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Abstract

We study optimal capital taxation in a model with financial frictions, where the

distribution of wealth across entrepreneurs of different productivity levels affects how

efficiently capital is used in the economy. The planner chooses linear taxes on wealth,

capital and labor income to maximize the steady state utility of a newborn agent. Most

agents in the model are workers who are relatively poor, leading to a redistributive

motive for capital income and wealth taxation. In our setting, optimal tax rates can

be written as a closed-form function of the size of the tax bases of taxes and the

elasticities of the tax base with respect to tax rates. We find that it is optimal to tax

capital income at a positive rate, because general equilibrium effects on the distribution

of capital across entrepreneurs attenuate the negative effects of these taxes on output.

Optimal wealth taxes are close to zero, since such taxes strongly discourage capital

accumulation. The tighter financial frictions are, the lower the optimal tax rate on

capital income, as the planner lowers this tax in order to counteract the negative

effects of financial frictions on the level and allocation of the capital stock.

1 Introduction

This paper studies optimal redistributive capital taxation in a model where taxation affects

how efficiently capital is allocated in the economy. The vast literature on optimal capital
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taxation in general equilibrium has typically analyzed models in which all physical capital is

the same and the principal deadweight loss associated with capital taxation is its negative

effect on aggregate saving. However, critics of high rates of capital taxation have long

expressed concerns that it has harmful effects not only on the total level of investment in

the economy, but also on the allocation of investment. For instance, Hayek (1960, chap. 20)

argues that the taxation of profits hinders the accumulation of wealth by entrepreneurs who

manage “successful new ventures”, preventing these entrepreneurs from investing further.

As such, he argues that “the taxation of... profits, at [high] rates, amounts to a heavy

tax on that turnover of capital [between entrepreneurs] which is part of the driving force

of a progressive society.” Relatedly, it is often argued that taxation may affect incentives

for entrepreneurs to take risks, implying that taxation may affect the allocation of capital

between more and less risky uses.1

We analyze optimal linear capital taxation in a model which incorporates these issues.

In the model, there are overlapping generations of two types of households: workers and

entrepreneurs. Newborn households decide whether to become workers or entrepreneurs,

and retain the same job for their entire life. A utilitarian planner sets tax rates to maxi-

mize expected utility of newborn households in the steady state and has some motivation

to tax capital to redistribute from rich entrepreneurs to the poor workers. In the model,

entrepreneurs choose how much capital to allocate to a risky technology and how much to

allocate to a risk-free technology. Furthermore, entrepreneurs are heterogeneous in their

productivity levels and lend to one another through financial markets, but these markets are

frictional due to an asymmetric information problem which we model explicitly. In partic-

ular, it is assumed that financial contracts must be written to encourage entrepreneurs to

truthfully report the value of their idiosyncratic shocks to productivity, rather than to lie

and divert funds to themselves (in a similar vein to e.g. Bernanke, Gertler and Gilchrist,

1999). The effect of the financial friction is that entrepreneurs are limited in their ability

to borrow and are unable to fully diversify idiosyncratic risks. This discourages them from

allocating capital to the risky technology, which consequently has a higher expected return

than the risk-free technology in equilibrium.

Together, these modeling assumptions imply that taxes on capital affect how efficiently

capital is allocated in the economy. Taxes affect how much capital entrepreneurs allocate to

the risky and risk-free technologies. Furthermore, the financial friction limits entrepreneurs’

abilities to borrow, implying that the amount of capital used by an entrepreneur is tied to

her individual wealth. Since taxes affect the distribution of wealth, they therefore affect how

far capital is allocated to high productivity and low productivity entrepreneurs.

In our model, the planner chooses linear tax rates on capital income, wealth and labor

1See Cullen and Gordon (2007) and Devereux (2009) and the citations therein.
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income. Capital income taxes (i.e. taxes on the return to capital) are not equivalent to

wealth taxes (i.e. taxes on the stock of capital) in our setting, unlike in traditional models.

This is because entrepreneurs with different productivity levels differ in their rates of return

to capital. As such, our model speaks to recent debates about whether wealth should be

taxed in addition to capital income (e.g. Saez and Zucman, 2019, Smith, Zidar and Zwick,

2020). Our model is highly tractable and we can characterize the steady state values of

aggregate variables as closed form functions of prices, taxes and parameters.

We study comparative statics of the model in partial and general equilibrium. In par-

tial equilibrium, for given prices, parameters and level of aggregate capital stock, we show

that the degree to which capital is allocated to the high return risky technology is strictly

decreasing in the rate of tax on capital income. As such, an increase in this tax leads to

lower output for a given stock of capital and labor. Higher capital income taxes lead to a

more inefficient allocation of capital because these taxes fall most heavily on entrepreneurs

who have a high rate of return to capital. As such, capital income taxes tend to reduce

the share of wealth of high productivity entrepreneurs, which also shifts the allocation of

productive capital away from these entrepreneurs (due to financial frictions).2 Additionally,

higher taxes on capital income reduce the post-tax excess return to the risky technology, and

so encourage entrepreneurs to shift capital towards the lower return risk-free technology. As

such, capital income taxes shift capital away from high productivity entrepreneurs, and away

from the high return risky technology, and so lead to a more inefficient allocation of capital

in the steady state.

In general equilibrium, however, we find that this effect is substantially weakened. This

is because, while an increase in capital income taxes leads to a reallocation of capital away

from the high return risky technology, this reallocation in turn increases the pre-tax rate of

return to the risky technology, which benefits the most high productivity entrepreneurs and

induces them to allocate capital to the risky technology. Thus, the general equilibrium effect

substantially mitigates the partial equilibrium effect.

Furthermore, we find that the steady state capital stock is typically lower when taxes on

capital income and wealth are higher. This is primarily a consequence of the usual mechanism

that taxes on capital discourage saving and capital accumulation. However, for capital

income taxes, there are two additional effects on capital accumulation. First, higher taxes

reduce the efficiency of capital allocation, as mentioned above, which reduces the average

return to capital and discourages capital accumulation. Second, higher capital income taxes

discourage newborn households from becoming entrepreneurs. Since entrepreneurs have

decreasing returns to scale in our model, this reduces the rate of return to capital and also

discourages capital accumulation. In general equilibrium, the effect of capital income taxes

2These effects are also operative in Guvenen et al. (2019).
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on total capital accumulation is typically more moderate than the effect of wealth taxes,

because the reallocative effects of capital income taxes increase the pre-tax return to the

risky technology.

We show that optimal tax rates in the model can be written as a closed form function

of the size of the tax base for the various taxes, the degree to which each tax is born by

workers and entrepreneurs, and the elasticity of the tax bases with respect to each tax. This

result is in the same vein as the literature on the “sufficient statistics” approach to optimal

taxation (e.g. Piketty and Saez, 2013). Our optimal tax formula does not itself depend on

many details of the model, such as functional form assumptions, or the specific details of

the financial friction. However, our specific modelling assumptions allow us to determine the

value of the elasticities of the tax bases with respect to tax rates.

We calibrate the model and study how optimal taxes depend on the degree of financial

frictions. We find that, regardless of the severity of financial frictions, the optimal capital

income tax is positive (albeit less than the optimal labor income tax) and the optimal wealth

tax is negative but close to zero. In our benchmark calibration, the optimal capital income

tax is 11.14% , the optimal labor income tax is 20.7%, and the optimal wealth tax is -0.44%.

Optimal capital income taxes are positive, in contrast to well-known earlier results in the

literature (Chamley, 1986; Judd, 1985), because of the general equilibrium effects of capital

income taxes on the allocation of capital. Since capital income taxes increase the relative

return of the risky technology, this substantially mitigates the negative effects of these taxes

on capital accumulation, leading to a positive optimal capital income tax. Nevertheless, the

planner optimally sets a slightly negative tax on wealth in order to counteract the negative

effects of capital income tax on capital accumulation. Since the capital stock is very elastic

with respect to wealth taxes, a slightly negative wealth tax significantly increases capital

accumulation while costing little tax revenue.

We find that our allowing for endogenous entry into entrepreneurship tends to reduce

the optimal capital income tax. If we shut down this channel by making the percentage of

entrepreneurs exogenous, the optimal tax on capital income rises to 57.1%. Such high capital

income taxes, however, make becoming an entrepreneur relatively undesirable. As such, with

endogenous entry into entrepreneurship, the optimal tax on capital income is reduced (to

11.14%) as higher taxes would reduce the number of entrepreneurs and therefore output and

capital accumulation.

Our results suggest that, in a setting with endogenous entry and financial frictions,

optimal tax rates on capital income, wealth and labor income may not be so far from current

practice in the United States, where wealth taxes are zero and labor and capital income

tax rates are similar. We find that it is optimal to tax wealth at a rate close to zero

and to tax capital income at a positive rate, albeit lower than the labor income tax rate.
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Our model is quite general in a number of respects, which argues for the relevance of our

results. In particular, our optimal tax formulae hold under weak assumptions about the

production function, utility functions and the details of the financial frictions entrepreneurs

face. Nevertheless, to maintain analytical tractability and simplicity of exposition, our model

is restrictive on a number of important dimensions. We abstract away from many complex

details of national tax codes and restrict attention to linear tax rates. We assume that

workers do not vary in their ability levels and do not choose their labor effort, and we do not

consider bequests, aging or transition dynamics. Finally, we do not consider the possibility

of entrepreneurs declaring income as either capital or labor income in order to reduce tax

liability. Relaxing these assumptions is left to future work. While these many considerations

will doubtlessly affect the value of optimal taxes, the channels through which taxes affect

the allocation of capital in this paper will presumably continue to operate.

The remainder of this paper is structured as follows. The next subsection reviews the

recent related literature. Section 2 outlines the model assumptions. Section 3 derives prop-

erties of the model equilibrium and steady state and shows how the steady state is affected

by tax rates. Section 4 derives formulae for the optimal tax rates and shows the values of

optimal taxes in the numerical calibration. Section 5 concludes.

Related literature. This paper studies optimal taxation in an environment in which

output depends on the allocation of capital across heterogeneous entrepreneurs, which is af-

fected by taxation. In that sense, our paper is related to the work of Evans (2015), Shourideh

(2014), Itskhoki and Moll (2019), Guvenen et al. (2019), Boar and Midrigan (2020), Basseto

and Cui (2020). We differ from these papers by allowing for a wider range of tax instruments

and studying the distinct effects of wealth and capital income taxes on the allocation of cap-

ital, by characterizing optimal taxes in closed form depending on “sufficient statistics” that

not only enable us to carefully inspect the equity-efficiency tradeoff theoretically but also

to provide a bridge between theory and empirics, and/or by micro-founding the financial

friction thus allowing for changes in taxes to lead to changes in the tightness of financial

frictions. Our numerical results for optimal taxes are closer to Boar and Midrigan (2020)

than to Guvenen et al. (2019), in that we find that the optimal capital income tax rate is

positive and the optimal wealth tax is approximately zero, whereas Guvenen et al. (2019)

find large efficiency gains from shifting to wealth taxation due to reduced misallocation.

Our roughly zero optimal wealth tax arises because the output losses from misallocation are

relatively small in our model (consistent with results in a several related models, such as

Midrigan and Xu (2014)) and so the potential efficiency gains from wealth taxation through

this channel are also small.

Our paper is also related to the work that studies the effects of changing taxes numerically

in models with entrepreneurs with heterogeneous productivity levels. Examples are Cagetti
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and De Nardi (2009), Kitao (2008), Rotberg and Steinberg (2019) who study the effect

of changing estate, capital income and wealth taxes in related settings. We differ from

this literature in several ways. First, our model is analytically tractable and we focus on

analytical rather than numerical results, with the aim of making the intuition behind the key

mechanisms as transparent as possible and exploring the effects of a wider range of tax policy

changes. Second, our financial friction arises endogenously as a consequence of asymmetric

information between entrepreneurs and financial intermediaries and, as such, our results

highlight that the degree to which financial markets are frictional may itself be affected by

changes in taxes and that this is of importance when considering optimal taxation.

Our paper also relates to Panousi and Reis (2014), Panousi and Reis (2019) and Phelan

(2019), who study optimal taxation in the presence of idiosyncratic investment risk. In these

papers, unlike our setting, entrepreneurs do not differ in their expected productivity levels

and there is only one production technology, so the allocation of capital does not itself affect

aggregate output.

Lastly, our paper contributes to the wider literature on optimal capital taxation, which

generally focuses on the effect of capital taxation on aggregate capital accumulation, as

in the work of Chamley (1986), Judd (1985), Straub and Werning (2014), Benhabib and

Szőke (2019), Chen, Chen and Yang (2019), among others.3 Related to our paper, Abo-Zaid

(2014), Biljanovska (2019) and Biljanovska and Vardoulakis (2019) have explored how the

results in this line of work are affected in settings with reduced-form financial frictions while

maintaining the assumptions of Chamely and Judd that capital is homogeneous and there

is no idiosyncratic risk.

The rest of the paper is organized as follows. Section 2 outlines the assumptions of the

model. Section 3 discusses properties of the equilibrium of this model. Section 4 presents the

planner‘’s optimization problem and the optimal tax policy that results. Section 5 concludes.

2 Model

In this section we describe our model economy and define an equilibrium. As we discuss in

Section 4, our main result for optimal taxes does not depend on a number of the details of

the model, but these details determine the numerical values of the optimal taxes that we

obtain.

Environment We consider a discrete time, infinite-horizon economy populated by a

continuum of measure one of households. In addition there is a continuum of competitive

financial intermediaries, which we refer to as banks. Households are born identical and with

3See Chari and Kehoe (1999) for a survey.
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no wealth. At birth each household chooses whether to be an entrepreneur or a worker and

retains this occupation for their entire life. Entrepreneurs manage firms, while workers supply

labor. Entrepreneurs use their capital to produce intermediate goods. In particular, each

entrepreneur is the owner of two different investment projects: a risky project which produces

‘risky’ intermediate goods denoted by yE, and a risk-free project, which produces ‘risk-free’

intermediate goods denoted by yF .4 After making intermediate goods, entrepreneurs sell

these goods among themselves and use labor in combination with intermediate goods to

make a final good. The government levies (possibly negative) taxes on households and funds

the fixed (exogenously given) level of government spending G.

Timing Each period t is divided into three sub-periods: morning, afternoon and evening.

In the morning, entrepreneurs buy and sell capital amongst themselves and each entrepreneur

freely divides her capital between her risky and her risk-free investment projects. In the

afternoon, each entrepreneur draws an idiosyncratic shock which affects the quantity of

capital in her risky project and her two projects produce intermediate goods. Entrepreneurs

sell the intermediate goods they produce to one another. In the evening, entrepreneurs

use intermediate goods and labor to produce the final good, which is sold to households.

Households divide their resources between consumption and saving for the next period. At

the end of the period, a fraction γ ∈ (0, 1) of households die and new households are born.

Newborn households choose an occupation. Capital depreciates at rate δ ∈ (0, 1).

Technology of Entrepreneurs At the beginning of each period t, each entrepreneur i

is endowed with wealth ai,t. In the morning, before capital is traded, newborn entrepreneurs

draw a θi,t from the ergodic discrete distribution g (θ) given by

g(θ) =


1− π if θ = 0

π if θ = 1

0 otherwise.

We refer to θ as the entrepreneur’s ‘type’. At the start of each period, each continuing

entrepreneur has the same θ as in the previous period with probability 1 − λθ and draws a

new θ from the distribution g (θ) with probability λθ.

After allocating capital between her risky and risk-free projects in the morning, the

entrepreneur draws a idiosyncratic shock εi,t in the afternoon, which is independent across

time and across entrepreneurs. The shock εi,t affects the stock of capital in the entrepreneur’s

4The device of having two separate types of intermediate goods is a simple way to allow entrepreneurs
to choose between allocating capital in a risky way or risk-free way. This is designed to capture the idea
that some investment projects are more risky than others and that capital owners must take into account
the risks associated with different projects when making investment decisions.
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risky project, so that an entrepreneur who allocates kE,i,t to her risky project in the morning

of period t, and draws the shock εi,t, has εi,tkE,i,t units of capital in her risky project in

the afternoon. As such, the quantity of capital in this project changes stochastically over

time, rendering the project risky. We assume that each entrepreneur’s εi,t is drawn from a

lognormal distribution H. In particular, we assume that

εi,t = ε+ (1− ε) exp

(
ϕξi,t −

ϕ2

2

)
,

where ξi,t ∼ N(0, 1), ε ∈ (0, 1) and ϕ is a parameter determining the variance of ε. This

assumption implies that E[εi,t] = 1 and Var(log(εi,t−ε)) = ϕ2. The lowest possible realization

of ε is ε.

Each unit of capital in the risky project produces risky intermediate goods equal to the

entrepreneur’s θi,t. Therefore, if an entrepreneur with type θi,t allocates kE,i,t to her risky

project in the morning of period t, then in the afternoon the risky project has εi,tkE,i,t

units of capital, and produces θi,tεi,tkE,i,t units of risky intermediate goods. After allocating

capital to her risky project, the entrepreneur allocates any remaining capital kF,i,t to her

risk-free project. In the afternoon, this project produces an output of yF,i,t = kF,i,t risk-free

intermediate goods.

In addition to producing intermediate goods, entrepreneurs are able to hide capital kH,i,t

in their risky project after observing their shock εi,t and convert it directly into units of

consumption.5 In particular, instead of using units of capital in the risky project to produce

intermediate goods, an entrepreneur can convert one unit of capital in the risky project into

φ ∈ (0, 1) units of consumption. It will be shown that, when taxes are set optimally, en-

trepreneurs will not choose to hide any units of capital. However, the ability of entrepreneurs

to hide units of capital affects allocations and optimal taxes by creating frictions in financial

markets.

Technology of Final Good Production We assume that entrepreneurs trade risky

intermediate goods among themselves at price rE,t per unit and risk-free intermediate goods

at price rF,t per unit. Since an entrepreneur’s output of the risk-free intermediate good is

yF,i,t = kF,i,t, a consequence of this is that rF,t is the market rate of return to capital in

risk-free projects per period. Each entrepreneur i hires ni,t workers at wage rate wt and

uses ydE,i,t and ydF,i,t units of risky and risk-free intermediate goods to make yi,t final goods

according to the production function

yi,t = f
(
ydE,i,t, y

d
F,i,t, ni,t

)
.

5As we subsequently discuss, the realization of εi,t is private information to the entrepreneurs, so they
are able to hide capital.
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We assume that f is concave and strictly increasing in all arguments, exhibits strictly de-

creasing returns to scale and satisfies the Inada conditions.

Preferences Each worker has a constant labor endowment n = 1 which he supplies

inelastically. Entrepreneurs do not supply labor. The consumption of an entrepreneur i is

denoted ci,t and that of a worker i is denoted by cNi,t. Households have period utility function

U(c) ≡ log(c) and maximize expected lifetime utility.

Occupational choice Newborn households choose their occupation to maximize ex-

pected lifetime utility. Since newborn households are identical, the number of entrepreneurs

and workers in equilibrium will adjust until newborn households at each t are indifferent

between the two occupations:

∞∑
j=1

(1− ρ)j−1 (1− γ)j−1 log(cNi,t+j) = Et

[
∞∑
j=1

(1− ρ)j−1 (1− γ)j−1 log(ci,t+j)

]
,

where the expectation is with respect to the future realizations of θi,t and εi,t. Without loss

of generality, we assume that if i ≤ Nt the household is a worker and i > Nt the household

is an entrepreneur.

Government The government levies four different types of tax: a consumption tax τC,t,

a labor income tax τN,t, a capital income tax τK,t and a wealth tax τW,t, and has to finance

exogenous expenditure G, while balancing its budget every period. Taxes are paid in the

evening and government spending also takes place in the evening. The government is not

allowed to trade in financial assets at any time. The government’s budget constraint each

period is

G = τN,twtNt + τK,t(Πt − δKt) + τW,tKt + τC,t(Ct − φKH,t), (1)

where Nt is the total measure of workers, Kt is the aggregate capital stock at the start of the

period and Πt− δKt is the total reported profits of entrepreneurs net of capital depreciation.

Ct is aggregate consumption and φKH,t is the total consumption entrepreneurs generate by

hiding capital, which cannot be taxed. We show below that KH,t is always zero in the steady

state if the tax policy is set optimally.

Financial Markets Entrepreneurs may fund capital purchases each morning by writing

one-period state-contingent financial contracts with banks. We assume that banks are risk

neutral and perfectly competitive and live for only one period each, so they have no interest

in multi-period financial contracts. New banks are created at the start of each period. The

financial market opens immediately after each entrepreneur’s ability θi,t is revealed. If she
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writes a financial contract with the bank, the entrepreneur receives from the bank some

quantity bi,t (possibly negative) in the morning and in exchange she agrees to return to the

bank the quantity b̂i,t (possibly negative) at the end of the period, where b̂i,t may depend

on the realization of the entrepreneur’s shock εi,t. In this way, financial contracts function

as a within-period loan for entrepreneurs, and entrepreneurs can also use them to insure

themselves against the idiosyncratic risk associated with the shock εi,t. We refer to an

entrepreneur as a borrower if she chooses bi,t > 0 and a saver if she chooses bi,t < 0.

