of these channels by estimating their differential treatment effects 

within one specification. In view of Table F.4, we find the concern to be unfounded given  

that the field-specific results see only marginal changes. In addition to that, we explore the 

possibility that intra-US effects could just be a reflection of intra-country effects. However, 

as can be inferred from Table F.5, this is unlikely to be true. While intra-country effects  

take up some part of the productivity effect in health sciences, they point in the opposite 

direction of the quality effect in life sciences, thereby enhancing it. 
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Subject Space & Topic Space. Distance in subject space represents a key predictor for the 

treatment effect sizes in health and physical sciences. This finding suggests that the visible 

decline in research output supposedly results from the loss of complementary scientific 

resources that were provided by the deceased star. However, it remains relatively vague, 

which concrete form or combination of resources plays a decisive role. In order to improve 

our understanding in this regard, we distinguish between distances in subject and topic  

space. Methodologically, the calculation of topic space distance follows the exact same  

steps as outlined for subject distance with the exception of utilising keywords instead of 

journal categories. Moreover, keywords are cleaned and Porter-stemmed to mitigate the  

risk of misclassification, which could arise from Scopus using a non-standardised keyword 

pool. Overall, this leads us to differentiate between 162,791 keywords. However, it should 

be noted that keywords are not available for every publication, which causes a roughly  

10% reduction in sample size (topic distance could not be determined for these dyads in 

absence of keywords). Combining subject and topic space metrics in one estimation gives  

rise to the results in Table F.6. As can be seen, focus on divergent research matters is not  

a central driver of the treatment effects, as none of the topic space interactions become 

statistically significant. On the contrary, the relevance of the subject space channel in health 

and physical sciences remains largely unaffected (especially in the quality dimension). In 

unreported estimations, we additionally tested if proximity in subject and topic space, or a 

combination of both, might explain treatment effect outcomes, but could not determine  

any reliable link. 

Continuous Interactions. For the ease of interpretation, we solely used dummy variables to 

investigate effect heterogeneities in Section 4.2. While most variables naturally allow for  

a binary classification (e.g., co-location, star status, or intra-US collaborations), we applied  

a cut-off between the second and third tertile in some instances, most notably regarding  

the subject distance measure. To allay the concern that this specific cut-off may be pivotal 

for our results, we present additional results derived from continuous interaction effects. 

Technically, we allow for a non-linear relationship between the treatment effect and the 

distance measure by inserting two interaction terms, one regular (After death  treated  

subject distance) and one squared (After death  treated  squared subject distance), in 

addition to the standard treatment term (After death  treated). Models that include  

multiple continuous interactions become hardly interpretable from estimated coefficients 

alone. We thus present a graphical illustration in Figure F.1 that depicts how the (overall) 

treatment impact varies along the subject distance range. As can be seen, higher distances 

are reliably linked to a higher treatment magnitude in case of the overall sample, health 

sciences, and the quality sphere of physical sciences, which is in line with our field-specific 

findings. 
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 Overall 

Sample 

Life 

Sciences 

Health 

Sciences 

Physical 

Sciences 

Social 

Sciences 

  Article count as dependent variable 

After death  treated -0.051 * -0.086 ** -0.052  -0.014  -0.142  

 (0.021)  (0.033)  (0.034)  (0.038)  (0.174)  

After death  treated  0.018  0.065  0.026  -0.041  0.281  

recent dyad (0.028)  (0.048)  (0.038)  (0.048)  (0.320)  

Log pseudo-likelihood -189,024  -52,745  -79,239  -53,873  -3,020  

No. of observations 275,344  83,541  118,212  69,107  4,484  

No. of dyads 18,542  5,585  7,940  4,711  306  

  Forward citations as dependent variable 

After death  treated -0.091 ** -0.092 * -0.056  -0.134 * -0.158  

 (0.028)  (0.041)  (0.038)  (0.052)  (0.257)  

After death  treated  0.018  -0.071  0.025  0.067  0.461  

recent dyad (0.044)  (0.075)  (0.061)  (0.084)  (0.396)  

Log pseudo-likelihood -2,791,626  -808,089  -1,149,979  -782,563  -39,999  

No. of observations 275,166  83,526  118,148  69,008  4,484  

No. of dyads 18,527  5,584  7,934  4,703  306  

Tab. F.1: EFFECT HETEROGENEITY BY COLLABORATION RECENCY 

Notes: The overall sample includes 9,297 pairs of treated and control collaborators confined to 

a nine-year window around the (inherited) year of star death. The panel is equally unbalanced  

for treated and control collaborators. Both output measures are co-author adjusted. Forward 

citations are winsorized at the 99.9th percentile. Collaborators without variation in output over 

the observation period are dropped by the estimation routine. Field delineation is based on 

the stars’ publication profile or, if available, derived from the classification of the NAS. Robust 

standard errors are in parentheses, clustered at the level of the star. 

