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Abstract

We study themechanism behind the decline in the labor share using highly detailed
plant-level data on the cement industry in Japan. Using information on the produc-
tion technology in place at each plant, we find that most of the labor share decline
canbeexplainedbynew technologydiffusion (introductionof “NewSuspensionPre-
heater kiln”). The labor share stays constant, or even slightly increases, over time
within plants of the same technology, whereas the aggregate labor share declines as
production shifts to plants with a new and more capital-intensive technology. We
also find that the information on plant-level technology is key to rejecting other po-
tential hypotheses and thatwewould reach a qualitatively different conclusionwith-
out this information. To show this, we examine, with and without technology infor-
mation, two alternative hypotheses; (i) firms exercisemonopsony power in the labor
market and (ii) the decline in labor share is associated with an increase inmark-ups.
We reject these two hypotheses with technology information butmay not without it.
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1 Introduction

The decline of the labor share is a phenomenon observed globally, and it has attracted
attention fromboth policymakers and researchers. An enormous number of studies has
investigated this issue and proposed explanations for why the labor share has declined
over time, such as factor-biased technical changes (e.g., Karabarbounis and Neiman,
2014;AcemogluandRestrepo, 2020;Autoret al., 2020), globalizationand the riseofChina
(e.g., AbdihandDanninger, 2017; Sun, 2020), increasedexerciseofproductmarketpower
by large firms (e.g., Barkai, 2020;DeLoecker et al., 2020), decliningworker power in labor
relations (e.g., Stansbury and Summers, 2020; Drautzburg et al., 2021), and changes in
the composition of the workforce (e.g., Glover and Short, 2020; Acemoglu and Restrepo,
2020).1

We tackle this issue and propose “technology diffusion” as a main driver of this phe-
nomenon, by taking a distinct and complementary approach to the existing studies: col-
lecting plant-level data on production technologies and directly controlling for technol-
ogy in our analysis. A large fraction of the existing studies take a macroeconomic ap-
proach which quantifies economy-wide effects. To implement an economy-wide anal-
ysis, the most detailed data available to researchers would be plant-level census data.
However, with these data, researchers may still face the well-known difficulty of mea-
suring technical change. As precise information on production technology is typically
unobserved in the data, researchers need to infer the state of technological progress in-
directly from auxiliary data.2 Weovercome this difficulty by using exact plant-level tech-
nology information, including the timing of new technology adoption.

We focus on a specific industry in order to take our approach because there are no
such data that cover all industries. As documented in Kehrig and Vincent (2021), the de-
cline of the labor share is driven by within-industry effects. Therefore, we believe that
unraveling themechanism of the phenomena in a specific industry would help us draw

1See Grossman and Oberfield (2021) for more detailed summary of the literature.
2For example, Acemoglu and Restrepo (2020) constructs an industry-level exposure to robots and

Aghion et al. (2020) uses the balance sheet values of industrial equipment and plant-level records of the
usage of electro-motive force to proxy the degree of automation.
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macroeconomic implications. For thispurpose, thecement industryprovidesusan ideal
environment because plant-level technology, the type of kilns, is easily observed, as well
as the diffusion of different generations of kilns, specifically from Suspension Preheater
(SP) Kiln to New Suspension Preheater (NSP) Kiln. To ensure the generalizability of our
analysis, we first confirm that we can replicate the patterns observed in existing stud-
ies: the decline of the labor share, an increased discrepancy between labor productivity
growth and wage growth, and an increase in industry-widemarkups paired with the de-
cline of the labor share.

In the analysis, we find that technology diffusion explainsmost of the important pat-
terns in thedata; the industry-level labor sharedeclinesover time. However, the industry-
level decline of the labor share is largely explained by the diffusion of a new and more
capital-intensive technology. Within the plants with the same old technology, the labor
share is slightly increasing. Consistentwith thefindings inKehrig andVincent (2021), we
alsofind that the low labor shareplantsbenefit fromhigh laborproductivity, not fromlow
wages. Theseobservations suggest that thenew technology ismore capital intensive and
suggests a different shape of the production function rather than a simple increase in to-
tal factor productivity (TFP).We confirm thatwhenwe estimate the production function
for each technology, we find that the new technology is indeedmore capital intensive.