It is convenient to write the entrepreneur’s choices of bi,t and b̂i,t as policy functions of

the relevant state variables. In general, an entrepreneur’s choice of bi,t will depend on her

ability θi,t, her start of period capital ki,t and the aggregate state of the economy, which we

label Xt. Therefore, abusing notation slightly, we write bi,t ≡ b(a, θ,X). Likewise, we write

b̂i,t ≡ b̂(a, θ, ε,X), since b̂i,t will depend on the entrepreneur’s individual states a, θ, ε and the

aggregate state X.

Since banks are risk-neutral, perfectly competitive and profit maximizing, a bank will

agree to a financial contract written by an entrepreneur if and only if the financial contract

delivers it non-negative profits in expectation at the end of the period. As such, banks will

only lend to entrepreneurs in the morning if the expected return on the loan in the evening

is equal to the market risk-free rate. This implies the following constraint∫
ε

b̂ (a, θ, ε,X) dH (ε) ≥ RF,tb (a, θ,X) ,

where RF,t denotes the gross market risk-free rate of interest within the period. Since en-

trepreneurs have no desire to pay the banks more than is necessary or accept an interest rate

less than RF,t if they are lending to the banks, this inequality will be satisfied with equality.

The consequence is that banks make zero profits in equilibrium.6

Workers can also borrow or lend to banks within the period at the risk free rate RF,t.

Annuities At the end of the period households may trade among themselves in financial

annuities, which insure against the risk of death. A household may exchange 1 unit of the

good at the end of the period for 1
1−γ units of the good at the start of the next period if the

household is still alive (or the converse). Entrepreneurs place all their capital in a common

fund at the end of the period, exchanging it for annuities.7

6Since banks make zero profits, it makes no difference to the equilibrium behavior of the economy who
owns the banks. We may assume that they are owned either by workers or by entrepreneurs.

7If we allowed entrepreneurs to hold capital rather than placing in the common fund, they would prefer
to place in the common fund.
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Budget Constraints Let a worker i’s start of period assets be denoted aNi,t. The worker’s

asset position evolves according to:8

cNi,t(1 + τC,t) + (1− γ)aNi,t+1 = wt(1− τN,t) +RF,ta
N
i,t.

In the morning of each period the entrepreneur may buy and sell capital, divide her

capital between a risky and risk-free project and write a financial contract with a bank. Her

choices in the morning must satisfy the budget constraint

kE,i,t + kF,i,t = ki,t = ai,t + bi,t.

After receiving the εi,t shock, the entrepreneur chooses how many units (if any) of capital

in the risky project to hide. We let kH,i,t denote the quantity of capital the entrepreneur

hides in the afternoon. In the evening, the entrepreneur chooses how much to consume,

which we denote by ci,t, and how many annuities to buy, (1 − γ)ai,t+1. Capital hidden in

the afternoon is transformed into cH,i,t units of consumption. Finally, in the evening the

entrepreneur repays the bank b̂i,t (or is paid by the bank if b̂i,t < 0) and pays her taxes to

the government. Consequently, in the evening the entrepreneur’s budget constraint is

ci,t − cH,i,t + (1− γ)ai,t+1 + b̂i,t = πi,t − Ti,t + (1− δ)ki,t,

where πi,t is the entrepreneur’s period profits given by

πi,t = (rE,tyE,i,t + rF,tyF,i,t)︸ ︷︷ ︸
profit from intermediate goods

+
(
yi,t − wtni,t − rE,tydE,i,t − rF,tydF,i,t

)︸ ︷︷ ︸
profit from final good

+ (1− δ) ((εi,t − 1) kE,i,t − kH,i,t)︸ ︷︷ ︸
reported capital gains

,

Ti,t is the entrepreneur’s period tax payments given by

Ti,t = τC,t (ci,t − cH,i,t) + τK,tπi,t − τK,tδki,t + τW,tki,t,

8This budget constraint indicates that workers do not pay capital income or wealth taxes, which may
seem strange. For analytical convenience, we assume that wealth and capital income taxes are levied on
physical assets and entrepreneurial profits only, rather than on financial assets. As such, workers do not pay
capital income and wealth taxes. This assumption is without loss of generality. If linear tax rates were also
imposed on individual’s net financial positions and net financial wealth, these taxes would simply lead to an
adjustment of pre-tax interest rates, and leave the post-tax rate of interest and allocations unaffected, as in
the classic discussion in Varian (2014), p. 307.
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and where cH,i,t, yE,i,t, yF,i,t satisfy

cH,i,t = φkH,i,t

yE,i,t = θi,tεi,tkE,i,t

yF,i,t = kF,i,t.

Agency Friction During the period, an entrepreneur’s realization of ε, the quantity of

capital in the risky sector she hides and the consumption she obtains from converting hidden

capital are all private information. In particular, after observing the shock ε, an entrepreneur

can choose to honestly report the amount of capital she has in the risky sector, but she can

also lie by under-reporting the amount of capital she has and hiding more capital than she

admits to. However, the quantity of capital allocated to the entrepreneur’s projects initially,

and the quantity of intermediate goods she produces are assumed to be public information.9

When an entrepreneur writes a financial contract in the morning, the market will expect

the entrepreneur to repay b̂(a, θ, ε,X) in the evening, given her realization of ε. In equilib-

rium, the market must be correct in expecting this, and so it is without loss of generality to

restrict attention to incentive compatible contracts where the entrepreneur honestly reports

her ε, and pays the promised amount b̂(a, θ, ε,X). The entrepreneur will be tempted to lie

about ε only if doing so increases her available resources for consumption and/or her next

period capital. This gives rise to the following incentive compatibility constraint

(1− τK) (rE + (1− δ)) kE
1 + τC

≥ φkE +
∂b̂(a, θ, ε,X)

∂ε

1

1 + τC
,

The left-hand-side of this constraint represents the cost of under-reporting ε expressed in

units of consumption and the right-hand-side represents the benefit of under-reporting ε.

Specifically, by under-reporting ε by some small amount dε the entrepreneur will find herself

with kEdε fewer units of capital and loses the after-tax return on those. At the same time

she transforms the kEdε hidden units of capital into φkEdε units of consumption and also

repays less to the bank according to the optimal financial contract.

Worker’s Optimization Problem The worker’s problem is to choose a level of con-

sumption each period to maximize present discounted utility. The worker’s state variables

are his assets aN and the aggregate state X. As such, the worker’s consumption and next

period assets are given by the policy functions cN(aN , X) and aN ′(aN , X) that solve the

9In the extreme case φ = 0 there would be no informational friction, since the entrepreneur has no
incentive to hide capital.
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following Bellman equation:

V N(aN , X) = max log
(
cN
)

+ (1− ρ) (1− γ)V N
(
aN ′, X ′

)
subject to the worker’s budget constraint.

Entrepreneur’s Optimization Problem The entrepreneur’s optimization problem is

to choose functions kE(·) ≥ 0, kF (·) ≥ 0, kH(·) ≥ 0, b(·), b̂(·), c(·) ≥ 0, cH(·) ≥ 0, yE(·) ≥ 0,

yF (·) ≥ 0, ydE(·) ≥ 0, ydF (·) ≥ 0, n(·) ≥ 0, y(·) ≥ 0 and a′(·) to solve

V (a, θ,X) = sup

∫
ε>0

(
log(c(a, θ, ε,X))

+ (1− ρ)(1− γ)E

[
V (a′(a, θ, ε,X), θ′, X ′)

∣∣∣∣θ])dH(ε),

subject to the budget constraints in the morning and in the evening, the production functions

for cH , yE, yF and y, the incentive compatibility constraint and the break-even condition for

the banks.

Here, by having the entrepreneur choose the functions b(·) and b̂(·) subject to the incentive

compatibility constraint and break-even condition for the bank, we are assuming that the

entrepreneur designs a financial contract and proposes it to a bank. The bank accepts

provided that the contract is incentive compatible and the bank breaks even in expectation.

Aggregation and Market Clearing The aggregate level of consumption Ct and of

CH,t satisfy

Ct =

∫
i≤Nt

cNi,tdi+

∫
i>Nt

ci,tdi

CH,t =

∫
i>Nt

cH,i,tdi ≤ Ct.

The aggregate levels of capital devoted to each use and the aggregate level of final good

output sold are given by
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KE,t =

∫
i>Nt

kE,i,tdi

KF,t =

∫
i>Nt

kF,i,tdi

Kt = KE,t +KF,t

KH,t =

∫
i>Nt

kH,i,tdi

Yt =

∫
i>Nt

yi,tdi.

Total reported period profits of entrepreneurs are

Πt = Yt − wtNt − (1− δ)KH,t,

where − (1− δ)KH,t is the average reported capital gain. In each period, the asset market

must clear. This requires that the total capital stock equals the wealth of entrepreneurs and

workers ∫
i≤Nt

aNi,tdi+

∫
i>Nt

ai,tdi = Kt

The market for intermediate goods of each type must clear each period∫
i>Nt

ydE,i,tdi =

∫
i>Nt

yE,i,tdi∫
i>Nt

ydF,i,tdi =

∫
i>Nt

yF,i,tdi.

The labor market must clear each period∫
i>Nt

ni,tdi = Nt

The final goods market clearing condition then follows by Walras’ law

Ḡ+ Ct +Kt+1 = Yt + (1− δ)Kt − (1− δ)KH,t + CH,t.

Equilibrium We are now in the position to define an equilibrium for our model economy.

Definition 1. Given a sequence of tax rates {τW,t, τK,t, τC,t, τN,t}∞t=0, an equilibrium E is a

sequence of prices {RF,t, rE,t, rF,t, wt}∞t=0, policy functions giving entrepreneurs’ and workers’

decisions and a sequence of aggregate variables {Ct, CH,t, Kt, KE,t, KF,t, KH,t, Yt, Nt}∞t=0 such
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that:

1. The government’s budget constraint is balanced every period.

2. Workers’ decision rules solve the worker’s optimization problem.

3. Entrepreneurs’ decision rules are given by the solution to the entrepreneur’s problem.

4. {Ct, CH,t, Kt, KE,t, KF,t, KH,t, Yt}∞t=0 represent the aggregate of household’s decisions

defined above.

5. Newborn agents are indifferent between being entrepreneurs and workers.

6. The asset, intermediate goods and labor markets clear.

3 Properties of the Model Equilibrium

In this section, we characterize the equilibrium of the economy. We do so by characterizing

the optimal decisions of households and the aggregate steady state of the model. We derive

comparative static results for how aggregate steady state variables change in response to

changes in taxes which we then use in characterizing optimal taxes.

3.1 Worker’s Optimal Decisions

We first solve the worker’s optimization problem. Let PN
t denote the discounted value of a

worker’s lifetime income. The expression for PN
t is given by

PN
t = aNt +

∞∑
j=0

[
wt+j(1− τN,t+j)(1− γ)j

Πj
k=0RF,t+k

]
︸ ︷︷ ︸

FNt

.

Note that the worker’s problem can be reformulated as one in which the worker decides

between today’s consumption cNt and tomorrow’s lifetime wealth PN
t+1, based on today’s

lifetime wealth PN
t and the aggregate state X.10 In Appendix A.1, we show that the solution

is given by

cNt = [1− (1− ρ) (1− γ)]
RF,t

1 + τC,t
PN
t ,

PN
t+1 = (1− ρ)RF,tP

N
t ,

10This follows from aN and PN being deterministically linked through the expression for PNt .

15



and that the associated value function is

V N(PN , X) = V N(1, X) +
1

1− (1− ρ)(1− γ)
logPN .

The worker hence devotes fraction 1 − (1− ρ) (1− γ) of her discounted lifetime income

(evaluated at the end of the period after she has accrued interest RF ) to consumption

expenditure.

3.2 Entrepreneur’s Optimal Decisions

We now solve the entrepreneur’s optimization problem. To simplify the problem, note first

that all the entrepreneur ultimately cares about this period is her level of consumption c

and her level of wealth for the next period, a′. These are the only variables over which she

has influence that enter directly into the entrepreneurs’ Bellman equation. The levels of c

and a′ that the entrepreneur can afford at the end of the period depend solely on her total

resources and the end of the period. That is, her within-period choices of how much capital

to put into each project, how much to borrow and how much capital to hide only depend on

the level of c and a′ she can afford insofar as they affect the resources she will have at the

end of the period. Therefore, we can split the entrepreneur’s problem into a within-period

choice of trying to achieve a high value of end-of-period resources, and a between period

choice of how to divide her resources between consumption and next-period wealth.

To this end, consider first the entrepreneur’s optimal production of final goods. This is a

static problem in which the entrepreneur chooses intermediate inputs ydE,i,t, y
d
F,i,t and labor

ni,t to maximize profits

f
(
ydE,i,t, y

d
F,i,t, ni,t

)
− rE,tydE,i,t − rF,tydF,i,t − wtni,t.

Since f (·) exhibits decreasing returns to scale, at the optimal choice of ydE,i,t, y
d
F,i,t, ni,t, the

entrepreneur makes profits π?t per period from final goods production, which is the same

across entrepreneurs.

Let Pi,t denote the present value of lifetime resources that an entrepreneur i could obtain

if she never produces intermediate goods and lends lends her endowment to banks at the

risk-free rate RF,t; Pi,t is equal to

Pi,t = ai,t +
∞∑
j=0

[
π?t+j(1− τK,t+j)(1− γ)j

Πj
k=0RF,t+k

]
︸ ︷︷ ︸

Ft

.

16



Then, the entrepreneur’s evening budget constraint can be re-written as

ci,t +
(1− γ)Pi,t+1

(1 + τC,t)
= ωi,t,

where ωi,t satisfies

ωi,t =
(1 + τC,t) cH,i,t − b̂i,t + (1− τK,t) πi,t + (τK,tδ − τW,t) ki,t + (1− δ)ki,t + (1− γ)Ft+1

(1 + τC,t)
.

We refer to ωi,t as end-of-period lifetime resources.

To split the entrepreneur’s problem into a within and a between-period choice, let Ṽ (ω,X)

denote the value in the evening of a period of an entrepreneur with lifetime resources ω, who

is yet to divide her resources between c and P ′. Then, abusing notation, we can write the

entrepreneur’s between period problem recursively as:11

Ṽ (ω,X) = sup
c,P ′

(
log(c) + (1− ρ) (1− γ)EV (P ′, θ′, X ′)

)
, (2)

s.t. c+
(1− γ)P ′

1 + τC
= ω. (3)

The entrepreneur’s recursive within-period problem is to choose non-negative functions

kE(P, θ,X), kF (P, θ,X), kH(P, θ,X), ω(P, θ, ε,X) and functions b(P, θ,X), b̂ (P, θ, ε,X) to

solve:

V (P, θ,X) = sup

∫
ε>0

Ṽ (ω,X)dH(ε),

subject to the constraints:

kE + kF = a+ b = P + b− F (4)∫
ε

b̂dH (ε) = RF b (5)

(1 + τC)ω = (1 + τC)φkH − b̂+ (1− τK) π + (τKδ − τW ) k + (1− δ)k + (1− γ)F ′ (6)

F =
π? (1− τK)

RF

+ F ′
1− γ
RF

(7)

∂ω

∂ε
≥ φkE, (8)

where the last constraint is the incentive compatibility constraint obtained after subsituting

in the definition of ω in (6).

The constant returns to scale assumptions on the entrepreneur’s technology for producing

intermediate goods means that the value function must take a particular form, as shown in

11We can relabel V (a, θ,X) as V (P, θ,X) since P = a+F and F depends only on the aggregate state X.
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the following lemma. This considerably simplifies the solution to the entrepreneur’s problem.

Lemma 1. There exists a function V (θ,X) such that, for any P , θ and X,

V (P, θ,X) = V (θ,X) +
log(P )

1− (1− ρ)(1− γ)
,

where V (θ,X) = V (1, θ,X).

Proof. See Appendix A.2.

Using Lemma 1, the solution to the between period problem can be found immediately

by taking the first order condition

1

(1 + τC)ω − (1− γ)P ′
=

1− ρ
1− (1− ρ)(1− γ)

1

P ′
,

and combining it with equation (3) to conclude that the entrepreneur chooses

c = (1− (1− ρ) (1− γ))ω

P ′ = (1 + τC) (1− ρ)ω.

Substituting these choices into the Bellman equation (2), we have that

Ṽ (ω,X) =
log (ω)

1− (1− ρ) (1− γ)
+ log (1− (1− ρ) (1− γ))

+
(1− ρ) (1− γ) log ((1 + τC) (1− ρ))

1− (1− ρ) (1− γ)

+ (1− ρ) (1− γ)E
[
V (θ′, X ′)

]
.

This completes the solution of the between period problem.

To solve the within period problem, we note first note that, since the entrepreneur is risk

averse and the bank is risk neutral, she will want to choose a contract that minimizes the

variance of ω while observing the incentive compatibility constraint (8). Hence, this con-

straint must bind with equality. Integrating the resulting incentive compatibility constraint

with respect to ε, it follows that there must exist some function ω(P, θ,X) such that:

ω(P, θ, ε,X) ≡ ω(P, θ,X) + φkE(P, θ,X)ε. (9)

In the absence of agency frictions, the entrepreneur and the bank would prefer a contract

in which the bank took all the risk and the entrepreneur’s ω was independent of ε. The

agency friction prevents this, leading the entrepreneur to face the level of risk implied by the

equation (9).
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To simplify the within period problem further, note that during the period t the en-

trepreneur can borrow risk-free capital at the bank at gross interest rate of RF . This stems

from the lack of informational asymmetry in the risk-free project and the bank’s zero profit

condition. Moreover, the entrepreneur may sell the output from the risk-free project to other

entrepreneurs to be used in the production of the final good. Hence, to rule out the presence

of arbitrage, the two returns have to be equalized:

RF = 1 + [(1− τK) (rF − δ)− τW ] . (10)

The consequence is that in equilibrium, the entrepreneur will weakly prefer to lend to the

bank over investing in the risk-free project.

Similarly, the entrepreneur has two different risky activities she can undertake: producing

risky intermediate goods, or hiding capital after observing her ε shock. In equilibrium, it

must be the case that the post-tax return to producing risky intermediate goods is weakly

higher than the return to hiding capital. If not, all entrepreneurs would hide all their capital

kE and produce no risky intermediate goods and the Inada conditions on the final goods

production function would drive the return rE to infinity. Therefore entrepreneurs weakly

prefer to use their capital to produce risky intermediate goods rather than hiding it.

Given that the entrepreneur weakly prefers to lend to the bank to producing risk-free

intermediate goods and weakly prefers to produce risky intermediate goods rather than

hiding capital, we can solve her optimization problem under the assumption that she chooses

kF = kH = 0, with the understanding that in equilibrium some entrepreneurs may choose

kF > 0 or kH > 0, to the extent needed to clear markets. Combining the rewritten incentive

compatibility constraint (9) with the definition of ω, F , profits π, integrating with respect

to ε and using that kE + kF = k, kF = kH = cH = 0 and E[ε] = 1, reveals that ω(·) must

satisfy

(1 + τC)(ω + φkE) = (1− δ(1− τK)− τW )kE + (1− τK)rEθkE −
∫
ε

b̂ (·) dH (ε) +RFF.

Combining this with the bank zero profit condition (5) and the budget constraint (4) and

rearranging gives

(1 + τC)ω = (1− δ(1− τK)− τW − φ(1 + τC))kE + (1− τK)rEθkE +RF (P − kE).

Using the above together with the no-arbitrage condition for risk-free returns (10), we

can rewrite the entrepreneur’s within-period problem more compactly. The entrepreneur
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seeks to choose functions kE(P, θ,X) ≥ 0 and ω(P, θ,X) to solve:

sup

∫
ε

log(ω + φεkE)dH(ε),

subject to the constraints:

ω =

(
−φ+ (rEθ − rF )

1− τK
1 + τC

)
kE +

(
1

1 + τC
RF

)
P

ω + φεkE ≥ 0.

Here, we used that the only part of Ṽ which depends on the entrepreneur’s decisions is

the term log(ω)
1−(1−ρ)(1−γ)

. Therefore, maximizing the expected value of Ṽ amounts to maximizing

the expected value of this term. The second constraint arises because the minimum value

of ε is ε > 0 and the entrepreneur can be sure of non-negative consumption if and only if

ω + ρεkE ≥ 0.

The entrepreneur’s within-period optimization problem amounts to determining the op-

timal choice of kE. This is simply a problem of a trade-off between risk and return. Choosing

higher kE increases the variance of ω, since ω = ω+φεkE, but higher kE may carry a higher

expected return.

These results imply that the optimal financial contract between the entrepreneur and

bank takes an easily interpretable form as an equity and debt contract, as discussed in the

following Lemma.

Lemma 2. The optimal financial contract is equivalent to a contract in which the en-

trepreneur takes a loan equal to fraction R−1
F of the end of period value her risky project

under the worst possible realization of ε, and sells fraction 1− φ(1+τC)
(1−τK)(1−δ) of the value of her

risky project as equity, retaining the remaining equity herself.