* 𝑝 < 0.05, ** 𝑝 < 0.01, and *** 𝑝 < 0.001. 
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 Overall 

Sample 

Life 

Sciences 

Health 

Sciences 

Physical 

Sciences 

Social 

Sciences 

  Article count as dependent variable 

After death  treated -0.039  -0.057  -0.037  -0.020  -0.150  

 (0.023)  (0.031)  (0.036)  (0.037)  (0.180)  

After death  treated  -0.012  -0.031  -0.019  -0.014  0.261  

multi-year dyad (0.028)  (0.053)  (0.041)  (0.050)  (0.281)  

Log pseudo-likelihood -189,223  -52,752  -79,329  -53,892  -3,020  

No. of observations 275,344  83,541  118,212  69,107  4,484  

No. of dyads 18,542  5,585  7,940  4,711  306  

  Forward citations as dependent variable 

After death  treated -0.076 ** -0.084  -0.069  -0.074  -0.154  

 (0.029)  (0.044)  (0.040)  (0.052)  (0.246)  

After death  treated  -0.015  -0.105  0.069  -0.077  0.422  

multi-year dyad (0.045)  (0.073)  (0.058)  (0.092)  (0.405)  

Log pseudo-likelihood -2,800,185  -808,858  -1,154,909  -784,615  -40,064  

No. of observations 275,166  83,526  118,148  69,008  4,484  

No. of dyads 18,527  5,584  7,934  4,703  306  

Tab. F.2: EFFECT HETEROGENEITY BY COLLABORATION LENGTH 

Notes: The overall sample includes 9,297 pairs of treated and control collaborators confined to 

a nine-year window around the (inherited) year of star death. The panel is equally unbalanced  

for treated and control collaborators. Both output measures are co-author adjusted. Forward 

citations are winsorized at the 99.9th percentile. Collaborators without variation in output over 

the observation period are dropped by the estimation routine. Field delineation is based on 

the stars’ publication profile or, if available, derived from the classification of the NAS. Robust 

standard errors are in parentheses, clustered at the level of the star. 

* 𝑝 < 0.05, ** 𝑝 < 0.01, and *** 𝑝 < 0.001. 
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 Overall 

Sample 

Life 

Sciences 

Health 

Sciences 

Physical 

Sciences 

Social 

Sciences 

  Article count as dependent variable 

After death  treated 0.012  0.015  0.002  0.025  -0.153  

 (0.030)  (0.050)  (0.047)  (0.045)  (0.266)  

After death  treated  -0.042  -0.096 * -0.006  -0.073  0.082  

star-star dyad (0.029)  (0.043)  (0.045)  (0.048)  (0.252)  

After death  treated  -0.090 * -0.063  -0.131 * -0.018  0.230  

US-US dyad (0.037)  (0.053)  (0.056)  (0.062)  (0.297)  

Log pseudo-likelihood -188,769  -52,666  -79,135  -53,830  -2,984  

No. of observations 274,210  83,314  117,559  68,907  4,430  

No. of dyads 18,461  5,569  7,892  4,698  302  

  Forward citations as dependent variable 

After death  treated 0.006  0.057  -0.010  -0.034  -0.122  

 (0.033)  (0.053)  (0.047)  (0.060)  (0.354)  

After death  treated  -0.049  -0.144 * 0.017  -0.076  0.132  

star-star dyad (0.043)  (0.059)  (0.056)  (0.074)  (0.394)  

After death  treated  -0.146 ** -0.173 * -0.130 * -0.049  0.223  

US-US dyad (0.048)  (0.076)  (0.063)  (0.082)  (0.416)  

Log pseudo-likelihood -2,785,534  -804,699  -1,147,343  -782,330  -39,282  

No. of observations 274,032  83,299  117,495  68,808  4,430  

No. of dyads 18,446  5,568  7,886  4,690  302  

Tab. F.3: EFFECT HETEROGENEITY VIA COLLABORATOR STATUS AND US CHANNEL 

Notes: The overall sample includes 9,297 pairs of treated and control collaborators confined to 

a nine-year window around the (inherited) year of star death. The panel is equally unbalanced  

for treated and control collaborators. Both output measures are co-author adjusted. Forward 

citations are winsorized at the 99.9th percentile. Collaborators without variation in output over 

the observation period are dropped by the estimation routine. Field delineation is based on 

the stars’ publication profile or, if available, derived from the classification of the NAS. Robust 

standard errors are in parentheses, clustered at the level of the star. 