Also, we find that our conclusion would be qualitatively different if we lacked data
on production technology, which highlights the importance of our approach. We find
that without considering the differences in production technology (i) the growth rate of
the marginal productivity of labor (MPL) and wage becomes increasingly disconnected
and (ii) the labor share decline is pairedwith an increase in themarkup. The former pat-
tern iswell documented in the literature (for example in Stansbury and Summers (2018))
and researchers andpolicymakers have beendebatingwhether it is a technology-driven
phenomenon or caused by some other factors, such as decreasedworker power. We find
that this seemingly disconnected relationship is a result of production technology het-
erogeneity, and thediscrepancyvanishesoncewecontrol forplant-level technology. The
second finding has attracted attention recently and has been documented in existing
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studies, such asDeLoecker et al. (2020) andAutor et al. (2020). Wefind that a similar pat-
tern exists when the technology information is missing. We theoretically demonstrate
that the decline of the labor share and the increase in the industry-levelmarkup happen
simultaneously when production shifts fromplants with relatively input-intensive tech-
nology to plants with relatively capital-intensive technology. To confirm this prediction,
we control for the plant-level technology in our analysis and show that a large part of the
negative correlation between labor share andmark-ups disappears.

In order to confirm that technology diffusion explains our findings, we employ an
event studydesignusingobservedvariation in the timingof technologyadoption. Specif-
ically, we useDifference-in-Differenceswith leads and lags of the treatment variable. We
first examine how the labor share and employment respond to technology adoption and
we find that they both start to fall at the time of adoption, which confirms that the diffu-
sionofnewtechnologydrives thephenomena. Wedonotfindany statistically significant
pre-trend in the variables, suggesting that our research design is valid to make a causal
inference.

This paper is organized as follows. Section 2 describes the industry and provides the
historical background of the Japanese cement industry as well as the data used in our
empirical analysis. We propose technology diffusion as an explanation for the decline in
the labor share in Section 3 togetherwith alternative hypotheses. We further confirmour
hypothesis using a event study design in Section 4. Section 5 concludes.

2 Industry Backgrounds and Data

In this paper, we focus on a specific industry, namely the Japanese cement Industry.
Though the majority of the studies in the literature take a “macroeconomics” approach
which uses census data to quantify economy-wide effects, production technology is still
unobserved in such census data. To complement these studies, we therefore take a dis-
tinct approach—focusing on one specific industry, the cement industry, and collecting
production technology information thatwe typically cannotobserve in thestandardcen-
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sus data. Althoughonemightworry about generalizability, webelieve that accumulating
micro-level hard evidence helps us understandmacroeconomic phenomena. Moreover,
in addition to the observability of production technology, there are twomore advantages
for studying the cement industry: (i) homogeneity of the product, which enables us to
estimate markups accurately, and (ii) a simple production process, which enables us to
estimate productivity easily through production function estimation. In the following
subsections, we first describe the industry backgrounds and two data sources that we
use in this paper. We then show some key statistics.

2.1 Industry Backgrounds: Cement and Its Production Technology

Cement is one of themost important ingredients for constructionwork, as concrete and
mortar aremade from cement. There are several types of cement. For example, Portland
cement, the focusof thispaper, is themost common typeof cement, accounted for about
75% of cement product, according to Japan Cement Association. Though there are sev-
eral different types of cement, each of them is standardized by the Japanese Industrial
Standards and thus can be treated as homogeneous product.

To produce cement, crushed limestone, clay and other minerals are mixed and put
into a kiln to be heated. This process yields clinker, which is an intermediate cement
product. The final procedure of mixing ground clinker with gypsum produces cement.
Cement kilns are the heart of this simple productionprocess, and it is important for us to
understand some technological aspects of cement kilns in Japan. Even though there are
several types of kilns, we can roughly categorize them into two types: dry process kilns
andwetprocess kilns.3 Dryprocess kilnsweredeveloped in the late 19thcentury, andwet
process kilnsbecamedominant in subsequentperiods. In the1960s, the suspensionpre-
heater (SP) process, part of the dry process, was imported fromGermany and, due to its
high energy efficiency, SP kilns gained in popularity and took a dominant position. Most
of the newly built kilns in the 1960s were SP kilns and, in the 1970s, continuing improve-
ments were made by Japanese companies, and new suspension preheater (hereinafter

3More precisely, there are also semi-dry and semi-wet process kilns. See Shimoda (2016).

5



NSP) kilns were developed. In our data, after 1970, almost all newly built kilns were NSP
kilns, and this homogeneity of investment simplifies our analysis.