Proof. See Appendix A.3

The reason that the entrepreneur is unable to sell all the equity in her project is that

she needs to have a large enough ‘skin in the game’ in order to encourage her not to hide

capital in her project. An important consequence of the endogenous modelling of financial

constraints here is that the fraction of the value of the entrepreneur’s project that she must

retain as ‘skin in the game’ is itself dependent on taxes. Higher levels of capital income

tax reduce the fraction of equity in her project that she is able to sell, thus tightening

the financial frictions the entrepreneur faces. This creates a stronger motive against taxing

capital than would occur if the fraction of ‘skin in the game’ the entrepreneur needed was

fixed as an exogenous parameter.
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Now, we note that, in an equilibrium of this economy, it must be that the price of risky

intermediate goods is sufficiently low that entrepreneurs do not wish to produce and sell

infinite quantities of risky intermediate goods. This condition is contained in the following

lemma.

Lemma 3. In an equilibrium of the economy, it must be the case every period that:

−φ+ (rE − rF )
1− τK
1 + τC

≤ 0 (11)

Proof. See Appendix A.4.

3.3 Continuous Time Limit

To describe the environment, the equilibrium conditions and to simplify the contracting

problem between the entrepreneurs and banks it was natural to make the assumption of

discrete time. In the remainder of the paper, which is devoted to characterizing the steady

state of the economy and solving for the optimal taxes, it is more convenient to work in

continuous time. We formally derive a continuous-time version of our discrete-time model in

Appendix B. There, we assume that each period is of length ∆ and obtain solutions to the

entrepreneur’s problem and characterize the steady state of the economy. We then take the

limit as ∆ goes to zero. This leads to the following optimal decision rule for the entrepreneur

and worker in the continuous-time version of the model.

To simplify the optimal decision rules, let R̃F denotes the net risk-free rate of return:

R̃F := RF − 1

Proposition 1. In equilibrium, the unique solution of the worker’s problem is:

cN = (ρ+ γ)
PN

1 + τC
(12)

dPN =
{[
R̃F + γ

]
PN − (1 + τC)cN

}
dt, (13)

The unique solution of the entrepreneur’s problem is:

k̂E =
kE
P

=
1

(1 + τC)φ(1− ε)
×max

{
0; min

{
(θrE − rF )(1− τK)

(1 + τC)φ(1− ε)ϕ2
; 1

}}
(14)

c = (ρ+ γ)
P

1 + τC
(15)

dP =
{[
R̃F + γ

]
P + [kE (θrE − rF ) (1− τK)− (1 + τC)c]

}
dt

+ kEφ (1 + τC) (1− ε)ϕdW, (16)
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where dW is the difference of a standard Brownian motion.

Proof. See Appendix B.2 and Appendix B.3.

As such, the solution to the entrepreneur’s optimization problem implies that if the after-

tax expected return on the risky project θrE(1 − τK) is lower than the after-tax risk-free

net return on the risk-free project rF (1 − τK), then it is optimal for the entrepreneur to

set kE = 0 and to allocate all her capital to her risk-free project, or sell it and use the

revenue to lend to a bank. If the after-tax excess return from investing the risky project

is positive, i.e. (θrE − rF )(1 − τK) > 0, then the entrepreneur allocates an amount of

capital to her risky project which is proportional to her initial lifetime resources P . As in

many other models with financial market frictions, it therefore follows that the allocation

of capital in the economy depends on the wealth distribution across entrepreneurs – capital

is not necessarily allocated to its most productive uses. If the after-tax excess return from

investing the risky project is sufficiently high, the entrepreneur will choose the largest kE

that guarantees non-negative consumption under the lowest possible realization of ε.

All else equal, a richer entrepreneur invests more in her risky project. Furthermore,

entrepreneurs invest more in risky projects and less in risk-free projects when: (i) the after-

tax return to risky projects is relatively higher, (ii) the after-tax return to risk-free projects

is relatively lower or (iii) the agency friction is less severe (i.e. lower φ).

Occupational Choice As discussed above, newborn households will be indifferent be-

tween becoming entrepreneurs and workers in equilibrium. The lifetime resources of a new-

born worker are equal to FN and the lifetime resources of a newborn entrepreneur are equal

to F . Therefore, the occupational indifference condition can be written as:

V N(FN , X) = EθV (F, θ,X).

This condition pins down the value of N in equilibrium: if N is very large, then a high supply

of labor reduces the steady state wage, thereby increasing profits. Lower wages reduce FN

and higher profits increase F . N adjusts until the value of a newborn worker equals the

value of a newborn entrepreneur.

3.4 Aggregate Steady State

Having characterized worker and entrepreneur’s choices, we next formally characterize a

steady state of the model.
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3.4.1 Post-tax Prices

First, we note that in any equilibrium, entrepreneurs’ optimal production of final goods

implies that:

rE = f1

(
KE

1−N
,
K −KE

1−N
,

N

1−N

)
,

rF = f2

(
KE

1−N
,
K −KE

1−N
,

N

1−N

)
,

w = f3

(
KE

1−N
,
K −KE

1−N
,

N

1−N

)
,

πF =
Y − rEKE − rF (K −KE)− wN

1−N
,

where fi
(
KE

1−N ,
K−KE
1−N , N

1−N

)
denotes the derivative of f

(
KE

1−N ,
K−KE
1−N , N

1−N

)
with respect to its

ith argument.

Since the planner has four tax instruments, τK , τW , τN and τC he can set these four tax

instruments to target the values of four post-tax prices (subject to its budget constraint).

As a consequence of this, it will be useful in the discussion of optimal taxation below to

characterize the entire steady state of the model in terms of only resource allocations and

four post-tax prices. This can be done using the following definitions of post-tax prices:

w̃ =
w(1− τN)

1 + τC
(17)

R̃F = RF − 1 (18)

π̃F =
(1− τK)πF

1 + τC
, (19)

r̃X =
(rE − rF )(1− τK)

1 +R(KE, KF , N, π0)
(20)

where R(·) denotes the function R : R4
++ → R ∪ {∞}, which satisfies:

R(KE, K,N, π0) = −1 +
(1−N)π0 +KE(

(1−N)f(·)−f1(·)KE−f2(·)(K−KE)−f3(·)N
f1(·)−f2(·)

)
+KE

, (21)

where, abusing notation, f(·) denotes f
(
KE

1−N ,
K−KE
1−N , N

1−N

)
and π0 is an arbitrary constant.

Throughout, we will use R as a shorthand to denote R(KE, K,N, π0). Below, when dis-

cussing comparative statics, we typically set π0 such that R = 0 in some initial steady

state.

Intuitively, w̃, R̃F , π̃F and (1 +R)r̃X represent, respectively, the post-tax wage rate, the

post tax risk-free rate, the entrepreneur’s post-tax profit from selling final goods, and the
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post-tax excess return to high productivity entrepreneurs from using the risky technology. It

is useful to define the latter as (1 +R)r̃X rather than simply r̃X because theplanner’s ability

to control all post-tax returns is limited due to only having four tax instruments. As such,

it will be convenient to think of r̃X intuitively as the part of the excess return from the risky

technology that the planner can choose by varying taxes, and 1+R as the part of the excess

return to risky capital that the planner does not choose, and instead varies endogenously

due to variation in pre-tax prices. Pre-tax prices in turn depend on KE, K and N , and so R
depends on KE, K and N . At R = 0, as we typically assume, it can readily be shown that

R is decreasing in KE, holding constant K and N , which corresponds to the intuition that

a higher level of capital in the risky technology reduces the excess return to this technology.

To interpret R, we combine (20) with the definition of πF above and use (19) to obtain

π̃F =
r̃X

1 + τC

(
π0 −

RKE

1−N

)
.

The aggregate post-tax profits of entrepreneurs can therefore be written:

(1 + τC)π̃F (1−N) + r̃X(1 +R)KE + R̃F (K − AN) = (π0(1−N) +KE)r̃X + R̃F (K − AN)

where AN is the aggregate wealth of workers and K − AN is the aggregate wealth of en-

trepreneurs.

This equation reveals that an increase inR does not, by itself directly affect entrepreneurs

profits at all. Rather, it raises the excess return to capital, r̃X(1 + R) and reduces en-

trepreneurs’ profits from selling final goods, π̃F . Thus, R represents the degree to which

entrepreneurs’ profts reflect risky investments, rather than simply the rents π̃F which all en-

trepreneurs earn equally from selling final goods. As such, an increase in R does not directly

affect the income of entrepreneurs in total, but it increases the income of wealthy high abil-

ity entrepreneurs (who choose high levels of kE) at the expense of low ability entrepreneurs.

Since R does not reflect total entrepreneurial profits, then, but simply the allocation of en-

trepreneurial profits, it is not directly affected by the planner’s tax instruments, but changes

endogenously as a consequence of changes in pre-tax prices when the levels of KE, K and

N change.

3.4.2 Steady State Characterization

Having defined post-tax prices, we now formally characterize the steady state of the model.

We define a steady state as follows:

Definition 2. A steady state S of the economy is a set of values of tax rates {τ ∗W , τ ∗K , τ ∗C , τ ∗N},
prices {r∗E, r∗F , w∗}, aggregate variables

{
K∗, K∗E, C

∗, N∗, F ∗, FN∗} ,P and an equilibrium E
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in which all tax rates, prices and aggregate variables are equal to these steady state values in

every period.

We focus on steady states in which no capital is hidden because, as argued below, the

planner will never design a tax policy to select a steady state in which this happens. The

full set of conditions that must be satisfied in a steady state are summarized in Proposition

2 below.

Proposition 2. There exists a steady state S which is consistent with the particular values

of aggregate variables {K∗, K∗E, C∗, N∗,R∗, Y ∗}, post-tax prices
{
r̃∗X , R̃

∗
F , w̃

∗, π̃∗F

}
and con-

sumption tax rate τ ∗C and in which no entrepreneurs hide capital or intermediate goods, if

and only if the following conditions hold:

C∗ =
ρ+ γ

R̃∗F + γ

(
Y ∗ − δK∗ −G− r̃∗X(1 +R∗)K∗E

1 + τ ∗C
+

γK∗

1 + τC

)
(22)

Y ∗ − δK∗ −G = C∗ = N∗w̃∗ + (1−N∗)π̃∗F +
r̃∗X(1 +R∗)K∗E

1 + τ ∗C
+
R̃∗FK

∗

1 + τ ∗C
(23)

log(w̃∗) = log(π̃∗F ) +
g(1)

ρ+ γ

[
(1 +R∗) r̃X k̂(1)− 1

2

(
φ(1− ε)(1 + τC)k̂(1)ϕ

)2
]
(24)

KE =
r̃X(1 +R∗)KE + γ(1+τC)

γ+R̃F
(π̃∗F (1−N∗))

ρ+ γ − R̃F

k̂E(1)µ(1) (25)

µ(1) =
λθg(1) + γg(1)(1+τC)

γ+R̃F
(π̃∗F (1−N∗)) k̂E(1)µ(1)

KE

λθ + ρ+ γ − R̃∗F − (1 +R∗)r̃∗X k̂E(1)
, (26)

π̃∗F =

(
r̃∗X

1 + τ ∗C

)(
π0 −

R∗K∗E
1−N∗

)
(27)

where R∗ = R(K∗E, K
∗, N∗, π0), Y ∗ = f

(
K∗E

1−N∗ ,
K∗−K∗E
1−N∗ ,

N∗

1−N∗

)
(1−N∗) and where K∗E < K∗,

1
f∗1−f∗2

>
φ(1+τ∗C)

r̃∗X
> 0 and k̂E(θ) is given by equation (14).

Proof. See Appendix B.4.

Note that none of the equations in Proposition 2 make any reference to pre-tax prices or

to tax rates, apart from τC ; they make reference only to post-tax prices, τC andR. Therefore,

as long as the inequality conditions in the proposition are satisfied, changes in pre-tax prices

have no effect on steady state allocations, conditional on the value of post-tax prices and

R. R matters for the steady state allocation because, as discussed above, a higher level of
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R entails a redistribution of profits from low ability entrepreneurs, to entrepreneurs that

choose high levels of capital in the risky technology.

The interpretation of the equilibrium conditions in Proposition 2 is intuitive. The first

equilibrium condition is the consumption function for the economy. Each agents’ marginal

propensity to consume out of earnings is MPC ≡ ρ+γ

R̃∗F+γ
in the steady state, which depends

on preferences and the risk-free rate. Agents consume based on their net resources after tax

and depreciation, Y ∗ − δK∗ − G. Additionally, entrepreneurs do not consume out of their

risky capital income, since a higher risky capital income means a higher return to saving.

Log utility implies that all this extra capital income is saved. Finally, agents consume out

of the after-tax resources they earn from annuities each period, γK
1+τC

. Equation (23) states

that output net of investment and government spending equals consumption, which also

must equal the sum of post-tax resources of all agents in the economy, since saving (net

of depreciation) must equal zero in the steady state. Equation (24) is the condition under

which agents are indifferent about their occupation in the steady state and equations (26)

and (25) arise from the stationary wealth distribution that is induced by entrepreneurs’

policy choices. Lastly, equation (27) was derived in the previous section.

3.5 The Effect of Taxes on Equilibrium Allocations

In Section 4.2 we will show that optimal steady state tax rates can be written in terms

of estimatable “sufficient statistics”. These sufficient statistics are elasticities of aggregate

variables with respect to tax changes. In doing that, our approach provides a bridge between

theory and empirics in the spirit of Chetty (2008), Piketty and Saez (2013), Piketty, Saez

and Stantcheva (2014) and Saez and Stantcheva (2018), where the sufficient statistics are

behavioral elasticities that capture the response of aggregate outcomes to small changes in

taxes. To that end, in this section, we formally define the elasticities that shape the optimal

taxes and use them to gain intuition about the effect of the various tax instruments on key

aggregate variables in the economy.

As changes in taxes in this economy have a wide range of general equilibrium effects,

to maximize the clarity of exposition, we proceed in two steps. In the next two sections,

we characterize the partial equilibrium elasticity with respect to tax changes of aggregate

output Y , total capital stock K and the capital invested in the entrepreneurial sector KE,

holding pre-tax prices constant. In Section 3.5.2 we consider the general equilibrium effects

of tax changes.
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3.5.1 Partial Equilibrium Effects of Taxes on Equilibrium Allocations

To study the partial equilibrium effect of changes in tax rates on aggregate output Y , total

capital stock K and the capital invested in the entrepreneurial sector KE, we consider the

long run effect on the steady state of a small change in tax rates holding constant pre-tax

prices and the fraction N of agents who choose to become workers. By holding pre-tax

prices completely constant, we will hold R(K,KE, N, π0) constant, since the latter captures

the effects of varying pre-tax prices on profits and allocations. In the next section, we will

discuss the additional general equilibrium effects that arise when N andR(K,KE, N, π0) can

vary as the values of K, KE and N change in response to changes in taxes. To emphasize

the effect that financial frictions have on the determination of optimal taxes, we assume

throughout that the planner chooses the levels of τK , τW and adjusts the labor income tax

τN to ensure that its budget balances in the steady state, while τC remains unchanged. For

ease of interpretation, we fix R = 0 by setting the arbitrary constant π0 so that R∗ =

R(K∗, K∗E, N
∗, π0) = 0 in the initial steady state, before any tax changes take effect.12

We formally define long-run elasticities as follows.

Definition 3. The partial equilibrium elasticities of Y , K and KE with respect to the tax

rate τK are defined as:

eYτK ≡
(1− τK)

Y

∂Y

∂τK

∣∣
R=0,N

eKτK ≡
(1− τK)

K

∂K

∂τK

∣∣
R=0,N

eKEτK ≡
(1− τK)

KE

∂KE

∂τK

∣∣
R=0,N

.

The partial equilibrium (semi-)elasticities of Y , K and KE with respect to the tax rate

τW are defined as:

eYτW ≡
1

Y

∂Y

∂τW

∣∣
R=0,N

eKτW ≡
1

K

∂K

∂τW

∣∣
R=0,N

eKEτW ≡
1

KE

∂KE

∂τW

∣∣
R=0,N

.

That is, eYτK is the elasticity of aggregate steady state output with respect to the tax rate

τK , holding constant pre-tax prices (including the value of R(K,KE, N)) and the fraction

N of agents who choose to become workers, and assuming that τN adjusts to balance the

government’s budget, and eYτW is the corresponding (semi-)elasticities of aggregate output

with respect to τW . The elasticities of aggregate and risky capital are defined in a similar

fashion.

By considering small perturbations in tax rates around the conditions that characterize a

12Using the definition of R above and noting the each factor is paid its marginal product in equilibrium,

it follows that this will be true if: π0 =
π∗
F

r∗E−r∗F
. Holding R fixed at zero makes intepretation easier, since

it means that we can interpret changes in r̃X as corresponding to changes in τK , holding pre-tax prices
constant. R = 0 is necessary for this interpretation, since R = 0 ensures that, π̃F = r̃Xπ0

1+τC
. Then, a decrease

in r̃X leads to a proportional decrease in π̃F , which is the same effect as an increase in τK holding pre-tax
prices constant.
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steady state of the economy, all the elasticities defined above can be characterized in closed

form, as functions of structural parameters and aggregate variables. We relegate the details

of this derivation to Appendix B.5 and directly provide the characterization of the elasticities

of Y , KE and K with respect to taxes in Proposition 3 below.

Proposition 3. The elasticity of aggregate output Y with respect to the tax rates τK and τW ,

holding constant pre-tax prices and the fraction N of agents who choose to become workers,

and assuming that τN adjusts to balance the government’s budget is, respectively:

eYτK = (rE − rF )
KE

Y
eKEτK + rF

K

Y
eKτK

eYτW = (rE − rF )
KE

Y
eKτW + rF

K

Y
eKτW .

Proof. The result follows from partially differentiating equation (23) with respect to r̃X , R̃F

and τC , combining this with Definition 3 and rearranging.

The expression for eYτK reveals that a change in tax rates affects aggregate output via

its effect on aggregate capital accumulation (eKτK ) and also by affecting how far capital is

allocated to the risky technology (eKEτK ). An increase in the fraction of capital allocated to the

risky technology increases aggregate output, because rE − rF > 0 must hold in equilibrium,

since entrepreneurs must receive a higher return to the risky technology to compensate for

risk. A decrease in capital income taxes (with a compensating rise in τN) will typically

raise aggregate steady state output, holding constant N and pre-tax prices. This is because

a decrease in capital income taxes tends to increase aggregate capital accumulation (so

eKτK < 0) and encourages a larger quantity of capital in the risky technology (so eKEτK < 0).

We verify that eKτK < 0 and eKEτK < 0 in Propositions 4 and 5, which characterize the partial

equilibrium effects of tax changes on KE and K, respectively.

Proposition 4. The elasticity of the risky capital stock KE with respect to the tax rates τK

and τW , holding constant pre-tax prices and the fraction N of agents who choose to become

workers, and assuming that τN adjusts to balance the government’s budget is, respectively:

eKEτK = (ek̂EτK + eµτK − 1)MKE − (1− τK)(rF − δ)MR̃F

eKEτW = (ek̂EτW + eµτW )MKE −MR̃F
,
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where

MKE = 1 +
KE r̃X(γ + R̃F )

(1 + τC)(1−N)π̃Fγ

MR̃F
=

−1

γ + R̃F

+
MKE

ρ+ γ − R̃F

ek̂EτK =
1− τK
k̂E(1)

∂k̂E(1)

∂τK

eµτj =
1− τK
µ(1)

∂µ(1)

∂τK
,

with analogous definitions of ek̂EτW and eµτW . Moreover, eKEτK < 0.

Proof. The expressions for eKEτK and eKEτW follow from partially differentiating equation (25)

with respect to r̃X and R̃F , combining this with Definition 3 and rearranging. To show that

eKEτK < 0 suppose otherwise, that KE is (weakly) increasing in τK . Note that ek̂EτK < 0 from

the characteriation of k̂E in (14). Furthermore, if KE is increasing in τK , the equation (26)

for µ(1) implies that µ(1) is decreasing in τK so that eµτK < 0. Then, since −1− R̃F
γ+R̃F

< 0,

it follows that eKEτK < 0, which is the required contradiction.

Proposition 5. The elasticity of the aggregate capital stock K with respect to the tax rates

τK and τW , holding constant pre-tax prices and the fraction N of agents who choose to become

workers, and assuming that τN adjusts to balance the government’s budget is, respectively:

eKτj =

(
KE
K

)
eKEτj

[
(rE − rF ) (1−MPC) + r̃X

(1+τC)
MPC

]
+ eSSUBτj

− (rF − δ) (1−MPC) +
(

γ
1+τC

)
MPC

,

for j ∈ {K;W}, where

eSSUBτK
= −

(
r̃XKE

K(1 + τC)

)
MPC − C

K
eMPC
τK

,

eSSUBτW
= −C

K
eMPC
τW

,

and MPC = ρ+γ

R̃∗F+γ
is the marginal propensity to consume out of aggregate resources and

where

eMPC
τj

=

(
1− τK
MPC

)
∂MPC

∂τj
.

Furthermore, eMPC
τK

> 0. If the MPC is sufficiently close to 1, then eKτK < 0.