* 𝑝 < 0.05, ** 𝑝 < 0.01, and *** 𝑝 < 0.001. 
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 Overall 

Sample 

Life 

Sciences 

Health 

Sciences 

Physical 

Sciences 

Social 

Sciences 

  Article count as dependent variable 

After death  treated -0.003  -0.038  0.000  -0.001  -0.077  

 (0.028)  (0.039)  (0.043)  (0.034)  (0.268)  

After death  treated  -0.058  0.022  -0.030  -0.135 * -0.425  

co-located (0.034)  (0.072)  (0.046)  (0.067)  (0.299)  

After death  treated  -0.084 * -0.083  -0.122 * -0.006  0.263  

US-US dyad (0.037)  (0.054)  (0.054)  (0.064)  (0.308)  

Log pseudo-likelihood -188,780  -52,673  -79,135  -53,832  -2,983  

No. of observations 274,210  83,314  117,559  68,907  4,430  

No. of dyads 18,461  5,569  7,892  4,698  302  

  Forward citations as dependent variable 

After death  treated -0.025  -0.047  0.003  -0.073  0.052  

 (0.032)  (0.046)  (0.045)  (0.051)  (0.336)  

After death  treated  -0.028  0.138  -0.062  -0.131  -0.632  

co-located (0.053)  (0.082)  (0.082)  (0.109)  (0.382)  

After death  treated  -0.137 ** -0.210 ** -0.109  -0.027  0.239  

US-US dyad (0.047)  (0.077)  (0.061)  (0.084)  (0.406)  

Log pseudo-likelihood -2,789,319  -805,419  -1,149,316  -782,330  -39,180  

No. of observations 274,032  83,299  117,495  68,808  4,430  

No. of dyads 18,446  5,568  7,886  4,690  302  

Tab. F.4: EFFECT HETEROGENEITY VIA CO-LOCATION AND US CHANNEL 

Notes: The overall sample includes 9,297 pairs of treated and control collaborators confined to 

a nine-year window around the (inherited) year of star death. The panel is equally unbalanced  

for treated and control collaborators. Both output measures are co-author adjusted. Forward 

citations are winsorized at the 99.9th percentile. Collaborators without variation in output over 

the observation period are dropped by the estimation routine. Field delineation is based on 

the stars’ publication profile or, if available, derived from the classification of the NAS. Robust 

standard errors are in parentheses, clustered at the level of the star. 

* 𝑝 < 0.05, ** 𝑝 < 0.01, and *** 𝑝 < 0.001. 
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 Overall 

Sample 

Life 

Sciences 

Health 

Sciences 

Physical 

Sciences 

Social 

Sciences 

  Article count as dependent variable 

After death  treated 0.004  -0.017  0.015  -0.012  -0.247  

 (0.031)  (0.040)  (0.046)  (0.034)  (0.417)  

After death  treated  -0.038  -0.038  -0.045  -0.008  0.113  

same country (0.043)  (0.092)  (0.063)  (0.071)  (0.479)  

After death  treated  -0.069  -0.058  -0.101  -0.021  0.223  

US-US dyad (0.046)  (0.088)  (0.067)  (0.085)  (0.279)  

Log pseudo-likelihood -188,770  -52,672  -79,120  -53,834  -2,986  

No. of observations 274,210  83,314  117,559  68,907  4,430  

No. of dyads 18,461  5,569  7,892  4,698  302  

  Forward citations as dependent variable 

After death  treated -0.016  -0.060  -0.003  -0.048  0.186  

 (0.038)  (0.058)  (0.054)  (0.054)  (0.510)  

After death  treated  -0.035  0.081  -0.022  -0.135  -0.533  

same country (0.051)  (0.091)  (0.068)  (0.110)  (0.524)  

After death  treated  -0.119 * -0.238 ** -0.099  0.051  0.478  

US-US dyad (0.057)  (0.092)  (0.070)  (0.122)  (0.340)  