2.2 Data Sources

For this study, we combine two complementary plant-level data: (i) Cement Yearbook
(Cement Nenkan), published by the Cement Press Co. Ltd. (Cement Shinbunsha), and
(ii) Census of Manufacture, collected by the Japanese Ministry of Economy, Trade and
Industry. The yearbookmainly provides plant-level information onmonthly production
capacity (in ton), production output (in ton), number ofworkers, and ownership and ge-
ographical location of the plants. In addition to these basic characteristics of the plants,
thedata also contain the types and thenumberof kilns that eachplantowns,whichmake
this data special. Although technology each plant employs is typically unobserved, this
Yearbook data provides such kiln-level information.

On the other hand, Census of Manufacture provides similar but slightly different in-
formation on the plants, i.e., the total shipment value (in JPY), material inputs (in JPY),
number of employees, total wage (in JPY), investment (in JPY), and asset values (in JPY).
Note that the sample periods for these two data sources are slightly different. We obtain
the former data from 1970 to 2011, whereas we obtain the latter data from 1980 to 2011,
because the data from1970 to 1979 for the latter data are unavailable. We combine these
two data sources via location and plant name information, as most of plants are located
in a different city with very few exceptions.

2.3 Summary Statistics and Key Features

Summary statistics of our data are given in Table 1; Panel (a) presents a couple of year-
level statistics, whereas Panel (b) presents plant-level statistics. In Panel (a), there are
three variables: the number of plants observed in each year, the fraction of NSP kilns in
each year, and the average cement prices. The number of plants observed in each year
ranges from 30 to 54. There were initially 54 plants in 1970, whereas there were only 30
plants remain in 2011, implying that about a half of them exits from themarket over the
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Table 1: Summary Statistics
Num. of Obs. Mean Std. Dev. Min Max

Panel (a): Year-Level Statistics
Observation Year 42 – – 1970 2011
# of Plants 42 42 7 30 54
Fraction of NSP Kilns (%) 42 62% 28% 0% 94%
Average Cement Price (JPY/t) 39 11,014 2,087 8,705 16,536

Panel (b): Plant-Level Statistics
Monthly Capacity (tons) 1,748 188,716 124,935 18,180 69,6250
Annual Clinker Production (tons) 1,748 1,740,715 1,294,285 13,250 8,082,269
# of Workers (person) 1,673 193 140 16 1,303
AverageWage 1,673 3.77 1.50 1.27 23.84

Note: The number of observation for the average cement price is 39 because the price information is
missing for 1970 to 1972. Monthly capacity, whereas clinker production is annualized.

sample period.
The fraction of NSP kilns in each year, listed in the second row, also varies, ranging

from 0% to 94%. There were no NSP kilns in Japan in 1970, whereas the old kilns were
mostly replaced toNSP kilns over 40 years, reaching to 94%. To further see the change in
cement production technology, Figure 1 graphically shows the absolute number of kilns
and share, depending on technology, i.e., types of kilns, over time. In 1970, the initial
year of our sample period, there were about 220 kilns, though themajority of themwere
old types and SP kilns accounted less than 20%. Note, again, that there were no NSP
kilns in 1970. During the 70s, however, NSP kilns dramatically increased its popularity,
maintaining its dominant position after 1980s. In ourmain analysis, we explore the labor
share with and without controlling for this technology information.

The average cement prices, listed in the third row in Panel (a) of Table 1 also varies
across years, though the change is notmonotonic unlike aforementioned two variables.
To see the change in the average cement price, we plot the prices together with the total
production quantity in Figure 2. Basically, there are three phases in the pricemovement.
From 1970 to 1980, due to the two oil crises, the cement prices increased dramatically.
From1980 to 2000, the prices decreased shapely, even lower than the level of 1970. How-
ever, since 2000, the price mildly increased. The total quantity moved parallel with the
prices from 1970 to 1990, whereas it has moved counter-cyclically since 1990.

Through the second to fourth rows of Panel (b), we show the summary statistics for
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Figure 1: Diffusion of Technology

monthly capacity defined as howmuch clinker a plant can produce when operating for
600 hours permonth, the number of workers, and average wage. One important pattern
to note is that we see a dramatic decrease in the number of workers. To make this point
clear, Figure 3 plots the plant-level number of employees over time together with linear
fitted values. Though we observe substantial heterogeneity in plant-size, all plants de-
crease the number of workers over time. For example, in 1970, the average number of
workers was about 320, but in 1995 this had fallen to 150 which is a half of the number
in 1970. This change indicates that there was substantial technological advancement in
the form of automation and, consequently, labor productivity increased sharply.