Proof. The expression for eKτj follows from partially differentiating the steady state aggregate

resource constraint (23) with respect to r̃X and R̃F , combining this with Definition 3, using
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the consumption function (22) to substitute for the changes in aggregate consumption and

rearranging. Taking the derivative ∂MPC
∂τK

immediately reveals that eMPC
τK

= rF
R̃F+γ

> 0. To

show that an MPC close enough to 1 implies that eMPC
τK

< 0, note that eKEτK < 0 from

Proposition 4. Additionally, r̃X > 0 must hold in the steady state or no entrepreneur would

put capital into the risky technology. Then, for an MPC close enough to 1, the numerator

in the expression for eKτj must be negative. Equally, for an MPC close enough to 1, the

denominator of the expression for eKτj must be positive.

Above we established that the effect of a capital income tax on aggregate output depends

Y on its effect on K and KE. The results in Propositions 4 and 5 allow us to inspect this

effect in more detail. Focusing first on Proposition 4, we see that a tax change has four

effects on aggregate KE. First, it affects k̂E, that is, the fraction of each entrepreneur’s

resources that they choose to put in the risky technology. Second, it affects µ(1) – the

fraction of resources held by high ability entrepreneurs, which affects KE since low ability

entrepreneurs do not use the risky technology. These first two effects are captured by the

terms ek̂Eτj + eµτj for each j ∈ {K;W}. Third, a change in capital tax rate τK directly reduces

the post-tax profits of entrepreneurs, which reduces the resources they have to allocate to the

risky technology – this effect is captured by the “-1” term in the expression for eKEτK . These

first three effects have an impact on KE which is multiplied by the term MKE . MKE > 1

represents the effect that, as entrepreneurs devote more resources to the risky technology,

this in turn increases their incomes, allowing them to devote even larger amounts of resources

to the risky technology. The fourth effect is that changes in capital income and wealth taxes

affect the total post-tax return R̃F to the risk-free technology. This effect is captured by the

terms mutliplying MR̃F
. MR̃F

in turn has two components: a term −1
γ+R̃F

capturing the fact

that a fall in R̃F causes a substitution effect hat increases KE, and a term multiplying MKE

which captures the effect that a change in R̃F changes entrepreneurs’ total resources, which

in turn affects the aggregate level of KE.

Now, considering Proposition 5, the numerator in the expression for eKτj shows the degree

to which an increase in taxes raises aggregate saving, holding constant K, and the denomi-

nator shows how rapidly aggregate saving decreases as K rises. The terms multiplying eKEτj
in the numerator show that a major effect of a change in taxes on aggregate saving is the

effect of the tax change on KE. An increase in KE tends to increase aggregate savings

through two channels. First, it increases output by an amount in proportion to (rE − rF ),

which increase saving in proportion to (rE − rF )(1 −MPC). Second, when entrepreneurs

hold higher higher levels of KE, this implies their marginal return to saving is higher, which

further increases their saving in proportion to rE(1−τK)
(1+τC)

MPC. Finally, a change in taxes

also affects saving via substitution effects, since taxes directly affect the post-tax return to

saving. The size of this substiution effect is given by eSSUBτj
. For realistic parameter values,
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the MPC is relatively close to 1 (since this is the marginal propensity to consume out of

steady state income), which implies that the denominator is small and positive, indicating

that a change in the aggregate capital stock has a relatively small effect on aggregate saving.

Therefore, increases in capital income taxes have the potential to cause substantial decreases

in steady state aggregate capital K.

3.5.2 General Equilibrium Effects of Taxes on Equilibrium Allocations

Tax changes in the model have a wide range of general equilibrium effects on aggregate

variables, which are naturally more complicated to analyze than the partial equilibrium

effects. Fortunately, most of these general equilibrium effects can be ignored when finding

optimal tax rates. Recall that the equations of Proposition 2 imply that, conditional on

post-tax prices, pre-tax prices only affect steady state allocations via R, with R affecting the

return to capital and profits. Then, since the planner can set tax rates to target particular

values of post-tax prices (subject to its budget constraint), it emerges that the only way

changes in pre-tax prices matter for the optimal allocation and, therefore, optimal tax rates,

is via the function R. That is, optimal taxes can be correctly calculated as if tax changes

had no effect on pre-tax prices except via the effect of R on the return to capital and profits.

This is shown in Section 4.2.13 Since R reflects the distribution of profits between different

entrepreneurs, it emerges that the only way changes in pre-tax prices matter for optimal

taxation is via their effect on the distribution of profits across entrepreneurs. As such, in

this section, we study the effects of tax changes when tax changes also affect N , as well as

the pre-tax return to capital and profits via R, but we ignore all other effects of tax changes

on pre-tax prices. Thus, we let eYτK denote the elasticity of Y with respect to τK when R
and N may change, but pre-tax prices are otherwise held fixed. As a shorthand, we call this,

the general equilibrium elasticity of Y with respect to τK . Analogously with Definition 3,

we define eYτK according to:

eYτK =
1− τK
Y

∂Y

∂τK
.

We may then characterize eYτK following the same procedure used to characterize eYτK . We

obtain

eYτK = (rE − rF )
KE

Y
eKEτK + rF

K

Y
eKτK + (w − πF )eNτK ,

where eKτK , eKEτK and eNτK are defined analogously to the partial equilibrium elasticities; that

is, eKτK = 1−τK
K

∂K
∂τK

, eKEτK = 1−τK
KE

∂KE
∂τK

, and eNτK = 1−τK
N

∂N
∂τK

.

This equation indicates that the effect of a small change in τK on aggregate output is

ambiguous once changes in N are allowed for: a small cut in τK with a corresponding rise in

13Similar findings that general equilibrium effects can be ignored in optimal tax formulae also hold and
are discussed in earlier related work in the litererature, such as Piketty and Saez (2013).

31



τN will tend to increase capital accumulation, but will also tend to discourage agents from

becoming workers, which could reduce output if w > πF .

Defining the general equilibrium elasticity with respect to τW in the obvious analogous

way, and repeating the same steps that were used to characterize eYτK , we obtain:

eYτW = (rE − rF )
KE

Y
eKEτW + rF

K

Y
eKτW + (w − πF )eNτW .

Repeating the same approach to characterize the general equilibrium elasticities eKτj ,

and eKEτj , for for each j ∈ {K;W}, reveals that these are also very similar to the partial

equilibrium elasticities, but with additional terms reflecting the change in R and change in

N after a change in taxes. Specifically, for each j ∈ {K;W}

eKEτj = eKEτj −
N

1−N
eNτK +

(
(MKE − 1)R̃F

γ + R̃F

)
(R′1(·)eKEτj +R′2(·)eKτj +R′3(·)eNτj)

and

eKτj = eKτj +

(
KE
K

)
(eKEτj − e

KE
τj

)
[
(rE − rF ) (1−MPC) + r̃X

(1+τC)
MPC

]
− (rF − δ) (1−MPC) +

(
γ

1+τC

)
MPC

+
[(w − π)(1−MPC)] N

K
eNτj +

[
KE

1+τC

]
r̃X
K
MPC(R′1(·)eKEτj +R′2(·)eKτj +R′3(·)eNτj)

− (rF − δ) (1−MPC) +
(

γ
1+τC

)
MPC

,

whereMKE is as defined in Proposition 4, andR′i(·) denotes the derivative ofR(KE, K,N, π0)

with respect to its ith argument, where π0 is set such that R = 0 in the initial steady state.

The equation for eKEτj shows that tax changes affect KE through two additional general

equilibrium effects, in addition to the partial equilibrium effects noted above. First, a tax

change affects the number of agents who choose to become workers, which affectsKE becomes

workers do not use the risky technology. Second, a tax change affects pre-tax prices via R.

The change in R after the tax change is equal to R′1(·)eKEτj +R′2(·)eKτj +R′3(·)eNτj). A higher

R encourages capital accumulation because a higher R raises the excess return to capital

in the risky technology (which is r̃X(1 + R)), providing more resources and incentive for

entrepreneurs to accumulate higher levels of KE. The equation for eKτj shows that this is

equal to eKτj plus three additional terms that reflect, first, that in general equilibrium, KE

changes after tax changes by the additional amount (eKEτj − e
KE
τj

); second, that a tax change

affects N in proportion to eNτj , which affects aggregate income and therefore saving insofar as

the income of workers and entrepreneurs differs, and, third, that tax changes affect pre-tax

prices via R, with a higher R representing an increase in the excess return to capital in the
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risky technology, which encourages saving.

4 Optimal Taxes

In this section, we formulate and solve the planner’s problem of choosing optimal taxes in

order to maximize the steady-state welfare of a newborn agent. In solving for the optimal

taxes we use a calculus of variations approach, which requires that we first characterize the

the effects of changes in tax rate on welfare. It is then straightforward to use the effects

of tax changes on welfare to deduce optimal tax rates, since the first order conditions for

optimal tax rates are simply that the marginal effects of τK and τW on welfare are all equal

to zero.

4.1 Effects of Tax Changes on Welfare

The measure of welfare we consider is the lifetime present discounted utility of a newborn

agent in the steady state, which we denote by W . Since newborn agents are indifferent in

equilibrium between becoming entrepreneurs and workers, this is the same as the lifetime

present discounted utility of a newborn worker in the steady state. In discrete time, this is

W =
∞∑
s=0

(1− ρ)s(1− γ)s log
(
cNs
)
.

We can derive a simple formula of the change in welfare that results from a marginal

change in tax rates. As is common in the literature, we focus on the consumption equivalent

welfare change. Considering a small change in tax rates that changes steady state worker

consumption by dcNs in each period s of a newborn worker’s life, the consumption equivalent

change in welfare ∆N satisfies:

∞∑
s=0

(1− ρ)s(1− γ)s log
(
cNs (1 + ∆N)

)
=
∞∑
s=0

(1− ρ)s(1− γ)su(cNs + dcNs ).

Envelope theorem arguments, which we formalize in Appendix B.6, allow us to obtain a

simple formula for ∆N . In particular, ∆N satisfies:

w̃∆N = dw̃ + dR̃F
AN

1 + τC
,
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where dw̃ and dR̃F are the change in w̃ and R̃F as a result of the tax change and

AN =

∑∞
s=0

(
1−γ

1+R̃F

)s
aNs∑∞

s=0

(
1−γ

1+R̃F

)s
is the average value of the worker’s discounted lifetime assets.

It is possible to extend this argument to the continuous time case, as the following lemma

shows.

Lemma 4. The consumption equivalent change in steady state welfare ∆N from a marginal

change in taxes satisfies:

w̃∆N = dw̃ +
ANdR̃F

1 + τC

where

AN = (γ + R̃F )

∫ ∞
s=0

e−(γ+R̃F )saNs ds.

Proof. See Appendix B.6

Intuitively, the consumption equivalent change in welfare is simply equal to the change in

worker income on the margin due to changes in w̃ and R̃F , divided by the worker’s average

lifetime earnings w̃.

Having established a formula for the consumption equivalent change in welfare, we may

study the effects of tax changes on welfare using the same approach we took in the previous

section.

Partial Equilibrium Effect of Tax Changes on Welfare

To build intuition, we first provide a heuristic derivation of the marginal effect of a change

in τK on welfare in partial equilibrium. We assume that the planner changes τK by some

amount dτK , and changes τN by some amount dτN to balance the budget. Using the def-

initions of post-tax prices in Section 3.4.1 (and keeping pre-tax prices fixed for a partial

equilibrium analysis) and using Lemma 4, the resulting consumption equivalent change in

welfare satisfies:

∆N = − dτN
1− τN

−
(

(rF − δ)AN

(1− τN)w

)
dτK .

We use the government’s budget constraint to infer dτN as a function of dτK . To that
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end, it is convenient to write the government’s budget constraint as

G = τNBτN + τKBτK + τWBτW + τCBτC ,

where Bτj is the tax base for the tax τj, so that BτN = wN , BτK = (1 − N)πF + (rE −
rF )KE + (rF − δ)K, BτW = K and BτC = C.

Differentiating the government’s budget constraint with respect to dτK , holding constant

pre-tax prices, R and N (for a partial equilibrium analysis) we obtain that

0 = BτNdτN +BτKdτK +
∑
j

τj
∂Bτj

∂τK

∣∣
R=0,N

dτK .

Substituting this into our expression for ∆N above, multiplying both sides by (1−τN )wN
dτK

and

rearranging, we obtain:

(1− τN)wN
∂∆N

∂τK

∣∣
R=0,N

= BτK +
∑

j∈{K;W ;C;N}

τj
∂Bτj

∂τK

∣∣
R=0,N

−BN
τK
N,

where BN
τK

= (rF − δ)AN denotes the lifetime average additional tax payments an individual

worker would have to make, all else equal, after a unit rise in τK .

Intuitively, this equation states that the change in a worker’s welfare from an increase

in τK is proportional to revenue gained from the rise in τK (since the revenue gain funds

decreases in τN) minus the component of the τK tax rise that is paid for on average by

workers over their lifetime. The revenue gain per unit rise in τK is the tax base BτK , plus

a (negative) term representing the loss in revenue that arises from the behavioural changes

caused by the rise in τK .

Following the same approach for changes in τW , we obtain a formula for the partial

equilibrium effect of any tax change on welfare.

Proposition 6. The partial equilibrium effect of a change in tax rate τj on welfare, for

j ∈ {K;W} satisfies:

(1− τN)wN
∂∆N

∂τj

∣∣
R=0,N

= Bτj +
∑

m∈{K;W ;C;N}

τm
∂Bτm

∂τj

∣∣
R=0,N

−BN
τj
N.

where BN
τK

= (rF − δ)AN , BN
τW

= A and BN
τC

= w(1− τN).

Proof. Differentiate the aggregate resource constraint in Proposition 2 with respect to R̃F

and r̃X , fixing R = 0 and holding constant N . Substitute in the definitions of Bj above, the

equation for ∆N in Lemma 4 and rearrange.
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General Equilibrium Effect of Tax Changes on Welfare

As before, we consider the general equilibrium change allowing R and N to vary, but

otherwise assuming pre-tax prices are fixed. It is straightforward to extend the results of

Proposition 6 to the general equilibrium case: the general equilibrium welfare change has the

same formula as the partial equilibrium effects, except with general equilibrium derivatives

replacing partial equilibrium ones. That is, the general equilibrium effect of a change in tax

rate τj on welfare, for j ∈ {K;W} satisfies:

(1− τN)wN
∂∆N

∂τj
= Bτj +

∑
m∈{K;W ;C;N}

τm
∂Bτm

∂τj
−BN

τj
.

Using the definitions of the Bτj above, it is straightforward to write ∂Bτm
∂τj

as a function

of the elasticities of the variables KE, K and N with respect to taxes. For instance:

(1− τK)
∂BτN

∂τK
= wNeNτK

(1− τK)
∂BτK

∂τK
= −πFNeNτK + (rE − rF )KEe

KE
τK

+ (rF − δ)(KeKτK )

(1− τK)
∂BτW

∂τK
= KeKτK

(1− τK)
∂BτC

∂τK
= (1− τK)

∂

∂τK
(Y − δK −G) = (1− τK)

∂BτK

∂τK
+ (1− τK)

∂BτN

∂τK
.

The expressions, for each j, for
∂Bτj
∂τW

are identical to these, except that the elasticities on the

right hand side are all replaced by elasticities with respect to τW .

In the next section, we show that the optimal tax rates can be written as functions of

these derivatives of the Bτj terms. Therefore, the results above allow the derivatives of the

Bτj to be calculated, given the elasticities of KE, K and N with respect to taxes, which can

be used to calculate the optimal tax rates.

4.2 Characterizing Optimal Taxes

We next characterize the optimal taxes chosen by the planner. We focus on an optimal

steady state tax policy. In particular, we assume that the planner chooses steady state tax

rates {τ ∗K , τ ∗W , τ ∗N}, and an aggregate steady state S of the economy consistent with these

tax rates, in order to maximize our welfare measure – the present discounted utility of a

newborn agent in the steady state.

Since we have already established the marginal effects of tax changes on welfare, it is

relatively straightforward to derive the optimal tax rates. The first order conditions for the

optimal choice of τK and τW is simply that ∂∆N

∂τj
= 0 for these three tax rates. The optimal
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choice of τN can then be inferred from government budget balance. Specifically, the first

order condition for each τj is

0 = (1 + Aτjτj)(1− τN)wN
∂∆N

∂τj
= (1 + Ajτj)(Bτj −BN

τj
) +

∑
m∈{K;W ;C;N}

τmBτme
Bτm
τj

,

where eBτmτj
denotes the general equilibrium elasticity of Bτm with respect to τj, and AτK = −1

and AτW = 0.

Using the government budget constraint we can eliminate τN from the first order condition

for τj and obtain:

0 = (1 + Ajτj)(Bτj −BN
τj

) +Ge
BτN
τj +

∑
m∈{K;W ;C}

τmBτm(eBτmτj
− eBτNτj ).

Since BτN = wN it follows that e
BτN
τj ≡ eNτj , since the elasticities are calculated holding w

constant.

The first order conditions can be compactly written in matrix form as follows:

0 = (B −BN)1 + A(B −BN)T +GeN + EBT +BτCτCeBτC − eN1TBT ,

where 1 denotes the column vector (1, 1)T , eN denotes the column vector (eNτK , e
N
τW

)T , T
denotes the column vector (τK , τW )T , eBτC denotes the column vector (e

BτC
τK , e

BτC
τW )T and A,

B, BN and E are defined as follows:

A =

(
−1 0

0 0

)
, B =

(
BτK 0

0 BτW

)
,

BN =

(
BN
τK

0

0 BN
τW

)
, E =

(
e
BτK
τK e

BτW
τK

e
BτK
τW e

BτW
τW

)
.

Rearranging the first order condition, we therefore obtain the solution for the optimal tax

vector:

T = −
(
A
(
B −BN

)
+ EB − eN1TB

)−1 ((
B −BN

)
1 +GeN +BτCτCeBτC

)
. (28)

Thus, optimal taxes are entirely a function of three components – the size of the tax

base of each tax B, the elasticity of each tax base with respect to tax rates (E and eN),

and the degree to which each tax falls upon workers, BN . The latter is relevant because

the utilitarian planner has a motive to redistribute to workers if they have lower average
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consumption than entrepreneurs in the steady state. Since the elasticities E shows up in the

inverse term in equation (28), higher values of the elasticities will tend to make the right

hand side of the equation smaller, and drive optimal taxes on capital and wealth towards

zero. This is consistent with standard optimal tax principles, that it is optimal to set lower a

lower tax rate on a particular activity if the associated tax base is more elastic with respect

to the tax rate.

The derivation of the optimal tax formula here did not rely on most of the specific

assumptions of the model. The optimal tax formula above would be identical if different

functional forms were chosen for utility, or the distribution of entrepreneurial ability or

entrepreneurial shocks, or if the endogenous financial friction that we model were replaced

by an exogenous constraint on entrepreneur’s ability to issue equity and debt. However, an

advantage of the specific model assumptions is that they allow the elasticities in equation

(28) to be computed relatively easily, using the comparative static results in the previous

section. In the next section, we use these elasticities to calculate optimal taxes for specific

values of the parameters.

4.3 A Numerical Calibration

To interpret the magnitudes of these optimal taxes in practice, we undertake a numerical

calibration. To that end, we construct a benchmark economy that has the same primitives

as the economy outlined in Section 2 and in which we set taxes at their current levels in the

United States. We calibrate the benchmark economy at annual frequency and summarize

parameter values in Table 1.

Demographics We set the mortality rate γ to 1%, corresponding to a life expectancy of

100 years. We choose the discount rate ρ so that in the steady state the average return to

capital, weighted by capital shares and net of depreciation, is 4% (McGrattan and Prescott,

2001).

Technology We set the depreciation rate δ to 7%, approximately the average depreciation

rate in the US fixed asset tables, and the autocorrelation of the productivity shock 1−λθ to

0.885, as in Cooper and Haltiwanger (2006). Following Panousi (2012), we calibrate ϕ to 0.15,

to match the variance of entrepreneurial capital. We choose the lowest possible realization

of the idiosyncratic productivity shock, ε, to match a debt-to-asset ratio for entrepreneurs

of 0.35 (Mehrotra and Crouzet, 2017, Boar and Midrigan, 2019). Lastly, we assume that the

final output production technology is Cobb-Douglas Y = Y αE
E Y αF

F N1−αN and calibrate αE,

αF , αN and π, the probability of a high type (i.e. θ = 1), to match a labor share of 2/3,

the share of households who are entrepreneurs, the return to risky capital and the risk-free

interest rate. We target an average return to capital in risky projects gross of depreciation
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of 15% so that the return net of depreciation is 8%, approximately the annual rate of return

to equities in the US over the twentieth century (Mehra and Prescott, 2003). We calibrate

to a risk-free return gross of depreciation of 8%, consistent with a risk-free interest rate of

1% which is close to the average return of relatively riskless securities in the US over the

twentieth century (Mehra and Prescott, 2003). Finally, we target a share of entrepreneurs

of 11.7%, as reported by Boar and Midrigan (2020) using data from the Survey of Consumer

Finances.

Financial friction Since the entrepreneur’s optimal contract is equivalent to an equity and

debt contract, we calibrate the parameter φ, indicating the severity of the agency friction,

to 0.76 so as to match the equity share of business owners in the US data. We use the

Survey of Consumer Finances (National) Survey of Small Business Finances to document

that entrepreneurs own, on average, 84% of their firm’s equity.14

Tax system We set the consumption tax τC to 11%, following Altig et al. (2001) and

Cagetti and Nardi (2009). We set τE to 20%, in line with the US corporate tax rate for

small businesses reported in the OECD Tax Database, and τW to zero, in line with the

current practice in the US.15 We choose Ḡ, so that the share of government spending is 20%

of GDP, the historical average in the US over the past four decades.

