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Abstract

A principal hires an agent to acquire a distribution over unverifiable posteriors

before reporting to the principal, who can contract on the realized state. An agent’s

optimal learning and truthful disclosure completely specify the marginal incentives

the principal must provide, which radically simplifies the principal’s problem. When

the agent i. is risk neutral, and iia. has a sufficiently high outside option, or iib.

can face sufficiently large penalties, the principal can attain the first-best outcome.

We also explore in detail the general problem of cheaply implementing distributions

over posteriors with limited liability constraints and a risk-averse agent.
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1 Introduction

There are many instances in which decision makers buy advice. Investors pay for stock

picks, politicians employ advisors, bettors at the race track ask for winners, and execu-

tives in firms appoint subordinates to suggest policies and actions. In some situations

this advice can be backed up with hard, verifiable, evidence; whereas in others advice is

merely cheap talk and is supported only by the advisor’s incentives.

We analyze a contracting problem in which a principal hires an agent to acquire infor-

mation. We focus on the situation in which the evidence an agent acquires is unverifiable

and cannot be credibly disclosed (or contracted upon). That is, the agent merely provides

advice to the principal. The principal may; however, condition the agent’s remunera-

tion on both the realized state and the agent’s report. Equivalently, the principal offers

the agent a menu of state dependent lotteries from which the agent selects once she has

acquired information.

Information acquisition is costly for the agent–after observing the contract, she chooses

what information to obtain, before reporting her findings to the principal. The agent has

significant freedom in her learning: she may choose any distribution over posterior be-

liefs whose mean is the prior. In doing so she incurs a posterior separable cost (Caplin

et al. (Forthcoming)); i.e., one that can be expressed as the expectation of a convex func-

tion of the beliefs she obtains. We also assume that the agent may exit the relationship,

should she so choose, at any point. The agent has an outside option of value v0, which she

can take both before learning and after. This is realistic: an advisor who learns privately

before giving advice usually has the option of declining to report to her employer and

seeking employment elsewhere. Naturally, our attainability of the first best result still

goes through even if the agent could only leave for her outside option before learning–

there are fewer constraints for the principal, making the first best even easier to attain.

There are clear parallels between this setting and the canonical model of moral haz-

ard with hidden effort. Like the basic moral hazard setup, the principal’s problem can be

decomposed into two parts: first, given a desired distribution over posteriors, how can

the principal implement such a distribution as cheaply as possible? Second, given the
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answer to the first question, what distribution over posteriors would the principal like to

induce? In our first result, Lemma 3.2, we note that the principal is unconstrained in the

distribution over posteriors the agent acquires: for any distribution over posteriors the

principal would optimally choose in her decision problem should she control the infor-

mation acquisition directly, she can always write a contract such that the agent acquires

that distribution (and reports her findings honestly). Keep in mind; however, that due

to the agency problem the cost to the principal of obtaining such a distribution may be

greater, though we note in the lemma that any such distribution acquired via an agent

still costs only a finite amount.

We observe that an analog of the standard first-order approach can be used to charac-

terize the cheapest way to implement a distribution over posteriors. Given the contract

written by the principal, the agent faces a decision problem. The characterization of

the agent’s optimal learning is well known: it corresponds to the concavification of the

agent’s value function. This requirement (optimality of the agent’s learning) produces a

number of conditions that the contract must satisfy, which are the analog of the standard

incentive compatibility conditions. Furthermore, we discover that these conditions have

a particular structure that allows us to radically simplify the principal’s problem of im-

plementing a posterior distribution. For any state k, each message contingent transfer

in that state can be written as the difference between the transfer paid in that state for

a “benchmark message” and a constant that depends only on exogenous values and the

posteriors themselves (which are not control variables for this problem). Proposition 3.4

summarizes this finding: the principal’s optimization problem reduces m-fold–from one

with n ×m variables, where m is the number of posteriors and n is the number of states,

to one with just n variables. This dramatic simplification sets the stage for the remainder

of our results.

This result carries with it significant economic content. Not only do the marginal in-

centives completely pin down the agent’s optimal learning, but the converse is also true:

the agent’s optimal learning specifies the marginal incentives. Accordingly, all the prin-

cipal needs to determine is the state-dependent payoffs for a benchmark message.

Our direct approach described above ensures that a collection of incentive compati-
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bility constraints are satisfied by construction–the agent cannot benefit by learning differ-

ently before sending a message, and/or by misrepresenting her findings. However, even

absent limited liability, an additional constraint remains, engendered by the agent’s out-

side option. The contract must be such that the agent does not want to deviate by taking

her outside option with positive probability both before and after learning. In particu-

lar, we need to rule out double deviations, in which the agent both learns differently and

takes her outside option at some of the resulting beliefs. All in all, the principal faces

an n variable optimization problem subject to this constraint (plus limited liability, if so

required).