3 Decline of Labor Share and Existing Hypotheses

In this section, wefirst present thepatterns in the data that the existing studies have doc-
umented. Then, we summarize the existing explanation/hypotheses onwhywe observe
the decline of labor share and examine whether we can reject some of the hypotheses
with and without the information on plant-level technology.
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Figure 2: Industry Evolution over Time

Note: This figure plots the annual average price of cement and the annual total produc-
tion quantity of Clinker. The cement price is converted to the real price level in 2000
using GDP deflator.

3.1 The Decline of Labor Share

We first plot the industry-level labor share. Since the Census data is available only af-
ter 1980, we are not able to compute the value added in the earlier years. Therefore,
we define the labor share by the total wage payment divided by the monetary value of
total output. Figure 4 plots the actual data and local polynomial-smoothed version of
industry-level labor share. The industry-level labor share falls sharply during the period
when the new technology diffuses.

At the firm-level, the output shifts from high-labor share plants to low-labor share
plants. Figure 5 plots the histogram of the share of output on the vertical axis and the
plant-level labor share on the horizontal axis in different years. From 1975 to 2005, the
distribution shits from the right to the left, which implies that the production shifts to
plants with high labor share to plants with low labor share.
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Figure 3: Number of Workers per Plant over Time

Note: This figure plots the plant-level number of employees over time together with a
linear fitted value.

3.2 The Existing Hypotheses

In this section, we present the existing hypotheses and demonstrate how our new ap-
proach help us distinguish/reject them.

Technology Change

The virtue of our approach is that we observe the exact technology used at the plants. To
quantify howmuch the diffusion of new technology contributes, we replicate the analy-
sis in Figure 4 conditional on the plant-level technology. In Figure 6, we plots the average
labor sharewithin theplantswithnew technology,within theplantswith old technology,
and the industry-level labor share. Interestingly, the labor share does not fall within the
same technology plants as the dashed line and dotted lines stay relatively flat. However,
the industry-level labor share, the solid line, falls rapidly as new technology diffuses be-
cause the new technology plants have lower level of labor share. Figure 6 clearly shows
that the decline of labor share is caused by the new technology diffusion.

To assess the argumentmore quantitatively, we estimate the following equations us-
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Figure 4: Industry-level Labor Share

ing the plant level labor share by Ordinary Least Squares (OLS);

LaborShareit = β0 + β1t+Xitγ + εit,

where i is a plant index, t denotes year,Xit is other plant-level control variables, βs and γ
are the parameters to be estimated, and εit is an independent error term. Here, we are in-
terested in the estimated coefficient on t. We expect that β1would be estimated negative
when we do not control for the plant-level technology because the industry-level labor
share declines over time. In contrast, we would expect that β1 would be estimated near
zero or positive when we control for the plant-level technology. Table 2 summarizes the
estimation results and confirms our expectation. The first column presents the results
without controls for technology, and the coefficient on year is estimated negative and
statistically significant. In the second column, once we control for the technology, the
significancedisappears. Whenwe further control for theplantfixedeffects, theestimates
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Figure 5: Plant-level Production Share and Labor Share

1975 1985

1995 2005

becomes positive and statistically significant. These results are consistent with Figure 6.
To quantify the economic significance of the results in the third column, we replace the
left hand side variable by the logarithm of labor share, which allows us to quantify the
percentage change easily. The result is presented in the fourth column, suggesting that
the labor share increases at the plant level by 0.7% every year. Themagnitude is not very
large but not small either.

Thedeclineof labor share is verydifficult to rationalize if thenewtechnology is simply
an increase in TFP. Rather, it is natural to assume that the shape of production function
changes as plants adopt new technology and the new technology is more capital inten-
sive. A natural starting point to address this issue is to estimate production functions for
both new and old technology separately. Here, we assume that the production function
is Cobb-Douglas form;

PYit = AitK
α
itL

β
it,

wherePYit is themonetary value of the output,Ait is the TFP,Kit is the physical capacity,
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Figure 6: Labor Share Conditional on the Plant-level Technology

Lit is the total wage payment, and α and β are the parameters to be estimated. Table
3 summarizes the estimation results. As we expect, the new technology is more capital
intensive. Therefore, profit maximizing plants would need less labor, which results in
the lower level of labor share. When more plants adopt new technology, as a result, the
industry-level labor share falls.

Growing Dispersion between Labor Productivity andWage

As documented in Stansbury and Summers (2018), several studies find that the growth
rate of wage and the growth rate of labor productivity and/or marginal productivity of
labor has been increasingly disconnected. The literature proposes a technology-driven
explanation and an explanation related to the worker power such as monopsony power
of employers and decreased bargaining power of workers.