Optimal Taxes. To quantify the various mechanisms, we consider separately how optimal

taxes depend on partial and general equilibrium effects in this calibrated model. The results

are shown in Table 2 below. The fourth row of the table shows the correct optimal taxes in

the calibrated model. The first three rows show the optimal taxes that arise when various

factors are held constant. We discuss each row in turn.

The first row calculates optimal taxes when the fraction of workers N is held fixed at the

initial steady state value and general equilibrium effects are ignored. These optimal taxes are

inferred by calculating the terms in the optimal tax equation (28) above in the initial steady

state, but using the partial equilibrium elasticities e
Bτi
τj instead of the general equilibrium

elasticities e
Bτi
τj and setting eNτj = 0. We see that, in this case, optimal taxes on capital income

are slightly negative and optimal wealth taxes essentially zero. The reason for this is that the

tax base for both capital income and wealth taxes is highly elastic with respect to tax rates,

since, as discussed in the previous section, the capital stock is highly elastic with respect to

tax changes. As a consequence of this high elasticity, tax revenue is maximized at tax rates

close to zero (since raising the tax seriously reduces the size of the tax base). The optimal

14See Appendix C for a detailed discussion of our treatment of the data.
15The calibrated value of τK is an average of the tax rate between 2000 and 2016 and includes both federal

and state taxes.
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Table 1: Parameter Values

Parameter Value used Target moment

γ 0.010 Lifespan 100 Years

ρ 0.009 Average net return to capital 4%

δ 0.070 Depreciation

λθ 0.115 Profitability autocor. (Cooper and Haltiwanger, 2006)

ϕ 0.150 Small Bus. Risk (Panousi, 2012)

ε 0.350 Debt-to-asset ratio (Boar and Midrigan, 2019)

αE 0.193 Labor share 2/3

αF 0.137 Risk-free rate

αN 0.593 Fraction of entrepreneurs (Boar and Midrigan, 2020)

π 0.015 Return to Equity

τC 0.110 Consumption tax rate (Cagetti and Nardi, 2009)

τK 0.200 Corp. tax rate small businesses (OECD Tax Database)

τW 0 Current US level

Ḡ 0.200 Govt. spending/GDP

φ 0.757 Small Bus. Owner Equity Share (SSBF)

capital income tax is actually slightly negative, since negative capital income taxes increase

KE. That is, negative capital income taxes not only increase aggregate capital accumulation,

but also increase the fraction of capital in the risky technology, by raising the relative return

to the risky technology and redistributing resources to high ability entrepreneurs, who earn

a higher rate of return to capital and therefore disproportionally benefit from lower capital

income taxes. Through these channels, negative capital income taxes increase steady state

output and therefore the revenue earned by the government from labor income taxes, making

them desirable.

The second row of Table 2 shows optimal taxes allowing for general equilibrium effects

on prices, but holding fixed N and all elasticities. These optimal taxes are calculated as in

the first row of the table, except that general equilibrium elasticities are used, but with eNτj
set to zero.16 Here, we see very different optimal taxes from the partial equilibrium case.

As explained above, the only effect of a general equilibrium price changes that is relevant

for optimal taxes is the effect of changes in R. Higher rates of capital taxation are much

more desirable in the general equilibrium case because they increase R. To understand this

mechanism, recall thatR reflects the degree to which entrepreneurs’ profits represent returns

16As such, all other general equilibrium elasticities are also slightly different from the full general equilib-
rium model, because we ignore all changes in K, KE and other aggregate variables that are due to changes
on N , since N is held constant.
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on investing in the risky technology, rather than economic rent from selling final goods. As

discussed above, R is decreasing in KE (near the steady state, where R = 0), because higher

KE reduces the pre-tax rate of return on the risky technology. Consequently, a higher value

of capital income taxes reduces KE (by reducing the post-tax return to the risky technology)

but this in turn raises R. The rise in R redistributes profits to those who invest in the risky

technology, and so increases the return to that technology, which is r̃X(1 +R). The rise in

the return to the risky technology substantially mitigates the fall in KE due to rising capital

income taxes. Consequently, allowing for these general equilibrium effects, the elasticity of

capital income to the tax rate is substantially lower than it was in partial equilibrium, and

so the optimal capital income tax is higher. The high value of optimal capital income taxes

encourages a slightly negative tax on wealth, since this encourages capital accumulation and

raises the revenue earned by the capital income taxes.

The third row of Table 2 repeats the same analysis, but fully allows for the variation of N

in response to changes in tax rates. As such, optimal taxes are calculated using the optimal

tax equation (28) above and using the correct general equilibrium elasticities calculated in

the initial steady state. Allowing for variation in N reduces the optimal tax rate on capital

income significantly, because high capital income taxes reduce entry into entrepreneurship,

which reduces output and therefore the government’s tax revenue.

The optimal taxes on the third row are not quite numerically correct, because changing

tax rates in turn affects the elasticities in the optimal tax equation (28). Therefore, to

correctly calculate optimal tax rates, it is necessary to repeatedly resolve the equation in

an iterative process – the equation is first used to calculate conjectured optimal tax rates,

then the elasticities are recalculated at the new tax rates, and the equation is solved again

yielding a new set of tax rates and so on. Comparing row 4 and row 3 of the table reveals

that this iterative process produces optimal taxes that are very close to those obtained

by just applying equation (28) once. This reveals that a very good approximation to the

optimal taxes is obtained, even if we only know the elasticities in the initial steady state.

An advantage of this is that elasticities in the initial steady state are more easily estimated

empirically.

Table 2: Optimal Taxes in Partial and General Equilibrium

τ ∗K τ ∗W τ ∗N

Partial Equilibrium, Fixed N −0.9% 0% 23.4%

General Equilibrium, Fixed N 57.1% −2% 14.1%

General Equilibrium 9.6% −0.4% 21.8%

General Equilibrium, Iterative 11.1% −0.4% 20.7%
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The Importance of Financial Frictions. We next analyze the implications of financial

frictions for optimal taxes. To that end, Figure 1 shows how optimal taxes vary with the

severity of financial frictions, governed by the parameter φ. To facilitate the interpretation

of the units on the horizontal axis, we note that varying φ from 0.3 (mild financial friction)

to 1 (severe financial friction) implies that the share of equity that entrepreneurs own in

their business increases from 33% to 110%. The dashed vertical line marks the value of

φ in our calibration. At the calibrated φ the optimal tax rates on capital income, wealth

and labor income are 11.14%, -0.44% and 20.7%, respectively. That is, it is optimal to tax

capital income and subsidize wealth accumulation. Three features are immediately evident

from the figure. First, that optimal wealth taxes are always close to zero for all values of

φ we consider. Second, that optimal capital income taxes are positive for all values of φ,

and third, optimal capital income taxes are decreasing in the value of φ. We discuss each of

these three in turn.

Figure 1: Optimal Taxes and Financial Frictions

First, the optimal wealth tax is close to zero, regardless of the value of φ. This arises from

our optimal taxation formula because the elasticity of all aggregate variables with respect to

the wealth tax is very large, as was also discussed above in Section 3.4.2. As a consequence

of this, the elasticities of all tax bases with respect to the wealth tax rate are large, leading

to an optimal wealth tax close to zero. The optimal wealth tax is generally found to be

slightly negative, because a negative wealth tax increases capital accumulation, which raises

the government’s revenue from the capital income tax.

Second, the optimal capital income tax rate is positive for most values of φ. As discussed

on page 41, this is because positive capital income taxes raiseR, which redistributes resources
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to the most efficient entrepreneurs and raises the return to capital. As such the increase in R
tends to increase K and KE, which therefore mitigates the negative effects of capital income

taxes on capital accumulation and on the allocation of capital.

Finally, it is evident from Figure 1 that the optimal capital income tax is decreasing in φ.

This is because, when φ is lower, financial frictions are tighter and so less capital is allocated

to the risky technology in the initial steady state. Therefore, with lower φ, the return on

capital in the risky technology is relatively higher. This means that a cut in capital income

taxes will increase the size of the tax bases by relatively more, encouraging the planner to

set a lower level of capital income tax to increase tax revenue.

Sensitivity analysis. Lastly, we explore how our results depend on values of other relevant

parameters. First, as is well known in the public finance literature, optimal taxes depend

on the underlying distribution of ability. In our case, however, variation in the dynamic

process governing entrepreneurial ability appears to matter little to results. To illustrate, we

consider two alternative calibrations of the autocorrelation of entrepreneurial ability, which

is governed by the parameter λθ. In the first calibration we reduce λθ from 0.115 to 0.05,

corresponding to a more persistent process for entrepreneurial ability. In the second one,

we increase this parameter to 0.2, indicative of a more persistent process for entrepreneurial

ability. In the first case, we find that optimal taxes on capital income, wealth and labor

income are equal to 13.9%, -0.41% and 18.7%, respectively. In the second case, these are

equal to 9.05%, -0.39% and 22.5%, respectively.

On the other hand, we find that results are more sensitive to the parameters governing

the returns to scale – optimal taxes on capital income decrease as parameter values move

towards constant returns to scale. Again, we consider two alternative calibrations of the

model. In the first calibration, we set αN = 0.5, implying that an elasticity of returns to

scale of 0.83, which is lower than the benchmark calibration’s 0.92 (where 1 denotes constant

returns). We find that, with αN = 0.5, optimal taxes on capital income, wealth and labor

income are equal to 21.27%, -0.41% and 27%, respectively. In the second calibration, we set

αN = 0.65, implying an elasticity of returns to scale of 0.99 – almost constant returns. In this

case, we find that the optimal tax on capital income, wealth and labor income are −4.14%,

−0.21% and 14.86%. Thus, moving towards constant returns strongly reduces optimal taxes

on capital income, and slightly reduces optimal taxes on labor income. This is because,

as discussed above, a major force influencing optimal taxes is the effect of capital income

taxes on R, which governs how far entrepreneurial profits are due to sales of the final good,

and how far they are due to the returns on risky capital. When parameters move towards

constant returns, entrepreneurs’ profits from selling the final good fall to zero, regardless of

the level of taxation, and so the mechanism through changes in R disappears. Consequently,
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optimal taxes on capital income become similar to those in the partial equilibrium case in

Table 2, because the general equilibrium effect through R disappears. As explained above,

in the partial equilibrium (or close to constant returns) case optimal taxes on capital income

are slightly negative, because this increases capital accumulation and improves the efficiency

of the allocation of capital, which raises output and therefore government tax revenue.

5 Conclusion

We examine optimal linear taxation in a setting with endogenous entry and financial frictions.

Financial frictions imply that the distribution of wealth across entrepreneurs with different

productivity levels affects how efficiently capital is allocated in the economy – a force missing

from models without financial frictions. The planner chooses taxes on capital income, wealth

and labor income to maximize the steady state welfare of a newborn agent. In the model,

newborn agents decide whether to become workers or entrepreneurs. Workers supply labor

inelastically, while entrepreneurs operate a production technology that uses capital and are

subject to a financial constraint that stems from informational frictions. As in the data,

entrepreneurs are relatively richer, leading to a redistributive motive for capital income and

wealth taxation.

Our model is analytically tractable and we characterize optimal steady state taxes as

closed-form functions of the size of tax bases and the elasticity of tax bases with respect to

taxes, in the tradition of the “sufficient statistics” approach to optimal taxation. Evaluated

at empirically plausible parameters, we that it is optimal to tax wealth at a rate close to zero

and to tax capital income at a positive rate, albeit lower than the labor income tax rate.

This result reflects a large elasticity of the wealth tax base with respect to the wealth tax and

a somewhat smaller elasticity of the capital income tax base to the capital income tax. The

latter is smaller because capital income taxes lead to price changes in general equilibrium

that raise the return to risky investment and redistribute resources from low ability to high

ability entrepreneurs, which partially counteracts the otherwise negative effects of capital

income taxes on capital accumulation.

Our optimal tax formula is general and does not depend on many of the details of the

model, such as functional form assumptions or the specific details of the financial friction.

However, to maintain analytical tractability and for simplicity of exposition, we restrict our

analysis to linear taxes and abstract from features of potential relevance such as worker

heterogeneity, elastic labor supply, bequests or aging. Relaxing these assumptions is left for

future work and while these considerations will doubtlessly affect the value of optimal taxes,

the channels we emphasize in this paper remain operative.
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Appendices

A Discrete Time Model

A.1 Worker’s Optimization Problem

We derive the solution to the worker’s problem. As a first step, we rewrite the worker’s

problem, replacing the state variable aN by PN .

Observe that the worker’s budget constraint may be rewritten as:

cNt +
RF,t

1 + τC,t

(1− γ)PN
t+1

RF,t

=
RF,t

1 + τC,t
PN
t .

Hence, abusing notation, the worker problem may be written as:

V N(PN , X) = max
c≥0,P ′≥0

(
log
(
cN
)

+ (1− ρ) (1− γ)V N
(
PN ′ , X ′

))
s.t. cN +

1− γ
1 + τC

PN ′ =
RF

1 + τC
PN

We shall solve the problem by guess and verify. We guess:

V N(PN , X) = Qt +
1

1− (1− ρ)(1− γ)
log
(
PN
t

)
Taking first order conditions, we get:(

RF

1 + τC
PN − 1− γ

1 + τC
PN ′

)−1
1− γ
1 + τC

= (1− ρ)(1− γ)
∂V N(PN ′ , X ′)

∂PN ′

Using the guess and simplifying, we obtain the worker’s policy functions:

PN ′ = (1− ρ) (1− γ)
RF

1− γ
PN

cN = [1− (1− ρ) (1− γ)]
RF

1 + τC
PN

To verify the guess, we plug the policy function conjectures back into the conjectured

1



value function:

V N(PN , X) = max

(
log

(
[1− (1− ρ) (1− γ)]

RF

1 + τC
PN

)
+ (1− ρ) (1− γ)

(
Q′ +

1

1− (1− ρ)(1− γ)
log

(
(1− ρ) (1− γ)

RF

1− γ
PN

)))
V N(PN , X) = log

(
(1− (1− ρ)(1− γ))

RF

1 + τc

)
+ (1− ρ)(1− γ)

(
Q′ +

1

1− (1− ρ)(1− γ)
log

(
(1− ρ)(1− γ)

RF

1− γ

))
+

1

1− (1− ρ)(1− γ)
logPN

=⇒ V N(PN , X) = V N(1, X)︸ ︷︷ ︸
=Q

+
1

1− (1− ρ)(1− γ)
logPN

A.2 Proof of Lemma 1

Note that the technology associated with an entrepreneur’s risky and risk-free projects dis-

plays constant returns to scale. Consider an entrepreneur Alice, who at some period t has

q > 0 times as much lifetime resources P as an entrepreneur Bob. The constant returns to

scale properties imply that Alice can produce q times as much of each intermediate good

as Bob, for each ε and θ and consume q times as much each period. Since, for any c,

log(qc) ≡ log(q) + log(c), Alice’s present discounted utility from these choices would then

be the same as Bob’s plus an additional
∑∞

j=0(1 − ρ)j(1 − γ)j log(q) = log(q)
1−(1−ρ)(1−γ)

. Since

these choices are possible for Alice, it must be that V (qP, θ,X) ≥ log(q)
1−(1−ρ)(1−γ)

+ V (P, θ,X).

However, on the other hand, Bob can choose to do everything that Alice does only 1
q

times as much. By the same logic as before, doing so would yield Bob a present dis-

counted utility equal to Alice’s minus log(q)
1−(1−ρ)(1−γ)

. Therefore, it must be the case that

V (P, θ,X) ≥ V (qP, θ,X)− log(q)
1−(1−ρ)(1−γ)

. Comparing these two inequalities that V must ful-

fil, it is immediate that it cannot satisfy both unless V (qP, θ,X) = log(q)
1−(1−ρ)(1−γ)

+V (P, θ,X).

In that case, it must be that V (P, θ,X) ≡ log(P )
1−(1−ρ)(1−γ)

+ V (1, θ,X). Let V (θ,X) denote

V (1, θ,X). Then it follows that V (P, θ,X) = V (θ,X) + log(P )
1−(1−ρ)(1−γ)

.

A.3 Proof of Lemma 2

Suppose that the entrepreneur is sells fraction 1− φ(1+τC)
(1−τK)(1−δ) equity in her risky project, at a

price of 1 per unit of kE invested in the project, retaining the rest herself. Suppose further,

that she issues b so that RF b is equal to the total end of period value of her risky project

2



ε = ε, including the profits earned from this project. Then,

RF b = (((ε− 1)(1− δ) + θrE)(1− τK)− τW )kE

and

b̂ = RF b+

(
1− φ(1 + τC)

(1− τK)(1− δ)

)
(ε− ε)(1− τK)kE

Substituting these into the entrepreneur’s budget constraints, and using the definitions of

ω, and ω, reveals that, in every state of the world, this contract would give the entrepreneur

the same end of period resources ω as the optimal contract.

A.4 Proof of Lemma 3

In an equilibrium of the economy, it must be the case every period that:

−φ+ (rE − rF )
1− τK
1 + τC

≤ 0 (A.1)

If this were not the case, then equations (9) and the expression for ω

ω =

(
−φ+ (rE − rF )

1− τK
1 + τC

)
kE +

(
1

1 + τC
RF

)
P

imply that ω is strictly increasing in kE for all ε > 0 for entrepreneurs with θ = 1. Then,

by choosing an arbitrarily high kE, such entrepreneurs will be able to achieve arbitrarily

high consumption and therefore utility. Therefore, if this condition held, some entrepreneurs

would desire to allocate an infinite amount of capital to their risky projects, which cannot

be an equilibrium, since the capital stock is finite each period.

B Continuous Time Model

B.1 Environment and Equilibrium with Period Length ∆

Let ∆ ∈ (0, 1] denote the length of a period. Over a period of length ∆, agents value

future consumption at rate (1− ρ∆), die with probability γ∆, capital depreciates at rate

δ∆, entrepreneurs draw a new productivity θ with probability λθ∆ and shocks ε satisfy

ε = ε+ (1− ε) exp

(
ϕ
√

∆ · R − ϕ2∆

2

)
, (B.1)
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where R ∼ N(0, 1) and ϕ is a parameter determining the variance of ε. This assumption

implies that E[ε] = 1 and Var(log(ε−ε)) = ϕ2∆. Risky projects produce θεkE∆ and risk-free

projects produce kF∆.

An entrepreneur values her expected future consumption stream according to

Et
[∑∞

j=0 (1− ρ∆)j (1− γ∆)j log (ci,t+j∆) ∆
]
. We define the lifetime income of an entrepreneur

who does not produce any intermediate goods and lends all of his endowment to the bank

at riskfree rate 1 + (RF − 1)∆ = 1 + R̃F∆ as,

Pi,t := ai,t +
∞∑
j=0

[
π?t+j∆(1− τK,t+j)(1− γ∆)j

Πj
k=01 + R̃F,t+k∆

]
︸ ︷︷ ︸

=:Ft

. (B.2)

A worker’s preferences are described by the lifetime utility function∑∞
j=0 (1− ρ∆)j (1− γ∆)j log

(
cNt+j∆

)
∆. The government sets taxes τC , τN , τK and τW∆ per

period, and has to finance exogenous expenditure G∆.

First, consider the worker’s problem for a given period length ∆:

V N(aN , X) = max
(
log
(
cN
)

∆ + (1− ρ∆) (1− γ∆)V N
(
aN ′, X ′

))
(B.3)

subject to:

cN∆(1 + τC) + (1− γ∆)aN ′ = w∆(1− τN) + (1 + (RF − 1)∆)aN ,

and non-negativity constraints on cN , aN ′.

Second, the entrepreneur’s problem is to solve:

V (P, θ,X) = sup

∫
ε>0

(
log(c)∆ + (1− ρ∆)(1− γ∆)

× E

[
V (P ′, θ′, X ′)

∣∣∣∣θ])dH(ε), (B.4)

subject to:

c∆ +
1− γ∆

1 + τC
P ′ = ω,

(1 + τC)ω = (1 + τC) cH∆− b̂+ (1− τK) π∆ + (τKδ∆− τW∆) k + (1− δ∆)k + (1− γ∆)F ′,

π∆ = (rE∆yE + rF∆yF ) + (y∆− w∆n− rE∆ydE − rF∆ydF ) + (1− δ∆) ((ε− 1)kE − kH) ,

the production functions cH = φkH , yE = θεkE, yF = kF , y = f(ydE, y
d
F , n), the incentive
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compatibility constraint:

(1− τK) (rE∆ + (1− δ∆)) kE
1 + τC

≥ φkE +
∂b̂(P, θ, ε,X)

∂ε

1

1 + τC
,

the break-even condition for the banks:∫
ε

b̂ (a, θ, ε,Xt) dH (ε) ≥ (1 + (RF − 1)∆)b (a, θ,Xt) ,

and non-negativity constraints on kE, kF , kH , c, cH , yE, yF , ω and P ′.

The equilibrium conditions of the model with period length ∆ are summarized below.