As in the standard moral hazard problem, there is a natural benchmark in our model:

the first-best problem in which effort (in our case, learning) is observable and contractible.1

Perhaps surprisingly, when the agent is risk neutral and negative transfers are allowed,

any distribution over posteriors can be implemented efficiently even in our main setting

with hidden learning and unverifiable evidence. That is, Proposition 4.1 argues that ef-

ficient learning is feasible. We derive this result by construction: a principal can always

write a contract so that the resulting concavifying hyperplane of the agent’s payoff func-

tion is tangent to the payoff from taking the outside option at the prior. Importantly, this

is not a “shoot the agent contract” (Mirrlees (1999))–the principal can attain (not approx-

imate) the first best even if the agent’s utility function is bounded. In fact, as long as the

agent’s outside option is sufficiently high, efficient implementation is feasible even when

negative transfers are forbidden.

On the other hand, if negative transfers are forbidden and the outside option is suffi-

ciently low, the principal cannot efficiently acquire information through the agent. Nev-

ertheless, we show that with limited liability, optimal incentives take simple forms in a

number of special cases. In Proposition 5.1, we provide a full characterization of the op-

timal contract when the agent’s outside option is sufficiently small. There, it is only the

non-negativity constraint that binds, which allows us to pin down the optimal contract

for any desired distribution over posteriors. We also fully characterize optimal imple-

1If the agent is risk neutral, the first-best problem is (strategically) equivalent to one in which the prin-

cipal can control the information acquisition (and incur the costs) herself.
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mentation with an arbitrary outside option in the binary-state case when the agent is

risk neutral. Of special interest is our finding that less informative distributions (in the

Blackwell sense) are easier to implement (Corollary 5.3).

We finish this section by discussing related literature. Section 2 lays out the model

before Section 3 states the principal’s problem, discusses the first-best benchmark and

presents some preliminary results. Sections 4 and 5 contain the main results in the ab-

sence and presence of limited liability constraints, respectively. We wrap things up in

Section 6.

1.1 Related Literature

Our study belongs to the literature on delegated expertise, pioneered by Lambert (1986),

Demski and Sappington (1987) and Osband (1989), in which a principal hires an agent

to collect payoff relevant information. The central theme of this literature is incentive

design for effective information acquisition and communication.

There are three recent papers that are close to this one. Rappoport and Somma (2017)

also study contracting for flexible information acquisition; while the true state cannot be

contracted upon, they assume that the posterior generated by the agent’s choice of distri-

bution is verifiable and contractible. Among other things, they show that the first best can

be achieved whenever the agent is risk averse and is not subject to limited liability, or risk

neutral and subject to limited liability.2 Zermeño (2011) and Clark and Reggiani (2021)

study contracting environments in which both information acquisition and decision mak-

ing are delegated to the agent. In Zermeño (2011), the action is assumed to be observable

and contractible; and his main focus is the interaction between the variables on which

the transfer schemes can depend (e.g., the true state and the principal’s payoff from the

action) and whether contracts specify transfer scheme menus. Clark and Reggiani (2021)

assume that the agent acquires information flexibly subject to an upper bound on the cost

and that both action and the state are contractible. Their main result is that any Pareto

2Bizzotto et al. (2020) consider a similar problem. However, they do not require the message space to

be the set of posteriors, and they only allow the agent to deviate to a “default” distribution, instead of any

Bayes-plausible distribution.
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optimal contract can be decomposed into a fraction of output, a state-dependent transfer,

and an optimal distortion.

Carroll (2019) studies a robust contracting problem in which the principal has limited

knowledge on the set of distributions available to the agent as well as their costs. Sim-

ilar to our work, the agent chooses a distribution and sends a message to the principal,

and both the message and the true state are contractible. The principal evaluates each

possible contract by its worst-case guarantee. In Häfner and Taylor (Forthcoming) the

agent acquires information to help the principal decide how much she should invest in

a project. The distribution over posteriors and its cost are primitives of the model, and

the agent’s report of realized posterior is unverifiable. Their focus is on finding the opti-

mal contract, which can depend on the report and the outcome of the project, in order to

motivate the agent to conduct the experiment and report truthfully.3 Chade and Kovri-

jnykh (2016) study a dynamic model of contracting for information acquisition in a two

state-two (fixed) signals environment. The more effort the agent exerts, the more infor-

mative the signal she acquires. They assume that the realized signals are contractible, but

the true state is not. Azrieli (2021) builds on the static version of Chade and Kovrijnykh

(2016)’s model–the key difference is that the signals are not observable and that multi-

ple agents acquire information for the principal. He shows that the least costly contract

utilizes cross-checking: the agents are paid only when they all report the same signal.