Our finding is consistent with the technology-driven explanation and does not sup-
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Table 2: Time Trend of Labor Share

(1) (2) (3) (4)
LS LS LS LogLS

Year -0.365×10−3 ∗∗∗ -4.36×10−5 0.243×10−3 ∗∗∗ 0.007∗∗∗
(0.0854×10−3) (0.0872) (0.0730×10−3) (0.001)

A dummy variable -0.0291∗∗∗ -0.0278∗∗∗ -0.390∗∗∗
for new technology (0.00243) (0.00302) (0.0352)

Plant fixed effects No No Yes Yes

Constant Yes Yes Yes Yes
N 1513 1513 1513 1513
Standard errors in parentheses
Other Controls includes a constant term.
* (p < 0.10), ** (p < 0.05), *** (p < 0.01)

Table 3: Production Function Estimates via Olley and Pakes (1996)

Pooling Separately
Both Tech Old Tech New Tech

α (K) 0.438 0.278 0.639
(0.034) (0.075) (0.034)

β (L) 0.162 0.200 0.140
(0.019) (0.056) (0.021)

N 1,408 229 1,179
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port monopsony power or decreased bargaining power. Figure 7 provides direct evi-
dence to support our claim. The left Panel of Figure 7 plots plant-level labor produc-
tivity (defined as total output value divided by the total wage payment) on vertical axis
and plant-level labor share on horizontal axis together with a nonparametric fitted line.
Thereexists aclearandnegative relationshipbetween laborproductivityand labor share,
suggesting that the low-labor share plants benefit from higher labor productivity. The
right Panel of Figure 7 plots plant-level average wage on vertical axis and plant-level la-
bor share on horizontal axis together with a nonparametric fitted line. In contrast to the
left Panel, the fitted line aremostly flat and there are no clear relationship between these
twovariables. The“no-relationship” indicates that the low-labor shareplantsdonot sup-
press wages of their employees. Both Panels together, the data do not support the view
that the decline of labor share is caused by suppressed wage due to monopsony power
or decreased bargaining power of employees.

Figure 7: Plant-level Labor Share, Labor Productivity and AverageWage

Labor Productivity Wage

The analysis above is largely based on the simplemeasure of labor productivity. The-
oretically, wage equals tomarginal productivity of labor(MPL) in a competitive environ-
ment. To further assess whether wage andMPL has become increasingly disconnected,
we estimate the production function and quantify the evolution of MPL over time. For-
mally, we consider the following production function;

Yit = AitK
α
itL

β
it, (1)
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where Yit is the physical unit of the output, Ait is the TFP,Kit is the physical capacity, Lit
is the total number of employees, and α and β are the parameters to be estimated. The
profit maximizing plant solve the following problem;

max
Lit

PtYit −WtLit,

where we assume the labor input is the only variable input. The FOC of the problem
induces

Wt = β
PtYit
Lit

.

When we estimate Equation (1), we use the control function approach as in Olley and
Pakes (1996).

Figure 8 plots the average realwage andMPL.Ononehand, In Panel (a), weplot them
using all the data pooled and not controlling for the technology at each plant. As is clear
from the plot, the growth rate of the average wage and MPL becomes apart during the
periodwhennewtechnologydiffuses in the industry. Ina typicaldatasetwherewedonot
observe the exact technology,wewould reach to the sameobservation as in the literature
and find the dispersion between wage andMPL.

On the other hand, Panel (b) and Panel (c) plots the same variables but the produc-
tion function is estimated using plantswith the same technology. The plotswell contrast
that of Panel (a); After controlling for the plant-level technology, the wage growth and
MPL growth aligns much closer. When production shifts from plants with labor inten-
sive plants to plants with capital intensive plants, if we do not control for the technology
of the plants, the growth of MPL is overestimated, which leads to the seemingly discon-
nected relationship. In contrast, in Panel (b) andPanel (c), there are still somedispersion
between the two variables, but these two variables grow together with similar rate over-
all. These results highlights the importance of controlling for the technology to draw
implication from data and the usefulness of our complementary approach.
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Figure 8: Growth of Real Wage andMPL

(a) with Pooled Data (b) with Technology Controlled

The increase inMark-up

There is growing interest in how concentration affects the macroeconomic conditions.
In our context, there are a number of studies that document the increase in mark-up is
paired with the decline of labor share. We follow the method proposed De Loecker and
Warzynski (2012) and De Loecker et al. (2020). Regarding the methodology, a few stud-
ies (e.g., Raval, 2020; Doraszelski and Jaumandreu, 2019) question whether themark-up
implied from cost minimization well captures the actual product-level markups. Inde-
pendent of these studies, we find another potential factor that may bias the estimated
markup; whenproduction function is heterogeneouswithin the industry andwhenpro-
duction is concentratedatplantswithmorecapital intensiveproduction function, industry-
level mark-up would be overestimated.