Definition 4. Given a sequence of tax rates {τW,t, τK,t, τC,t, τN,t}∞t=0, an equilibrium E∆

of the economy with period length ∆ is a sequence of prices {RF,t, rE,t, rF,t, wt}∞t=0, policy

functions giving entrepreneurs’ and workers’ decisions and a sequence of aggregate variables

{Ct, CH,t, Kt,

KE,t, KF,t, KH,t, Yt, Nt}∞t=0 such that:

1. The government’s budget constraint is balanced every period:

G∆ = τN,twt∆Nt+τK,t(Yt∆−wT∆Nt−δ∆Kt)+τW,t∆Kt+τC,t(Ct∆−φKH,t∆). (B.5)

2. Workers’ decision rules solve the worker’s optimization problem B.3.

3. Entrepreneurs’ decision rules are given by the solution to the entrepreneur’s problem

B.4.

4. {Ct, CH,t, Kt, KE,t, KF,t, KH,t, Yt}∞t=0 represent the aggregate of household’s decisions.

5. Newborn agents are indifferent between being entrepreneurs and workers:

∞∑
j=0

(1− ρ∆)j (1− γ∆)j log
(
cNt+j∆

)
∆ = Et

[
∞∑
j=0

(1− ρ∆)j (1− γ∆)j log (ci,t+j∆) ∆

]
.

(B.6)

6. The asset, intermediate goods and labor markets clear.

The final goods market clearing condition then follows by Walras’ law:

Gt∆ + Ct∆ +Kt+∆ = Yt∆ + (1− δ∆) (KE,t +KF,t −KH,t) + CH,t∆. (B.7)
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B.2 Solution to the Worker’s and Entrepreneur’s Problem with

Period Length ∆

Following the same derivation as in the main text, where ∆ = 1, it can readily be shown

that the solution to the worker’s problem is given by

cN∆ = [1− (1− ρ∆) (1− γ∆)]
1 + R̃F∆

1 + τC
PN = (γ + ρ− γρ∆)

1 + R̃F∆

1 + τC
∆PN , (B.8)

PN ′ = (1− ρ∆) (1 + R̃F∆)PN . (B.9)

Where

PN
i,t := aNi,t +

∞∑
j=0

[
wt+j∆(1− τN,t+j)(1− γ∆)j

Πj
k=01 + R̃F,t+k∆

]
︸ ︷︷ ︸

=:Ft

. (B.10)

The entrepreneur’s between period problem is given by

c∆ = (1− (1− ρ∆)(1− γ∆))ω = (γ + ρ+ γρ∆) ∆ω, (B.11)

P ′ = (1 + τC)(1− ρ∆)ω =
1 + τC
1− γ∆

(ω − c∆). (B.12)

The entrepreneur’s within period problem is to choose functions kE (P, θ,X) and ω (P, θ,X)

to solve:

sup

∫
ε

log(ω + φεkE)dH(ε), (B.13)

subject to the constraints:

ω =

(
−φ+

1− τK
1 + τC

(rEθ − rF )∆

)
kE +

(
1

1 + τC
(1 + R̃F∆)

)
P (B.14)

kE ≥ 0 (B.15)

ω + φεkE ≥ 0, (B.16)

where R̃F is defined as in the main text. The following proposition summarizes the en-

trepreneur’s optimal decisions.

Proposition 7. In equilibrium, the entrepreneur’s problem has a unique solution for c(P, θ, ε,X),

P ′(P, θ, ε,X), ω(P, θ, ε,X) and kE(P, θ,X) which depends continuously on the parameters.

The entrepreneur’s optimal choice of kE is:

kE =
S−1

(
max

{
0; min

{
(rEθ−rF )∆(1−τK)

φ(1+τC)
;S?
}})

P
(

1 + R̃F∆
)

φ− (rEθ−rF )∆(1−τK)
1+τC

S−1
(

max
{

0; min
{

(rEθ−rF )∆(1−τK)
φ(1+τC)

;S?
}}) , (B.17)
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where S? = S
(

1
1−ε

)
. For any equilibrium values of rE, rF , the entrepreneur’s choices

entail

ω =

(
φ (ε− 1) +

1− τK
1 + τC

(rEθ − rF )∆

)
kE +

(
1

1 + τC
(1 + R̃F∆)

)
P (B.18)

c = (γ + ρ+ γρ∆)ω (B.19)

P ′ = (1 + τC)(1− ρ∆)ω, (B.20)

where

S(x) = 1−

∫
ε

(
1 + x(ε− 1)

)−1

εh (ε) dε

∫
ε

(
1 + x(ε− 1)

)−1

h (ε) dε

, (B.21)

and

S? = S

(
1

1− ε

)
. (B.22)

Here S :
[
0, 1

1−ε

]
→ [0, S?] is a differentiable and strictly increasing (and therefore invertible)

function.

Proof. The derivative of the entrepreneur’s objective function with respect to kE is:

∂

∂kE

∫
ε

log (ω + φεkE) dH(ε)

=

∫
ε

(ω + φεkE)−1

(
∂ω

∂kE
+ φε

)
dH(ε)

=

∫
ε

(ω + φεkE)−1

(
φ(ε− 1) +

1− τK
1 + τC

(rEθ − rF )∆

)
dH(ε)

= (ω + φkE)−1

∫
ε

(
ω

ω + φkE
+

φkE
ω + φkE

ε

)−1(
φ(ε− 1) +

1− τK
1 + τC

(rEθ − rF )∆

)
dH(ε)

= (ω + φkE)−1

∫
ε

(1− x+ xε)−1

(
φ(ε− 1) +

1− τK
1 + τC

(rEθ − rF )∆

)
dH(ε),

where

x =
φkE

ω + φkE
. (B.23)

Here we used that ω+ φkE > 0 at any feasible kE. This holds because the constraint (B.16)

implies that

0 ≤ ω + φεkE < ω + φE[ε]kE = ω + φkE

Since kE ≥ 0, equation (B.23) in turn implies that x ≥ 0 at any feasible choice. Furthermore,

x ≤ 1
1−ε . To show this, note that it was shown above that the entrepreneur’s end of period

7



consumption is proportional to

ω ≡ ω + φεkE ≡ (1− x+ xε)(ω + φkE)

Since ω + φkE > 0, it follows that 1− x+ xε ≥ 0, or the entrepreneur’s consumption would

be negative with positive probabilty. Rearranging this condition, we obtain that x ≤ 1
1−ε , as

desired.

Now we shall show that x is monotonically increasing in kE. Using the definition of ω in

equation (B.16) and the definition of x in equation (B.23), we obtain that

∂x

∂kE
∝
(

1

1 + τC
(1 + R̃F∆)

)
P.

Since the entrepreneur can convert units of capital into consumption at rate φ and the

risk free rate of return is 1
1+τC

(1 + R̃F∆), there can only be an equilibrium in which some

entrepreneurs put a positive amount of capital in the risk-free sector if 1
1+τC

(1+R̃F∆) ≥ φ >

0. Moreover, by definition P > 0, leading us to conclude that ∂x
∂kE

> 0. So x is monotonically

increasing in kE, and x = 0 when kE = 0, while x = 1
1−ε corresponds to the highest possible

kE the entrepreneur can choose while ensuring that consumption is non-negative.

Using that x ∈ [0, 1
1−ε ], the expression for the derivative of the entrepreneur’s objective

function can be further rearranged to:

φ

ω + φkE

∫
ε

(1 + x(ε− 1))−1

(
ε− 1 +

(rEθ − rF )∆(1− τK)

φ(1 + τC)

)
dH(ε)

=
φ

ω + φkE

∫
ε

(1 + x(ε− 1))−1 dH(ε)

(∫
ε
(1 + x(ε− 1))−1 εdH(ε)∫
ε
(1 + x(ε− 1))−1 dH(ε)

− 1 +
(rEθ − rF )∆(1− τK)

φ(1 + τC)

)

=
φ

ω + φkE

∫
ε

(1 + x(ε− 1))−1 dH(ε)

(
(rEθ − rF )∆(1− τK)

φ(1 + τC)
− S(x)

)
,

where

S(x) = 1−

∫
ε

(
1 + x(ε− 1)

)−1

ε · dH (ε)

∫
ε

(
1 + x(ε− 1)

)−1

dH (ε)

.

Since ω + φkE > 0 and x−1 + ε − 1 ≥ 0 for x ∈ (0, 1
1−ε ], with strict inequality for ε > ε, it

follows that the sign of this derivative of the entrepreneur’s within period objective function

is given by the sign of:
(rEθ − rF )∆(1− τK)

φ(1 + τC)
− S(x) (B.24)
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In the case of an interior solution, the first order condition for the optimal choice of kE is:

(rEθ − rF )∆(1− τK)

φ(1 + τC)
− S(x) = 0 (B.25)

We now show that S(x) is strictly increasing over x ∈ (0, 1
1−ε ]. To this end, we rewrite

S(x) as follows:

S(x) = 1− 1

x


∫
ε

(
1 + x(ε− 1)

)−1

xε · dH (ε)

∫
ε

(
1 + x(ε− 1)

)−1

dH (ε)


=

1

x
−

(∫
ε

(
x−1 + ε− 1

)−1

dH (ε)

)−1

.

Since all the terms in S(x) are differentiable with respect to x, for x ∈ (0, 1
1−ε ], it follows

that S(x) is itself differentiable over x ∈ (0, 1
1−ε ]. The derivative is:

S ′(x) = x−2

−1 +

(∫
ε

(
x−1 + ε− 1

)−1

dH (ε)

)−2 ∫
ε

(
x−1 + ε− 1

)−2

dH (ε)

 . (B.26)

Using Jensen’s inequality,

E

[(
x−1 + ε− 1

)−2
]

= E

((x−1 + ε− 1

)−1
)2
 > E

[ (
x−1 + ε− 1

)−1
]2

.

Substituting this into (B.26):

S ′(x) > x−2

−1 +

(∫
ε

(
x−1 + ε− 1

)−1

dH (ε)

)−2(∫
ε

(
x−1 + ε− 1

)−1

dH (ε)

)2
 = 0,

where we used that x−1+ε−1 ≥ 0 for x ∈ (0, 1
1−ε ], with strict inequality for ε > 0. Therefore,

S(x) is strictly increasing over x ∈ (0, 1
1−ε ], as desired. Equation (B.21) immediately implies

that S is continuous over x ∈ [0, 1
1−ε ] and so S(x) is also strictly increasing over x ∈ [0, 1

1−ε ].

Recall that the sign of the derivative of the entrepreneur’s within-period objective func-

tion with respect to kE is given by (B.24) and that x is monotonically increasing in kE, with

x = 0 when kE = 0 and x = 1
1−ε corresponding to the highest possible kE the entrepreneur

can choose.

Since S(x) is strictly increasing over x ∈ [0, 1
1−ε ], it follows that there are three cases.
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If (rEθ−rF )∆(1−τK)
φ(1+τC)

≤ S(0), then the entrepreneur optimally chooses the corner solution

kE = x = 0. If (rEθ−rF )∆(1−τK)
φ(1+τC)

≥ S
(

1
1−ε

)
, then the entrepreneur optimally chooses

the corner solution x = 1
1−ε , which corresponds to the highest possible choice of kE. If

S(0) < (rEθ−rF )∆(1−τK)
φ(1+τC)

< S
(

1
1−ε

)
, then, by the intermediate value theorem, there is a

unique x satisfying the first order condition (B.25). In that case, since the entrepreneur’s

within-period objective function is strictly concave with respect to kE, it follows that the

first order condition (B.25) characterizes the unique optimal choice of kE.

For the case where the first order condition holds, we may use the fact that S is monotone

and differentiable (and therefore invertible) to rearrange the first order contion as follows:

x = S−1

(
(rEθ − rF )∆(1− τK)

φ(1 + τC)

)

Let S? = S
(

1
1−ε

)
. Then, S−1(S?) = 1

1−ε . Furthermore, S(0) = 0 (by equation (B.21))

and so S−1(0) = 0. Since S is monotonically increasing on x[0, 1
1−ε ], S

−1 is monotonically

increasing on [0, S?].

As such, we may group the three cases above as follows:

x =


S−1(0) if (rEθ−rF )∆(1−τK)

φ(1+τC)
≤ 0

S−1
(

(rEθ−rF )∆(1−τK)
φ(1+τC)

)
if (rEθ−rF )∆(1−τK)

φ(1+τC)
∈ (0, S?)

S−1(S?) if (rEθ−rF )∆(1−τK)
φ(1+τC)

≥ S?

Combining this with (B.23) to solve for kE, and simplifying, we have:

kE =
S−1

(
max

{
0; min

{
(rEθ−rF )∆(1−τK)

φ(1+τC)
;S?
}})

P
(

1 + R̃F∆
)

φ− (rEθ−rF )∆(1−τK)
1+τC

S−1
(

max
{

0; min
{

(rEθ−rF )∆(1−τK)
φ(1+τC)

;S?
}})

From equations (9) and (B.14), we have that

ω =

(
φ (ε− 1) +

1− τK
1 + τC

(rEθ − rF )∆

)
kE +

(
1

1 + τC
(1 + R̃F∆)

)
P.

Combining these results with equations (B.11) and (B.12) yields all the results of the propo-

sition.

B.3 Proof of Proposition 1

This proof makes use of the following two lemmas.
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Lemma 5. The following holds, for any x ∈
[
0; 1

1−ε

]
:

lim
∆→0

S(x)

∆
= (1− ε)2ϕ2x. (B.27)

Proof. To prove this, note first that

S(x)

∆
=

1

∆

(
1−

∫
ε
(1 + x(ε− 1))−1 εdH (ε)∫
ε
(1 + x(ε− 1))−1 dH (ε)

)
= −

(∫
ε>0

(
ε−1
∆

)
(1 + x(ε− 1))−1dH (ε)∫

ε>0
(1 + x(ε− 1))−1dH (ε)

)
.

Then, it remains to show that, for any x in the domain of S,

lim
∆→0

[∫
ε>0

(
ε−1
∆

)
(1 + x(ε− 1))−1dH (ε)∫

ε>0
(1 + x(ε− 1))−1dH (ε)

]
= −x(1− ε)2ϕ2. (B.28)

To prove this, we prove the following results, from which equation (B.28) follows trivially:

lim∆→0

∫
ε>0

(
ε−1
∆

)
(1 + x(ε− 1))−1dH (ε) = −x(1− ε)2ϕ2 (B.29)

lim∆→0

∫
ε>0

(1 + x(ε− 1))−1dH (ε) = 1 (B.30)

To prove these, recall that the εi,t is given by:

εi,t = ε+ (1− ε) exp

(
ϕ
√

∆Ri,t −
ϕ2∆

2

)
.

where Ri,t ∼ N(0, 1). This implies that

εi,t − 1 = (1− ε)
(

exp

(
ϕ
√

∆Ri,t −
ϕ2∆

2

)
− 1

)
.

Therefore, the left hand side of (B.29) is:

lim
∆→0

∫ ∞
−∞

(1−ε)

exp
(
ϕ
√

∆R− ϕ2∆
2

)
− 1

∆

(1 + x(1− ε)
(

exp

(
ϕ
√

∆R− ϕ2∆

2

)
− 1

))−1

dΦ (R) ,

where Φ(·) is the standard normal cdf. Likewise, the left hand side of (B.30) is:

lim
∆→0

∫ ∞
−∞

(
1 + x(1− ε)

(
exp

(
ϕ
√

∆R− ϕ2∆

2

)
− 1

))−1

dΦ (R) .

Now, we consider a first order approximation of exp
(
ϕ
√

∆R− ϕ2∆
2

)
in units of

√
∆,
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around the point
√

∆ = 0:

exp

(
ϕ
√

∆R− ϕ2∆

2

)
' 1 + ϕ

√
∆R. (B.31)

Similarly, in the neighborhood of
√

∆ = 0:(
1 + x(1− ε)

(
exp

(
ϕ
√

∆R− ϕ2∆

2

)
− 1

))−1

' 1− x(1− ε)ϕ
√

∆R. (B.32)

Multiplying the term in the limit on the left hand side of (B.29) by ∆, and ignoring

terms of order greater than ∆, we therefore can write it as:∫ ∞
−∞

(1− ε)ϕ
√

∆ · R
(

1− x(1− ε)ϕ
√

∆R
)

dΦ (R)

=

∫ ∞
−∞

(1− ε)ϕ
√

∆ · R − x(1− ε)2ϕ2∆R2dΦ (R)

= (1− ε)ϕ
√

∆E[R]− x(1− ε)2ϕ2∆E[R2]

= −x(1− ε)2ϕ2∆.

since R is normally distributed. Hence (B.29) follows immediately.

Likewise, considering the term on the left hand side of (B.30), we have:∫ ∞
−∞

1− x(1− ε)ϕ
√

∆RdΦ (R)

=1− x(1− ε)ϕ
√

∆E[R]

=1.

This proves (B.30).

Lemma 6. For any z ∈ (−∞,∞), it holds that

lim
∆→0

S−1(max{0; min{∆z;S?}}) = max

{
0; min

{
z

(1− ε)2ϕ2
;

1

1− ε

}}
. (B.33)

Proof. To prove (B.33), we first note that

lim
∆→0

S?

∆
= (1− ε)ϕ2. (B.34)

This follows immediately from the definition of S? in (B.22) and from Lemma 5.

12



Now, we show that

∀z ∈ [0, (1− ε)ϕ2), lim
∆→0

S−1 (∆z) =
z

ϕ2(1− ε)2
. (B.35)

To prove (B.35) , define the function F (x) according to:

F (x) =
S(x)

∆
. (B.36)

where x ∈
(

0, 1
1−ε

)
. Given that S is continuous and strictly increasing, it follows that

function F (·) is continuous and strictly increasing, and therefore invertible. We now show

that, for any z in the range of F ,

F−1(z) ≡ S−1 (∆z) . (B.37)

To show this let x = F−1(z). Then z = F (x) = S(x)
∆

, so S(x) = ∆z and x = S−1(∆z),

giving us (B.37).

Define the function F (x) = (1 − ε)2ϕ2x. It follows from simple rearrangement that its

inverse is:

F
−1

(x) =
x

(1− ε)2ϕ2
. (B.38)

We know from Lemma 5 that, as ∆→ 0, F (x) converges to F (x). Since F is continuous,

this convergence is uniform, and the inverse F−1(x) converges to F
−1

(x). Then, using

equations (B.37) and (B.38), we obtain (B.35) for values of z in the relevant domain.

Note that, for ∆ > 0, the domain of S−1(·) is [0, S?]. Therefore, the result (B.35) must

hold for all z ∈
(
0, lim∆→0

S?

∆

)
≡ (0, (1−ε)ϕ2) since, for any such z, ∆z will be in will be in the

domain of S−1 for sufficiently small ∆ > 0. Equally, it must be true that lim∆→0 S
−1(0) = 0,

since S−1(0) = 0 for any value of ∆ > 0. Therefore, (B.35) follows for z ∈ [0, (1− ε)ϕ2).

Now, using (B.34) and (B.35), we prove (B.33) for z ∈ (−∞,∞). We proceed in cases.

First, consider the case z ≤ 0. Then, for sufficiently small ∆ > 0, equation (B.34) implies

that ∆z ≤ 0 < S?. Then,

lim
∆→0

S−1(max{0; min{∆z;S?}}) = lim
∆→0

S−1(0) = 0, (B.39)

where the second equality used (B.35).

Now, suppose that z ∈
(

0, 1
1−ε

)
. Then, for sufficiently small ∆ > 0, equation (B.34)

implies that 0 < ∆z < S?. Then,

lim
∆→0

S−1(max{0; min{∆z;S?}}) = lim
∆→0

S−1(∆z) =
z

(1− ε)2ϕ2
, (B.40)
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where the second equality used (B.35).

Now, suppose that z > 1
1−ε . Then, for sufficiently small ∆ > 0, equation (B.34) implies

that ∆z > S? > 0. Then,

lim
∆→0

S−1(max{0; min{∆z;S?}}) = lim
∆→0

S−1(S?) = lim
∆→0

1

1− ε
=

1

1− ε
, (B.41)

where the second equality used that, for any ∆ > 0, S−1(S?) = 1
1−ε , since S? = S

(
1

1−ε

)
, by

definition.

Comparing equation (B.33) with equations (B.39),(B.40) and (B.41), we see that we have

proven (B.33) for any z ∈ (−∞,∞) except for z = 1
1−ε . In particular, (B.33) must hold for

all z 6= 1
1−ε in the neighborhood of 1

1−ε . Now, note that the left hand side of (B.33) is

continuous and weakly increasing in z for any ∆ > 0. Equally, the right hand side of (B.33)

is continuous and weakly increasing in z. Continuity arguments then imply that (B.33) also

holds at z = 1
1−ε .

Proof of the Propositon

First, derive the worker’s continuous time solution. Consider the discrete time solution

with period length ∆.

cN∆ = (γ + ρ− γρ∆)
1 + R̃F∆

1 + τC
∆PN , (B.42)

PN ′ = (1− ρ∆) (1 + R̃F∆)PN , (B.43)

Taking the limit of equation (B.42) as ∆→ 0, we obtain equation (12).