Since in our model every contract induces a decision problem with a posterior sepa-

rable cost of the agent, our work is naturally related to the rational inattention literature

pioneered by Sims (1998, 2003). To analyze the agent’s problem, we use insights from

Caplin et al. (Forthcoming). Maćkowiak et al. (Forthcoming) provides an excellent re-

view of this literature that covers both theory and applications.

Finally, because we study the motivation of an agent to acquire costly and unverifi-

able information, our work also connects to the moral hazard literature. In the canonical

moral hazard problem (see, for example, Mirrlees (1999), Holmström (1979), and Gross-

man and Hart (1983)), the agent is impelled to exert costly effort that yields some output;

3Terovitis (2018) tackles a similar problem. In his framework, the outcome is deterministically pinned

down by the action and state, and the decision is delegated to the agent.
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whereas in ours, she must be coerced into choosing a much more complicated object

(a particular probability distribution) then reporting honestly. That being said, there are

some interesting analogies between some of our results and classical insights in the moral

hazard problem, which we discuss as we encounter them.

2 The Model

The principal is faced with a decision problem in which she chooses an action a ∈ A,

where A is compact. The payoff to each action depends on an unknown state of the world

θ ∈ Θ, where Θ is a finite set; |Θ| = n < ∞. The principal’s utility from taking action a

in state θ is given by u (a,θ), where u is continuous in a (and therefore bounded). Let

µ ∈ ∆ (Θ) denote the principal’s prior belief about the state; without loss of generality,

assume µ has full support.

The principal cannot acquire information herself but instead must rely on the assis-

tance of an agent, who shares the same prior and acquires information flexibly at a cost.

Specifically, the agent may choose any Bayes-plausible (Kamenica and Gentzkow (2011))

distribution over posteriors, F ∈ ∆∆ (Θ) subject to a posterior separable cost C à la Caplin

et al. (Forthcoming). That is, the cost of acquiring F is

C (F) = κ

∫
∆(Θ)

cdF ,

where κ > 0 is a scaling parameter, c : ∆ (Θ) → R+ is a strictly convex and twice con-

tinuously differentiable function bounded on the interior of ∆ (Θ), and c (µ) = 0. This

class of information costs includes the entropy-based cost function (see e.g. Sims (1998,

2003), and Matějka and McKay (2015)); the log-likelihood cost of Pomatto et al. (2020);

and the quadratic (posterior variance) cost function, which is a special case of the Tsallis-

entropy-based cost function (see Tsallis (1988), who introduces this form of entropy, and

Lipnowski et al. (2021) for an economic application).4

After acquiring information, the agent sends a message to the principal, who then

takes an action. The true state is eventually observable to both parties after the action is
4Further discussion of this cost function in economic contexts may be found in Bloedel and Segal (2020)

and Caplin et al. (Forthcoming).
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taken and can be contracted upon. A contract specifies the set of messages available to

the agent, and a transfer paid to the agent which can be contingent on both the realized

state and the message sent. Formally, the principal proposes a pair (M,t) consisting of a

compact set of messages M available to the agent, and a transfer t : M×Θ→R (t : M×Θ→

R+ when the agent is protected by limited liability). We assume the principal’s payoff is

quasi-linear in the transfer. The agent’s payoff is additive separable in her utility from the

transfer and the cost of acquiring information, and she values the transfer according to a

continuously differentiable and strictly increasing function (which is therefore invertible)

v, with v (0) = 0. To ease presentation, transfer t is expressed in utils. We further assume

the agent has access to an outside option of value v0 ≥ 0, and there are two chances that

she can leave with her outside option: she can choose not to accept the contract, or walk

away after acquiring information by reporting nothing.5

The timing of the game is as follows:

(i) The principal proposes a contract (M,t);

(ii) If the agent does not accept, the game ends; otherwise the agent chooses a Bayes-

plausible distribution F;

(iii) A posterior x ∈ ∆ (Θ) is drawn from F, which is privately observed by the agent;

(iv) The agent chooses whether to report, and if she reports, she sends a message m ∈M;

(v) The principal takes an action a ∈ A;

(vi) The true state θ ∈Θ realizes;

(vii) Payoffs accrue: the principal gets u (a,θ)− v−1 (t (m,θ)), and the agent gets t (m,θ)−

c (F).