Given this potential concern, we examine how the estimated mark-up change over
timewith andwithout controlling for the plant-level technology. Here, again, we assume
a Cobb-Douglas production function as

Yit = AitK
αt
it L

βt
it , (2)

where we allow the shape of production function to change over time as in De Loecker
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et al. (2020). The corresponding cost minimization problem is

min
K,L

rtKit + wtLit subject to Yit ≥ Q

and the impliedmark-up is
Mark-upit = βt

PtYit
WtLit

.

Figure 9 plots the industry-level mark-up with and without controlling for the plant-
level technology. When we do not control for the technology, the mark-up seemingly
increases during the period when the new technology diffuses and productions shift to
plants with new technology. In contrast, the estimatedmark-up after controlling for the
plant-level technology does not vary as much over time. These contrasting plots, again,
highlight that availability of information on technology changes the result and its impli-
cation qualitatively.

Figure 9: Markups and Labor Share
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4 Event Study Design

In this Section, we further zoom into the plant-level changes in variables to confirm that
our findings in the previous sections are driven by the technology diffusion. To this end,
we take advantage of richness of our data, i.e., we can observe the timing of new technol-
ogy adoption. Using the variation in the timing of technology adoption, we employ an
event study design, i.e., difference-in-differences with leads and lags of treatment vari-
able. Formally, we estimate the following regression estimation:

yjt =
τmax∑

τ=τmin

1[t = t∗j + τ ]βτ + ξj + ξt + εjt, (3)

where j is an index for plant, t is an index for year, t∗j is the year plant j adopt the new
technology, ξj is a plant fixed effect, ξt is a year fixed effect, and εjt is an independent error
term. Estimating a event study design is often called as Two-Way Fixed Effect (TWFE) es-
timator. For the estimator to havemeaningful interpretation, the treatment effect needs
tobehomogeneousacrossdifferentcohortbasedon the treatment timing. SeeGoodman-
Bacon (2021) for more detailed discussion.

Here, our data structure is a typical situation of “staggered treatment timing.” One
difficulty we have in our data structure is that we do not observe the timing of new tech-
nology adoption for plants that already have the new technology at the beginning of our
sample period. To avoid potential bias caused by this missing data issue, we drop plants
that already adopt the new technology at the beginning of our data period. Also, to bal-
ance pre-treatment period, we drop observation more than τmin years before the treat-
ment.

First, Figure 10 plots the evolution of plant-level labor share relative to the timing of
new technology adoption. The estimated coefficient for the year before the adoption is
normalized to be zero. The labor share starts to decline after the technology adoption.
However, the decline is not immediate. Rather, it takes several years.

To decompose the effects into the changes in the employment and wages, we now
look at the change in employment. To this end, Figure 11 plots the evolution of plant-
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Figure 10: Evolution of Labor Share

level employment relative to the timing of new technology adoption. In contrast to the
labor share, the employment decreases immediately in the year of adoption, implying
that the decline in the labor share ismainly driven by the change in the number of work-
ers.

Finally, Figure 12 plots the evolution of plant-level capital labor ratio relative to the
timing of new technology adoption. As we see in the production function estimation
results, the new technology is more capital intensive. Therefore, we expect the capital
labor ratio to increase as plants adopt new technology. As we expect, right after the in-
stallationofNSPkilns, the capital labor ratio jumpsupbyabout10%and increases slowly
afterwards.

5 Conclusion

We study the mechanism that causes the decline of labor share by investigating unusu-
ally detailed plant-level data in the cement industry in Japan. Using the exact informa-
tion on the plant-level technology, wefind thatmost of the labor share decline canbe ex-
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Figure 11: Evolution of Number of Workers

Figure 12: Evolution of Capital-Labor Ratio
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plained by the new technology diffusion: the labor share stays constant or even slightly
increasesovertimewithin the same technologyplants,whereas theaggregate labor share
declines because the production shifts to plants with new and more capital intensive
technology. We also find that the information on the plant-level technology is a key to
reject other potential hypotheses and we would reach a qualitatively different conclu-
sion without the information.
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