Now consider
PN ′ − PN

∆
=
[
(1− ρ∆)R̃F − ρ

]
PN .

Taking the limit of this as ∆→ 0, we get

dPN =
{[
R̃F − ρ

]
PN
}

dt.

Using the solution for cN , given by equation (12), we obtain (13).

Now derive the entrepreneur’s continuous time solution. Taking the limit of equation

(B.17) as ∆ → 0, and using Lemma 6, we obtain (14). Combining (B.18) and (B.19), we

get:

c = (ρ+ γ − ργ∆)

[
P

(
1 + R̃F∆

1 + τC

)
+ kE

(
φ (ε− 1) +

1− τK
1 + τC

(rEθ − rF )∆

)]
.

Taking the limit of this as ∆→ 0 and noting that, as ∆→ 0, ε→ 1 in probability, we obtain

14



(15). Finally, we note that Proposition 7 implies that:

P ′ =
1 + τC
1− γ∆

([
P

(
1 + R̃F∆

1 + τC

)
+ kE

(
φ (ε− 1) +

1− τK
1 + τC

(rEθ − rF )∆

)]
− c∆

)
,

so that

P ′ − P
∆

=
1 + τC
1− γ∆

(
P

(
R̃F + γ

1 + τC

)
+ kE

[
φ

(
ε− 1

∆

)
+

1− τK
1 + τC

(rEθ − rF )

]
− c

)
. (B.44)

Now, for sufficiently small ∆, εi,t−1
∆
' (1 − ε)ϕ

√
∆Ri,t. Furthermore,

Ri,t√
∆

corresponds to

the difference of a standard Brownian motion, since
Ri,t√

∆
∼ N(0,∆). Therefore, as ∆ → 0,

equation (B.44) simplifies to (16).

B.4 Proof of Proposition 2

As a first step, we characterize a steady state equilibrium in Proposition 8, as per Definitions

1 and 2. As a second step, we show that the aggregate variables {K∗, K∗E, C∗, N∗,R∗, Y ∗},
post-tax prices

{
r̃∗X , R̃

∗
F , w̃

∗, π̃∗F

}
and consumption tax rate τ ∗C constitute an equilibrium ac-

cording to Proposition 2 if and only if the aggregate variables
{
K∗, K∗E, C

∗, N∗, F ∗, FN∗,P∗
}

,

prices {r∗E, r∗F , R∗F , w∗, π∗F} and taxes {τ ∗W , τ ∗K , τ ∗C , τ ∗N} constitute an equilibrium according to

Proposition 8.

B.4.1 Alternative characterization of the steady state equilibrium

Proposition 8. There exists a steady state S which is consistent with the particular values

of aggregate variables aggregate variables
{
K∗, K∗E, C

∗, N∗, F ∗, FN∗,P∗
}

, prices {r∗E, r∗F , R∗F , w∗, π∗F}
and taxes {τ ∗W , τ ∗K , τ ∗C , τ ∗N} and in which no entrepreneurs hide capital or intermediate goods,

if and only if the following conditions hold:

1. The government’s budget constraint is balanced every period:

Ḡ = τ ∗Nw
∗N∗ + τ ∗K(π∗F (1−N∗) + (r∗E − r∗F )K∗E + (r∗F − δ)K∗) + τ ∗WK

∗ + τ ∗CC
∗ (B.45)

This comes directly from the governement budget constraint of an economy with period

length ∆ given by equation (B.5).

2. Aggregate consumption respects the solution to the worker’s and entrepreneur’s opti-

mization problem:

C∗ =
ρ+ γ

1 + τ ∗C

(
K∗ +N∗FN∗ + (1−N∗)F ∗

)
, (B.46)
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We derive aggregate steady state consumption (B.46) by integrationg over the con-

sumption policy function of workers and entrepreneurs, given by equations (12) and

(15):

C∗ =
ρ+ γ

1 + τ ∗C
(

∫
i≤N∗

PN∗
i di+

∫
i>N∗

P ∗i di),

C∗ =
ρ+ γ

1 + τ ∗C
(

∫
i≤N∗

(aN∗i + FN∗)di+

∫
i>N∗

(a∗i + F ∗)di),

C∗ =
ρ+ γ

1 + τ ∗C
(K∗ +N∗FN∗ + (1−N∗)F ∗).

Where FN∗ and F ∗ are obtained by evaluating (B.2) and (B.10) at steady state prices

and steady state tax rates and taking the limit as ∆→ 0:

FN∗ =
w∗(1− τ ∗N)

γ + (R∗F − 1)
(B.47)

F ∗ =
π∗F (1− τ ∗K)

γ + (R∗F − 1)
(B.48)

3. Aggregate risky capital respects the solution to the entrepreneur’s optimization problem:

K∗E =

∫
i>N∗

k̂E(θi)P
∗
i di =

∑
θ

k̂E(θ)

∫
i>N∗,θi=θ

P ∗i di = P∗
∑
θ

k̂E(θ)µ∗(θ)

= P∗k̂E(1)µ∗(1), (B.49)

where k̂E(1) is given by the continuous time policy function (14), and we directly use

that optimally k̂E(0) = 0.

4. No-Arbitrage condition: entrepreneurs are indifferent between investing in the produc-

tion of the risk-free intermediate good and lending capital to the bank:

R∗F = 1 + [(1− τ ∗K) (r∗F − δ)− τ ∗W ] . (B.50)

5. The stationary distribution of entrepreneurial wealth respects transition probabilites and

entrepreneur’s policy functions:

(a) Total entrepreneurial wealth, P∗, is given by:

P∗ =
1

γ + ρ+ (R∗F − 1)− (r∗E − r∗F )(1− τ ∗K)k̂E(1)µ∗ (1)
γ(1−N∗)F ∗ (B.51)
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(b) The fraction of entrepreneurial wealth owned by entrepreneurs of type θ, µ∗ (θ),

is given by:

µ∗ (1) =
λθg(1) + γg(1) (1−N∗)F ∗

P∗

γ + ρ+ λθ −
(

(R∗F − 1) + k̂E(1) (r∗E − r∗F ) (1− τ ∗K)
) (B.52)

µ∗(0) = 1− µ∗(1)

The details of the derivation of the above characterizations of steady state wealth can

be found in Appendix B.4.4.

6. Optimality in the production of the final good.17 Moreover the intermediate goods mar-

kets and the labor market clear:

π∗F = f

(
K∗E

1−N∗
,
K∗ −K∗E
1−N∗

,
N∗

1−N∗

)
− r∗E

K∗E
1−N∗

− r∗F
K∗ −K∗E
1−N∗

− w∗ N∗

1−N∗
,

(B.53)

r∗E = f1

(
K∗E

1−N∗
,
K∗ −K∗E
1−N∗

,
N∗

1−N∗

)
, (B.54)

r∗F = f2

(
K∗E

1−N∗
,
K∗ −K∗E
1−N∗

,
N∗

1−N∗

)
, (B.55)

w∗ = f3

(
K∗E

1−N∗
,
K∗ −K∗E
1−N∗

,
N∗

1−N∗

)
. (B.56)

7. Newborn agents are indifferent between being entrepreneurs and workers:

log(w̃∗) = log(π̃∗F ) +
g(1)

ρ+ γ

[
(r∗E − r∗F )(1− τ ∗K)k̂(1)− 1

2

(
φ(1− ε)(1 + τC)k̂(1)ϕ

)2
]
.

(B.57)

This condition follows from substituting the steady state expressions for V N
(
FN∗, X∗

)
and V (F ∗, θ,X∗) (derived in Appendix B.4.5 and B.4.6) into the indifference condition

of a newborn:

V N
(
FN∗, X∗

)
= EθV (F ∗, θ,X∗) .

8. The final goods market clears:

C∗ + δK∗ +G = f

(
K∗E

1−N∗
,
K∗ −K∗E
1−N∗

,
N∗

1−N∗

)
(1−N∗), (B.58)

which is obtained by evaluating the goods market clearing condition at steady state

17Note that this leads to equalized output f and profits π∗F from final good production across all en-
trepreneurs.
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values.

9. Lastly, the following inequality conditions are satisfied:

r∗E > r∗F , K∗E < K∗, τ ∗C > −1, (B.59)

φ ≤ 1− τ ∗K
1 + τ ∗C

with strict inequality if r∗E < δ. (B.60)

Note that the asset market clearing condition holds by Walras’ law.

B.4.2 Showing equivalence

Proposition 9. The aggregate variables {K∗, K∗E, C∗, N∗,R∗, Y ∗}, post-tax prices
{
r̃∗X , R̃

∗
F , w̃

∗, π̃∗F

}
and consumption tax rate τ ∗C constitute a steady state according to Proposition 2 if and only if

the aggregate variables
{
K∗, K∗E, C

∗, N∗, F ∗, FN∗,P∗
}

, prices {r∗E, r∗F , R∗F , w∗, π∗F} and taxes

{τ ∗W , τ ∗K , τ ∗C , τ ∗N} constitute a steady state according to Proposition 8.

Proof. ⇐: Suppose that aggregate variables
{
K∗, K∗E, C

∗, N∗, F ∗, FN∗,P∗
}

, prices {r∗E, r∗F , R∗F , w∗, π∗F}
and taxes {τ ∗W , τ ∗K , τ ∗C , τ ∗N} satisfy the equilibrium conditions in Proposition 8, (B.45) -

(B.58), and the inequalities (B.59) - (B.60). Define post-tax prices as in equations (17)-

(20): w̃ = w(1−τN )
1+τC

, π̃F = (1−τK)πF
1+τC

, R̃F = RF − 1 and r̃X = (rE−rF )(1−τK)
1+R(KE ,KF ,N,π0)

, where R(·)
satisfies equation (21).

Replace any occurance of pre-tax prices in the equilibrium conditions with their post-tax

price counterpart, noting that we may replace {r∗E, r∗F} with r̃∗X because the two prices only

appear as differences. The new set of inequality conditions follows directly. By eliminat-

ing the variables
{
F ∗, FN∗,P∗

}
and rearranging, we may arrive at the set of equilibrium

conditions of Proposition 2, (22)-(27).

⇒: Suppose that aggregate variables {K∗, K∗E, C∗, N∗,R∗, Y ∗}, pre-tax prices
{
r̃∗X , R̃

∗
F , w̃

∗, π̃∗F

}
and consumption tax τ ∗C satisfy the equilibrium conditions of Proposition 2, (22)-(27). Then

there exists an appropriate choice for
{
F ∗, FN∗,P∗

}
, prices {r∗E, r∗F , R∗F , w∗, π∗F} and taxes

{τ ∗W , τ ∗K , τ ∗N} such that the full set of equilibrium variables satisfies the conditions of Propo-

sition 8.

B.4.3 Derivation of the inequalities in Proposition 8 (equations B.59 - B.60)

We claim that the following conditions are necessary for an equilibrium: r∗E > r∗F , K∗E < K∗,

τ ∗C > −1 and φ ≤ 1−τ∗K
1+τ∗C

with strict inequality if r∗E < δ.

1. r∗E > r∗F : By contradiction, suppose r∗E ≤ r∗F . Then entrepreneurs will strictly prefer

to set kE = 0. By the Inada conditions of the final good production function, r∗E goes

to infinity.
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2. K∗E < K∗: Otherwise K∗F ≤ 0, and so r∗F (1− τ ∗K) is either infinity or undefined.

3. τ ∗C > −1: Otherwise, consumption will be unbounded, violating feasibility.

4. φ ≤ 1−τ∗K
1+τ∗C

with strict inequality if r∗E(1− τ ∗K) < δ
1−τ∗K
1+τ∗C

:

• The equivalent of this condition for an economy with period length ∆ is r∗E(1 −
τ ∗K)∆ + (1− δ∆)

1−τ∗K
1+τ∗C

≥ φ.

• This condition is necessary to rule out the hiding of capital by entrepreneurs

investing in the risky technology.18

• Taking the limit as ∆→ 0, we obtain the required result.

B.4.4 Derivation of P∗ and µ∗(θ) (equations B.51 andb B.52)

Derivation of P∗. Note that every period a fraction γ∆ of entrepreneurs die and a fraction

(1−N) of the γ∆ newborn agents choose to become entrepreneurs, each with initial wealth

F . This gives rise to the following law of motion for P:

P′ = (1− γ∆)

∫
i>N

Pidi+ γ∆(1−N)F (B.61)

P′ = (1− γ∆)(1− ρ∆)
[
(r∗E − r∗F )∆(1− τ ∗K)k̂E(1)µ∗ + (1 + R̃∗F∆)

]
P + γ∆(1−N)F,

Note that we evaluate the integral
∫
i>N

Pidi by combining the expression ω (equation B.18)

and the entrepreneur’s policy function for P∗ (equation B.20) and the entrepreneur’s policy

function for kE (equation B.17).

Using that in steady state P′ = P = P∗ and taking the limit as ∆→ 0, we obtain equation

B.51, as required:

P∗ =
1

γ + ρ+ R̃∗F − (r∗E − r∗F )(1− τ ∗K)k̂E(1)µ∗ (1)
γ(1−N∗)F ∗.

Derivation of µ∗(θ). Recall that we define µ∗(θ) as the fraction of total entrepreneur

wealth, P∗, held by entrepreneurs of type θ in the steady state.

µ∗(θ) :=

∫
i>N∗,θi=θ

P ∗i di

P∗
(B.62)

18To be precise, this condition only applies when the entrepreneur does not engage with the bank. When-
ever the entrepreneur borrows from or lends to the bank, they will agree on an incentive compatible contract.
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The law of motion for µ′(θ) iin an economy of length ∆ is given by:

µ′(θ)P′ =λθ∆g(θ)(P′ − γ∆(1−N)F ) + γ∆g(θ)(1−N)F

+(1− γ∆)(1− λθ∆)µ(θ)P
∫
ε

P̂ ′(θ, ε)dH(ε) (B.63)

At the end of each period, entrepreneurs die with probability γ∆. Out of the (1 − γ∆)

entrepreneurs that survive, they keep the same θ with probability (1 − λθ∆) and draw a

new θ with probability λθ∆. The left hand side corresponds to the total capital held by

entrepreneurs of type θ in the next period. The three right hand terms are derived as

follows:

1. The first term indicates the capital held in the next period by surviving entrepeneurs

who draw a new ability level that period and happen to draw θ. In total, surviving

entrepreneurs hold P′−γ∆(1−N)F of capital. Since the probability of drawing a new

ability level is orthogonal to ability type, the fraction of entrepreneurs drawing theta

as their new type is equal to the fraction of wealth these entrepreneurs own.

2. The second term is given by the wealth owned by newborns, (1−N)F , scaled by the

fraction of newborns who happen to draw θ.

3. Fraction (1 − γ∆)(1 − λθ∆) of entrepreneurs of type θ surive and retain their type

in the next period. Due to the linearity of the policy function in P , the cumulative

wealth of these entrepreneurs in the next period is equal to the expected wealth of an

entrepreneur who owns their cumulative wealth, (1 − γ∆)(1 − λθ∆)µ(θ)P. Note that

we have defined P̂ ′(θ, ε) := P ′

P
.

In a steady state, µ′ = µ = µ∗ and P′ = P = P∗. In that case, equation (B.63) simplifies

to:

µ∗(θ) =
λθ∆g(θ) + γ∆(1−N∗)F ∗P∗ g(θ)(1− λθ∆)

1− (1− γ∆)(1− λθ∆)
∫
ε
P̂ ′(θ, ε)dH(ε)

(B.64)

To find the expression for
∫
ε
P̂ ′(θ, ε)dH(ε), we plug the expression for ω given by equation

(B.18) into the entrepreneur’s policy function (B.20). We then use the fact that kE is linear

in P and that E[ε] = 1.∫
ε

P̂ ′(θ, ε)dH(ε) = (1 + τC)(1− ρ∆)

∫
ε

ω(θ, ε, 1)dH(ε)

= (1 + τC)(1− ρ∆)

∫
ε

(
(φ(ε− 1) +

1− τK
1 + τC

(rEθ − rF )∆)k̂E(θ) +
1 + R̃F∆

1 + τC

)
dH(ε)

= (1− ρ∆)
(

(rEθ − rF )(1− τK)∆k̂E(θ) + (1 + R̃F∆)
)
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Taking the limit as ∆→ 0, we obtain equation (B.52), as required:

µ∗ (θ) =
λθg(θ) + γg(θ) (1−N∗)F ∗

P∗

γ + ρ+ λθ −
(

(R∗F − 1) + k̂E(1) (r∗E − r∗F ) (1− τ ∗K)
) . (B.65)

B.4.5 Derivation of the worker’s steady state value function

In this section, we show that that the worker’s steady state value function is given by:

(γ + ρ)V N
(
FN∗, X∗

)
= log(

γ + ρ

1 + τC
FN) +

(1 + τC)(r̃F − p̃)− ρ
γ + ρ

(B.66)

We shall this continuous time Bellman equation by taking the limit of the Bellman

equation of the problem for a given period length ∆:

V N(P,X∗) = max
(

log(cN)∆ + (1− ρ∆) (1− γ∆)V N
(
PN ′, X∗

) )
(ρ+ γ − ργ∆)V N(P,X∗) = max

(
log(cN) + (1− ρ∆) (1− γ∆)

V N
(
PN ′, X∗

)
− V N(P,X?)

∆

)
Hence, taking the limit as ∆ → 0, and using equation (12) to substitute in for the

continuous time policy function for cN , we obtain

(ρ+ γ)V N(P,X∗) = log(
ρ+ γ

1 + τC
PN) + lim

∆→0

(V N
(
PN ′∗, X∗

)
− V N(P,X∗)

∆

)
︸ ︷︷ ︸

A

(B.67)

As the next step, we compute the term A. As in Appendix A.1, we can write the worker’s

steady state value function in an economy with period length ∆ as:

V N(P,X∗) = Q(∆) +
1

1− (1− ρ∆) (1− γ∆)
log(PN)∆. (B.68)

Using the policy function for P ′ for the economy of period length ∆, given by equation

(B.9), and l’Hôpital’s rule we obtain:

A = lim
∆→0

(
1

1− (1− ρ∆) (1− γ∆)
log
(

(1− ρ∆)(1 + (RF − 1)∆)
))

= lim
∆→0

(
1

ρ+ γ − 2ργ∆

−ρ(1 + (RF − 1)∆) + (1− ρ∆)(RF − 1)

(1− ρ∆)(1 + (RF − 1)∆)

)
=
RF − 1− ρ
ρ+ γ

.

21



B.4.6 Derivation of the entrepreneur’s steady state value function

In this section we show that the entrepreneur’s steady state value function is given by:

(γ + ρ)V (F, θ,X∗) = log

(
γ + ρ

1 + τC
F

)
+
R̃F − ρ
γ + ρ

+
1

γ + ρ

γ + ρ+ λθg(θ)

γ + ρ+ λθ

(
(rEθ − rF )(1− τK)k̂(θ)− 1

2

(
φ(1− ε)(1 + τC)k̂(θ)ϕ

)2
)

+
1

γ + ρ

λθg(1− θ)
γ + ρ+ λθ

(
(rE(1− θ)− rF )(1− τK)k̂(1− θ)− 1

2

(
φ(1− ε)(1 + τC)k̂(1− θ)ϕ

)2
)
.

(B.69)

We shall derive this continuous time Bellman equation by taking the limit of the Bellman

equation of the problem for a given period length ∆. We evaluate equation B.4 at X = X ′ =

X∗ and substitute in the policy functions for c and P ′:

V (P, θ,X∗) =

∫
ε>0

(
log(c(P, θ, ε,X∗)))∆ + (1− ρ∆)(1− γ∆)

× E

[
V (P ′(P, θ, ε,X∗)), θ′, X∗)

∣∣∣∣θ])dH(ε) (B.70)

Now using the process for θ, we may write out the conditional expectation as

E

[
V (P ′, θ′, X∗)

∣∣∣∣θ] =[1− λθ∆(1− g(θ))]V (P ′, θ,X∗)

+ λθ∆(1− g(θ))V (P ′, (1− θ), X∗)

As in Lemma 1, we may write the entrepreneur’s value function in an economy with

period length ∆ as:

V (P, θ,X) = V̄ (θ,X,∆) +
1

1− (1− ρ∆) (1− γ∆)
log(P )∆. (B.71)

Hence, as ∆→ 0, we obtain the continuous time entrepreneur value function:

V (P, θ,X∗) = lim
∆→0

V̄ (θ,X∗,∆) +
1

ρ+ γ
log(P ). (B.72)

What is left to do is to derive V̄ (θ,X,∆) and take the limit as ∆ → 0. Since we

have already derived the solutions for c, P ′ and kE, deriving V̄ (θ,X,∆) is simply a matter

of substituting these expressions into the value function and rearranging. To simplify the

algebra, define α∆ := (1− ρ∆)(1− γ∆).
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ω =ω + θεkE =
(B.18),(B.17)

(
(φ(ε− 1) +

1− τK
1 + τC

(rEθ − rF )∆)k̂E(θ) +
1 + R̃F∆

1 + τC

)
︸ ︷︷ ︸

=:D(θ,ε,∆)

P (B.73)

c =
(B.11)

(ρ+ γ + ργ∆)ω = (ρ+ γ + ργ∆)D(θ, ε,∆)P, (B.74)

P ′ =
(B.12)

(1 + τC)(1− ρ∆)ω = (1 + τC)(1− ρ∆)D(θ, ε,∆)P (B.75)

Combining the closed form solution for the value function (B.71) with the Bellman equa-

tion (B.70), and substituting in for c and P ′ with the expressions above, we obtain

V̄ (θ,X∗,∆) +
1

1− α∆

log(P )∆ =

∫
ε>0

(
log((ρ+ γ + ργ∆)D(θ, ε,∆)P )∆ + α∆

×
{

[1− λθ∆(1− g(θ))]
(
V̄ (θ,X∗,∆) +

1

1− α∆

log((1 + τC)(1− ρ∆)D(θ, ε,∆)P )∆
)

+λθ∆(1− g(θ))
(
V̄ (1− θ,X∗,∆) +

1

1− α∆

log((1 + τC)(1− ρ∆)D(1− θ, ε,∆)P )∆
)})

dH(ε).