3 The Principal’s Problem

3.1 The First Best Benchmark

As is standard, our specification allows us to write the principal’s (expected) gross payoff

as a function of the posterior x; denote it by V (x). V (·) is piecewise affine and convex

5Alternatively, the agent may report “I did not get anything.”
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(being the maximum of affine functions). Denote the set of Bayes-plausible distributions

over posteriors by F(µ). It is a convex and compact subset of ∆ (Θ). If the principal

controlled the information acquisition, she would solve

max
F∈F(µ)

∫
(V −κc) dF .

Let X denote the set of optimal distributions over posteriors that have at most n elements

in support. That is, an element of X, is a collection of points, X =
(
x∗1, . . . ,x

∗
k

)
, k ≤ n, in

the simplex ∆ (Θ) such that µ lies in the convex hull of these points. The Fenchel-Bunt

extension6 of Carathéodory’s theorem guarantees that X is nonempty.

In our context, “first best” refers to the situation where the principal can observe the

distribution over posteriors chosen by the agent, so the principal can specify transfer

t : ∆∆ (Θ)→ R+. When the distribution is observable, the following contract implements

any distribution F and is optimal: the principal pays the agent precisely the amount that

makes her indifferent between learning and walking away with her outside option if and

only if the agent acquires F. Otherwise, the principal pays the agent nothing. Evidently,

the transfer is never strictly negative, and the agent is willing to acquire F. Therefore, at

the first best, the principal’s cost of acquiring information is v−1 (C(F) + v0).

3.2 The Contracting Problem

To get the same distribution as if she were able to generate it by herself, the principal

needs to guarantee that the agent chooses the right distribution, and every message she

sends must represent a unique posterior realization. Without loss of generality, for every

distribution that the principal would like to implement, she sets the message space to be

the support of the distribution.

Following Caplin et al. (Forthcoming), we define a decision problem (µ,D,w) as the

choice over a compact set of actions D given the prior µ over states in Θ, and w : D×Θ→R

is the decision maker’s utility function. Given a decision problem (µ,D), the decision

maker chooses a Bayes-plausible distribution over posteriors G and an action strategy

σ : supp(G)→ ∆(D). A contract (M,t) induces a decision problem (µ,M,t) of the agent;

6Reference, e.g., Theorem 1.3.7 of Hiriart-Urruty and Lemaréchal (2001).
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and we say that a distribution F is implementable if there exists a contract (M,t) such

that M = supp(F), and the agent’s optimal strategy is
(
F, {δx}x∈supp(F)

)
.7 Equivalently, the

contract (M,t) implements F. In particular, we say that F can be implemented efficiently if

it can be implemented at the first-best cost.

For any d ∈M, we define the agent’s net utility N (x | d) as the expected utility of the

message d net of the cost of x:

N (x | d) =
n−1∑
i=1

xit (d,θi) +

1−
n−1∑
i=1

xi

 t (d,θn)−κc (x) ,

where xi is the i-th entry of x. The agent chooses a distribution over posteriors G to

maximize her value function W (x) = maxd∈MN (x | d). It is well-known that the agent’s

optimal choice is determined by concavifying the value function: let H denote the hy-

perplane tangent to the hypograph of W at the support points of F. We can identify this

supporting hyperplane H by an affine function fH(x) : ∆(Θ) → R. The set of optimal

posteriors is the set of points at which fH and W intersect, which we denote by P(M,t). By

construction, at every optimal posterior xj , W
(
xj

)
= N

(
xj | xj

)
; that is, it is optimal for

the agent to report the realized posterior honestly. Therefore, a necessary condition for a

distribution F to be implemented by a contract (M,t) is that supp(F) = P(M,t).

The above condition need not be sufficient for implementation: the contract must also

prevent the agent from walking away at any point in the interaction. In particular, no

matter what the realized posterior is, the agent cannot deviate profitably by taking her

outside option without making a report; this requires (note that this constraint holding

also prevents potential double deviations in which the agent learns differently before

taking her outside option)

fH(x) ≥ v0 −κc(x) for all x ∈ ∆(Θ) . (IC)

We also need to ensure that the agent’s value from accepting the contract exceeds her

outside option, that is, fH(µ) ≥ v0; but since c(µ) = 0, this is already included in Constraint

IC. Thus,

Lemma 3.1. A distribution F can be implemented by a contract (M,t) if and only if

7δx denotes the degenerate distribution at x.
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(i) supp(F) = P(M,t); and

(ii) Constraint IC holds; and

(iii) if there is limited liability, t(m,θ) ≥ 0 for all θ ∈Θ and m ∈M.