Log pseudo-likelihood -2,789,309  -805,386  -1,149,019  -783,525  -39,304  

No. of observations 274,032  83,299  117,495  68,808  4,430  

No. of dyads 18,446  5,568  7,886  4,690  302  

Tab. F.5: EFFECT HETEROGENEITY VIA COUNTRY CHANNEL AND US CHANNEL 

Notes: The overall sample includes 9,297 pairs of treated and control collaborators confined to 

a nine-year window around the (inherited) year of star death. The panel is equally unbalanced  

for treated and control collaborators. Both output measures are co-author adjusted. Forward 

citations are winsorized at the 99.9th percentile. Collaborators without variation in output over 

the observation period are dropped by the estimation routine. Field delineation is based on 

the stars’ publication profile or, if available, derived from the classification of the NAS. Robust 

standard errors are in parentheses, clustered at the level of the star. 

* 𝑝 < 0.05, ** 𝑝 < 0.01, and *** 𝑝 < 0.001. 

  



Collapsing Stars and the Diffusion of Scientific Knowledge 

- 58 - 

 Overall 

Sample 

Life 

Sciences 

Health 

Sciences 

Physical 

Sciences 

Social 

Sciences 

 Article count as dependent variable 

After death  treated -0.029  -0.071 * -0.008  -0.015  -0.105  

 (0.026)  (0.029)  (0.040)  (0.035)  (0.150)  

After death  treated  -0.058  -0.025  -0.098  -0.031  -0.282  

subject distance in 3. tertile (0.038)  (0.075)  (0.054)  (0.067)  (0.523)  

After death  treated  0.013  0.090  -0.043  -0.006  0.597  

topic distance in 3. tertile (0.040)  (0.072)  (0.058)  (0.063)  (0.384)  

Log pseudo-likelihood -183,169  -50,859  -77,644  -51,820  -2,685  

No. of observations 251,756  75,993  109,817  62,350  3,596  

No. of dyads 16,802  5,038  7,311  4,208  245  

  Forward citations as dependent variable 

After death  treated -0.050  -0.125 ** 0.017  -0.070  -0.094  

 (0.035)  (0.043)  (0.048)  (0.052)  (0.211)  

After death  treated  -0.121 * 0.020  -0.161 * -0.204 * -0.353  

subject distance in 3. tertile (0.048)  (0.079)  (0.074)  (0.090)  (0.637)  

After death  treated  -0.010  -0.023  -0.119  0.092  0.865  

topic distance in 3. tertile (0.053)  (0.095)  (0.068)  (0.092)  (0.585)  

Log pseudo-likelihood -2,663,073  -761,129  -1,110,334  -746,954  -32,757  

No. of observations 251,736  75,993  109,797  62,350  3,596  

No. of dyads 16,800  5,038  7,309  4,208  245  

Tab. F.6: EFFECT HETEROGENEITY IN SUBJECT AND TOPIC SPACE 

Notes: The overall sample includes 9,297 pairs of treated and control collaborators confined to 

a nine-year window around the (inherited) year of star death. The panel is equally unbalanced  

for treated and control collaborators. Both output measures are co-author adjusted. Forward 

citations are winsorized at the 99.9th percentile. Collaborators without variation in output over 

the observation period are dropped by the estimation routine. Field delineation is based on 

the stars’ publication profile or, if available, derived from the classification of the NAS. Robust 

standard errors are in parentheses, clustered at the level of the star. 

* 𝑝 < 0.05, ** 𝑝 < 0.01, and *** 𝑝 < 0.001. 
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Overall: Article Count 

 

Overall: Forward Citations 

 

Life: Article Count 

 

Life: Forward Citations 

 

Health: Article Count 
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Physical: Article Count 

 

Physical: Forward Citations 
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Social: Article Count 

 

Social: Forward Citations 

 

Fig. F.1: EFFECT HETEROGENEITY IN SUBJECT SPACE, CONTINUOUS INTERACTION 

Notes: The panels plot the estimated treatment impact over the subject distance range from 

0-0.9. In theory, subject distance can reach values up to 1.41 (square root of 2). In practice, 

however, most distributions are characterised by a thin right tale. The 2.5th, 50th, and 97.5th 

percentiles are marked by dotted lines to provide reference points. Analogous to all former 

estimations, treatment impacts result from a Poisson model and thus require transformation 

to be interpreted as a percentage change (i.e., exponentiating and decreasing by one). Point 

estimates are depicted by solid blue lines and 95% confidence intervals are pictured as light 

blue areas. Any further estimation features and variable definitions are maintained from the 

main model. 
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