(B.76)

This simplifies to the following expression for V̄ (θ,X∗,∆):

V̄ (θ,X∗,∆) =

∫
ε>0

(
∆

1− α∆[1−∆λθ(1− g(θ))]

{
log((ρ+ γ + ργ∆)D(θ, ε,∆))

+α∆[1− λθ∆(1− g(θ))]
1

1− α∆

log((1 + τC)(1− ρ∆)D(θ, ε,∆))

+α∆λθ∆(1− g(θ))
(
V̄ (1− θ,X∗,∆)

1

∆
+

1

1− α∆

log((1 + τC)(1− ρ∆)D(1− θ, ε,∆)
)})

dH(ε).

(B.77)

The above equation (B.77) allows us the write the following system of equations:

V̄ (θ,X∗,∆) = E(θ,∆) + F (θ,∆)V̄ (1− θ,X∗,∆) (B.78)

V̄ (1− θ,X∗,∆) = E(1− θ,∆) + F (1− θ,∆)V̄ (θ,X∗,∆), (B.79)
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where

E(θ,∆) :=

∫
ε>0

∆

1− α∆[1− λθ∆(1− g(θ))]

{
log((ρ+ γ + ργ∆)D(θ, ε,∆))

+ α∆[1− λθ∆(1− g(θ))]
1

1− α∆

log((1 + τC)(1− ρ∆)D(θ, ε,∆))

+ α∆λθ∆(1− g(θ))
1

1− α∆

log((1 + τC)(1− ρ∆)D(1− θ, ε,∆)

}
dH(ε),

F (θ,∆) :=
α∆λθ∆(1− g(θ))

1− α∆[1− λθ∆(1− g(θ))]
. (B.80)

Hence, we obtain

V̄ (θ,X∗,∆) =
1

1− F (θ,∆)F (1− θ,∆)

(
E(θ,∆) + F (θ,∆)E(1− θ,∆)

)
(B.81)

Using l’Hopital’s rule:

lim
∆→0

F (θ,∆) =
λθ(1− g(θ))

ρ+ γ + λθ(1− g(θ))
. (B.82)

Hence, we obtain the following limit expression:

1

1− lim∆→0 F (θ,∆) lim∆→0 F (1− θ,∆)
=

1

1− λθ(1−g(θ))
ρ+γ+λθ(1−g(θ))

λθ(1−g(1−θ))
ρ+γ+λθ(1−g(1−θ))

=
(ρ+ γ + λθ(1− g(θ))) (ρ+ γ + λθ(1− g(1− θ)))

(ρ+ γ) (ρ+ γ + λθ)

Now, we consider the following limit:

lim
∆→0

∫
ε>0

1

∆
log ((1 + τC)D(θ, ε,∆)) dH(ε)

= lim
∆→0

∫
ε>0

1

∆
log
(

[φ(ε− 1)(1 + τC) + (rEθ − rF )∆(1− τK)] k̂E(θ) + (1 + R̃F∆)
)
dH(ε)

= lim
∆→0

1

∆

∫
ξ

log

([
φ(1− ε)(1 + τC)

(
exp

(
ϕ
√

∆ξ − ϕ2∆

2

)
− 1

)
+ (rEθ − rF )∆(1− τK)

]
k̂E(θ)

+ (1 + R̃F )

)
dΦ(ξ)

We now take the Taylor expansion of the integrand in units of
√

∆ around the point
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√
∆ = 0. To do this let:

a = φ(1− ε)(1 + τC)k̂

b = ϕξ

c =
ϕ2

2

d = (rEθ − rF )(1− τK)k̂ + R̃F

Then, we can write the integrand as f(
√

∆), where

f(
√

∆) = log(a(exp(b∆− c∆)− 1) + d∆ + 1)

and so

f ′(
√

∆) =
a(b− 2c

√
∆) exp(b

√
∆− c∆) + 2d

√
∆

a(exp(b
√

∆− c∆)− 1) + d∆ + 1

f ′′(
√

∆) = (a(exp(b
√

∆− c∆)− 1) + d∆ + 1)−2×{
(a(exp(b

√
∆− c∆)− 1) + d∆ + 1) exp(b

√
∆− c∆)(−2ac+ a(b− 2c

√
∆)2 + 2d)

− (a(b− 2c
√

∆) exp(b
√

∆− c∆) + 2d
√

∆)2

}
Then, the Taylor expansion of the integrand above around

√
∆ = 0 is as follows:

ϕξφ(1− ε)(1 + τC)k̂
√

∆ +
∆

2
(ξ2 − 1)φ(1− ε)(1 + τC)k̂ϕ2 + ∆(rEθ − rF )(1− τK)k̂

+ ∆R̃F −
∆

2

(
φ(1− ε)(1 + τC)k̂ϕξ

)2

Integrating this over ξ and using that E[ξ] = 0 and E[ξ2] = 1, we therefore conclude

that:

lim
∆→0

∫
ε>0

1

∆
log ((1 + τC)D(θ, ε,∆)) dH(ε)

= lim
∆→0

1

∆

(
∆(rEθ − rF )(1− τK)k̂ + ∆R̃F −

∆

2

(
φ(1− ε)(1 + τC)k̂ϕ

)2

+R
)

= (rEθ − rF )(1− τK)k̂ + R̃F −
1

2

(
φ(1− ε)(1 + τC)k̂ϕ

)2

where R are some terms of higher order in ∆.
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Now, rearranging our expression for E(θ,∆) above:

E(θ,∆) =

(
∆

1− α∆[1− λθ∆(1− g(θ))]

)
×
{

log

(
ρ+ γ + ργ∆

1 + τC

)
+ ∆

(∫
ε>0

1

∆
log((1 + τC)D(θ, ε,∆))dH(ε)

)
+ α∆[1− λθ∆(1− g(θ))]

∆

1− α∆

(
log(1− ρ∆)

∆
+

∫
ε>0

1

∆
log((1 + τC)D(θ, ε,∆))dH(ε)

)
+ α∆λθ∆(1− g(θ))

∆

1− α∆

(
log(1− ρ∆)

∆
+

∫
ε>0

1

∆
log((1 + τC)D(1− θ, ε,∆))dH(ε)

)}
,

Evaluating the limit as ∆ goes to zero for each right hand side term in turn, we obtain:

lim
∆→0

E(θ,∆) =

(
1

γ + ρ+ λθ(1− g(θ))

){
log

(
ρ+ γ

1 + τC

)
+ 0

+
1

ρ+ γ

(
−ρ+ lim

∆→0

∫
ε>0

1

∆
log((1 + τC)D(θ, ε,∆))dH(ε)

)
+ 0

}
=

(
1

γ + ρ+ λθ(1− g(θ))

){
log

(
ρ+ γ

1 + τC

)
− ρ

ρ+ γ
+

1

ρ+ γ

(
(rEθ − rF )(1− τK)k̂(θ) + R̃F −

1

2

(
φ(1− ε)(1 + τC)k̂(θ)ϕ

)2
)}

Taking the limit as ∆→ 0 in equation (B.81) and substituting in for lim∆→0 F (θ,∆) and

lim∆→0E(θ,∆) derived above, we obtain:

lim
∆→0

V̄ (θ,X∗,∆) =
1

1− lim∆→0 F (θ,∆) lim∆→0 F (1− θ,∆)

(
lim
∆→0

E(θ,∆) + lim
∆→0

F (θ,∆) lim
∆→0

E(1− θ,∆)

)
=

(ρ+ γ + λθ(1− g(θ))) (ρ+ γ + λθ(1− g(1− θ)))
(ρ+ γ) (ρ+ γ + λθ)

{(
log

(
ρ+ γ

1 + τC

)
+
R̃F − ρ
ρ+ γ

)
×
(

1

ρ+ γ + λθ(1− g(θ))
+

λθ(1− g(θ))

ρ+ γ + λθ(1− g(θ))

1

ρ+ γ + λθ(1− g(1− θ))

)
+

1

ρ+ γ + λθ(1− g(θ))

1

ρ+ γ

(
(rEθ − rF )(1− τK)k̂(θ)− 1

2

(
φ(1− ε)(1 + τC)k̂(θ)ϕ

)2
)

+
λθ(1− g(θ))

ρ+ γ + λθ(1− g(θ))

1

ρ+ γ + λθ(1− g(1− θ))
1

ρ+ γ

×
(

(rE(1− θ)− rF )(1− τK)k̂(1− θ)− 1

2

(
φ(1− ε)(1 + τC)k̂(1− θ)ϕ

)2
)}
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Then,

(γ + ρ) lim
∆→0

V̄ (θ,X∗,∆) = log

(
γ + ρ

1 + τC

)
+
R̃F − ρ
γ + ρ

+
1

γ + ρ

γ + ρ+ λθg(θ)

γ + ρ+ λθ

(
(rEθ − rF )(1− τK)k̂(θ)− 1

2

(
φ(1− ε)(1 + τC)k̂(θ)ϕ

)2
)

+
1

γ + ρ

λθg(1− θ)
γ + ρ+ λθ

(
(rE(1− θ)− rF )(1− τK)k̂(1− θ)− 1

2

(
φ(1− ε)(1 + τC)k̂(1− θ)ϕ

)2
)

Substituting the above expression for V̄ (θ,X∗,∆) into equation (B.72), we obtain the

the continuous time entrepreneur value function as stated in equation B.69, concluding the

derivation.

(γ + ρ)V (P,θ,X∗) = log

(
γ + ρ

1 + τC
P

)
+
R̃F − ρ
γ + ρ

+
1

γ + ρ

γ + ρ+ λθg(θ)

γ + ρ+ λθ

(
(rEθ − rF )(1− τK)k̂(θ)− 1

2

(
φ(1− ε)(1 + τC)k̂(θ)ϕ

)2
)

+
1

γ + ρ

λθg(1− θ)
γ + ρ+ λθ

(
(rE(1− θ)− rF )(1− τK)k̂(1− θ)− 1

2

(
φ(1− ε)(1 + τC)k̂(1− θ)ϕ

)2
)

B.5 Characterizing Partial Equilibrium Elasticities of Tax Changes

To obtain a characterization, it is necessary to precisely define and compute the derivative
∂H
∂τj

∣∣
R=0,N

for each H ∈ {K;KE;N} and j ∈ {K;W ;C}, since this appears in Definition 3.

To fix ideas, we first discuss how to compute ∂Y
∂τK

∣∣
R=0,N

, that is the marginal effect of τK on

the steady state value of Y , holding fixed pre-tax prices and N . Other partial elasticities

can then be defined in a similar fashion.

We may formally define ∂Y
∂τK

∣∣
R=0,N

using Proposition 2 and equations (18) and (20). First,

we use equations (18) and (20), which defined post-tax prices in terms of pre-tax prices and

tax rates. Since we are seeking partial equilibrium effects, we differentiate these equations

with repect to τK , holding constant pre-tax prices to obtain:

∂r̃X
∂τK

∣∣
R=0,N

=
rF − rE
1 +R

= (rE − rF )

∂R̃F

∂τK

∣∣
R=0,N

= rF − δ

Then, we make use of Proposition 2 which characterized a steady state using 8 equations,

with 11 variables (as well as some strict inequality constraints). Invoking the implicit function

theorem, it follows that in the neighborhood of some initial steady state S , we can write

the steady state values of eight of the variables as continuously differentiable functions of
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the three variables r̃X , R̃F and τC .19 Therefore, we may treat K, Y , KE and C as functions

of r̃X , R̃F and τC , and use the equations of Proposition 2 to compute the partial derivatives
∂Y
∂r̃X

and ∂Y
∂R̃F

. We compute the partial equilibrium partial derivatives, such as ∂Y
∂r̃X

∣∣
R=0,N

,

by using Proposition 2 in this way, except that we ignore that R = R(KE, K,N, π0) and

instead fix R = 0, and we ignore the condition for agents’ optimal occupational choice (24)

and instead hold N fixed at the initial steady state value. Combining these partial derivatives

with the values of ∂r̃X
∂τK

and ∂R̃F
∂τK

found above, we may write:

∂Y

∂τK

∣∣
R=0,N

= −(rE − rF )
∂Y

∂r̃X

∣∣
R=0,N

− (rF − δ)
∂Y

∂R̃F

∣∣
R=0,N

,

and so

eYτK := −1− τK
Y

(
(rE − rF )

∂Y

∂r̃X

∣∣
R=0,N

+ (rF − δ)
∂Y

∂R̃F

∣∣
R=0,N

)
.

The same logic can be used to define ∂H
τj

for any aggregate steady state variable H, and

for j ∈ {K;W ;C}. In particular, equations (18) and (20) imply that for any such H:

∂H

∂τK

∣∣
R=0,N

=− (rE − rF )
∂H

∂r̃X

∣∣
R=0,N

− (rF − δ)
∂H

∂R̃F

∣∣
R=0,N

(B.83)

∂H

∂τW

∣∣
R=0,N

=− ∂H

∂R̃F

∣∣
R=0,N

, (B.84)

and the derivatives ∂H
∂r̃X

∣∣
R=0,N

, ∂H
∂R̃F

∣∣
R=0,N

and ∂H
∂τC

∣∣
R=0,N

can all be defined using Proposition

2 and the implicit function theorem, as described above.

Using this approach, we now provide a characterization of the elasticities of Y , KE and

K with respect to taxes.

B.6 Effects of Tax Changes on Welfare

Since workers choose
aNs+1

1+τC
optimally each period, envelope theorem arguments imply that we

may calculate the resulting change in welfare as if workers continue to choose the same level of
aNs+1

1+τC
each period irrespective of the tax change. Then, the worker’s budget constraint implies

that the tax change has an effect on welfare equivalent to increasing worker consumption by

dcNs in each period s, where dcNs satisfies:

dcNs = dw̃ + dR̃F
aNs

1 + τC

where dw̃ and dR̃F are the change in w̃ and R̃F as a result of the tax change.

19This holds, provided the relevant Jacobian is invertible, which will be the case outside of knife-edge
situations.
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In such a case, the tax change increases the present value of the worker’s lifetime resources

by:
∞∑
s=0

(
1− γ

1 + R̃F

)s
dcNs =

(
∞∑
s=0

(
1− γ

1 + R̃F

)s)(
dw̃ + dR̃F

AN

1 + τC

)
where

AN =

∑∞
s=0

(
1−γ

1+R̃F

)s
aNs∑∞

s=0

(
1−γ

1+R̃F

)s ,

is the average value of the worker’s discounted lifetime assets. Applying envelope theorem

arguments further, the change in welfare from a small tax change must then be equivalent to

the change in worker utility if the worker consumed all the extra resources
∑∞

s=0

(
1−γ

1+R̃F

)s
dcNs

in the first period of their life, since on the margin, workers are indifferent about which period

they consume each extra unit of lifetime resources they receive. That is, the change in welfare

satisfies:

dW =
1

cN0

(
∞∑
s=0

(
1− γ

1 + R̃F

)s)(
dw̃ + dR̃F

AN

1 + τC

)
,

where 1
cN0

is the worker’s marginal utility of consumption in the first year of her life.

To calculate the consumption equivalent welfare change ∆N , note that multiplying worker

consumption by 1+∆N each period increases the present value of a newborn worker’s lifetime

consumption stream by:

∞∑
s=0

(
1− γ

1 + R̃F

)s
cNs ∆N =

∞∑
s=0

(
1− γ

1 + R̃F

)s
w̃∆N ,

where we used that the budget constraint implies that the lifetime present value of a worker’s

consumption must equal the lifetime present value of his earnings.

Applying envelope theorem arguments once more, a multiplication of worker consumption

by 1 + ∆N each period must have the same effect on worker welfare as increasing a worker’s

consumption by
∑∞

s=0

(
1−γ

1+R̃F

)s
w̃∆N in the first period of life and leaving his consumption

constant thereafter. Then, the change ∆N that results in a welfare change dW must satisfy:(
∞∑
s=0

(
1− γ

1 + R̃F

)s)
w̃∆N 1

cN0
= dW

Combining this with the equation for dW above, we obtain a simple formula for ∆N :

w̃∆N = dw̃ + dR̃F
AN

1 + τC
.
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B.7 Proof of Lemma ??

Formally, we define the government’s optimization problem as seeking taxes τ ?K , τ
?
C , τ

?
N , τ

?
W

and an allocation to achieve the supremum of worker steady state utility subject to the

constraint that all aggregate variables must be consistent with the equations and inequalities

in Proposition 2 – i.e. the allocation must be a steady state.

Since we are seeking a supremum to the government’s problem, all the strict inequalities

in Proposition 2 can be replaced with weak inequalities, since all the inequalities are contin-

uous functions of the aggregate variables. After this replacement, all the constraints of the

government’s problem are either equalities or weak inequalities.

Consider a compact neighborhood of combinations of feasible taxes and allocations

around the optimal taxes τ ?K , τ
?
C , τ

?
N , τ

?
W . Such a compact set exists, since all the constraints

of the government’s problem are equalities and weak inequalities. Since the government’s

objective function is continuous over this compact set, it follows that, within this compact

set, the maxium of the government’s objective function must be attained at the tax rates

τ ?K , τ
?
C , τ

?
N , τ

?
W , by the Weierstrass theorem.

At the optimal tax rates τ ?K , τ
?
C , τ

?
N , τ

?
W and optimal allocation, it must be the case that

r∗E > r∗F , since, by the Inada conditions on the production function, r∗E =∞, if KE = 0, and

if KE > 0 then equation (??) implies that it must be the case that r∗E > r∗F , since τ ?K < 1.

Since r∗E > r∗F , it must also be the case that K∗F > 0, since the Inada conditions imply

r∗F =∞ otherwise.

Then, the only inequality constraints on the government’s problem that may bind at

the optimal allocation are that R̃F = (1 + τ ∗C)(r̃∗F − p̃∗) ≥ r and 1
1+τ∗C

≥ φ. Since all the

relevant functions are continuously differentiable, we may apply the Kuhn-Tucker theorem to

deduce that the optimum must satisfy the Kuhn-Tucker first order conditions, with Lagrange

multipliers on these latter two inequality constraints that may bind. Combining the steady

state conditions in Proposition 2 to get an expression for worker’s post tax utility as a

function of KE and KF and differentiating yields the first order conditions in the Lemma.

C Data

To calibrate the entrepreneur’s stake in the business, we use data from two sources: the

Survey of Consumer Finances (SCF) and the (National) Survey of Small Business Finances

(SSBF). Both surveys contain information regarding business ownership, with the difference

that the first is a household survey, while the second is a survey of small businesses. We

can identify in each of them groups of respondents that are in line with our notion of
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entrepreneurship. We use both sources as validation for our results.

The Survey of Consumer Finances is a a triennial cross-sectional survey of U.S. families

which provides information on individual household portfolio composition, including invest-

ment in private firms. While the SCF was initially administered in 1983, it was not until

1989 that questions about business ownership were introduced. Therefore, we use all survey

waves from 1989 until 2013. We restrict the sample to households who report owning a busi-

ness in which they have an active management interest, and are between 25 and 65 years

old. This represents, on average, 14.3% of the sample. If a household is an active participant

in multiple businesses, we examine the average share across businesses.20

The (National) Survey of Small Business Finances collects information on private, non-

financial, non-agricultural businesses in the U.S., with fewer than 500 employees. There

are four surveys to date, but only the last three (1993, 1998 and 2003) collect ownership

share information and are useful for our purposes. The surveys detail the demographic and

financial characteristics of the firms and their principal shareholder.21 Approximately 90% of

these firms are managed by the principal shareholder. We apply the same sample restrictions

as in the SCF.

Figure 2 displays the evolution of the ownership share over time. Both surveys indicate

that ownership is highly concentrated, entrepreneurs holding, on average, 84% of their firm’s

equity. In particular, the average share is 85% in SCF and 83% in (N)SSBF. Ownership rates

are very stable not only across surveys, but also across the time horizon we consider. For

this reason, for our calibration exercise we work with their average over time and surveys,

which is 84%.

20We obtain similar results if we only focus on the business in which the household has the largest invest-
ment.

21In 2003 information was collected for up to three owners. We only focus on the main owner, i.e. the one
with the largest ownership in the business.
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Figure 2: Ownership Share in the U.S.
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Notes: The orange bars show the average share that entrepreneurs in SCF own in their business. The black
bars show the average share of small businesses in the (N)SSBF that is owned by the principal shareholder.
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