To solve the principal’s contracting problem, we adopt a two-step approach: for every

implementable distribution F, we solve the principal’s cost minimization problem:

min
(M,t)

m∑
j=1

pj

n−1∑
j=1

xki v
−1

(
t
(
xj ,θk

))
+


1−

n−1∑
k=1

xkj

v−1
(
t
(
xj ,θn

))
 ,

where pj is the (unconditional) probability that posterior xj realizes, subject to (i), (ii), and

(iii) in Lemma 3.1; denote its value by Γ (F). Then the principal chooses an implementable

distribution F to maximize her payoff under agency,
∫
V (x)dF(x)−Γ (F). Like most papers

studying moral hazard problems, we focus on the first step.

3.3 Preliminary Results

We finish this section by establishing a few preliminary results. We begin by arguing

that any distribution over posteriors with support on n or fewer points can be induced by

some contract.

Lemma 3.2. Let F be a distribution over posteriors with |supp(F)| ≤ n and supp(F) ⊆ int∆(Θ),

then there exists a contract (M,t) that implements F, and the expected cost to the principal is

finite.

The proof of Lemma 3.2, and all other proofs omitted from the main text, are collected

in Appendix A. For each F supported on n or fewer interior points of ∆(Θ), because the

cost function c is bounded and differentiable on ∆(Θ), we can (i) construct a contract with

bounded transfer such that the agent finds it optimal to first acquire F, and then report

the realized posterior truthfully; (ii) find a finite constant such that by adding it to the

transfer, Constraint IC holds. Therefore, every such distribution can be implemented,

and the expected transfer is finite.

Because the support of any extreme point of F(µ) is on n or fewer points, every F ∈

F(µ) can be expressed as a convex combination of distributions with support on n or
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fewer points. Therefore, any F ∈ F(µ) can be obtained by randomizing over a set of

contracts each of which implements a distribution with support on at most n points–

consequently, any distribution whose support is on the interior of ∆ (Θ) can be induced at

a finite expected cost. In fact, it is weakly less costly for the principal to randomize first

rather than implement F directly. Thus, it is without loss of generality for the principal

to offer a contract that results in a distribution over posteriors chosen by the agent with

support on at most n points.

Corollary 3.3. (i) Every F ∈F(µ) with supp(F) ⊆ int∆(Θ) can be induced at a finite cost.

(ii) Without loss of generality, the principal only induces distributions with support on at

most n points.

By Corollary 3.3 (ii), we can restrict our attention to distributions over posteriors sup-

ported on {x1,x2, . . . ,xm}, where n is the number of states, and m ≤ n. Suppose the prin-

cipal would like to implement a distribution F using some contract (M,t). By part (i) of

Lemma 3.1, a necessary condition for implementation is that supp(F) = P(M,t); this condi-

tion holds if and only if the contract is such that the following m expressions

n−1∑
k=1

xk1t
k
1 +

1−
n−1∑
k=1

xk1

 tn1 −κc (x1) +
n−1∑
k=1

(
tk1 − t

n
1 −κck (x1)

)(
xk − xk1

)
n−1∑
k=1

xk2t
k
2 +

1−
n−1∑
k=1

xk2

 tn2 −κc (x2) +
n−1∑
k=1

(
tk2 − t

n
2 −κck (x2)

)(
xk − xk2

)
...

n−1∑
k=1

xkmt
k
m +

1−
n−1∑
k=1

xkm

 tnm −κc (xm) +
n−1∑
k=1

(
tkm − tnm −κck (xm)

)(
xk − xkm

)
,

define the same hyperplane, where tkj B t
(
xj ,θk

)
, xij is the i-th entry of xj , and ci is the

partial derivative of c with respect to its i-th entry. Accordingly, for all k = 1, . . . ,n−1 and

i, j = 1, . . .m

tki − t
n
i −κck (xi) = tkj − t

n
j −κck

(
xj

)
,

and

tni = tnj +Ξij ,
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where Ξij is some function of the primitives (but not directly of the ts).

For each state k = 1, . . . ,n, define Xk (i, j)B tki − t
k
j (i, j = 1, . . . ,m). Then for any one of

the first equations, we have

tki − t
k
j −κck (xi) = tni − t

n
j −κck

(
xj

)
,

for all k = 1, . . . ,n− 1 and i, j = 1, . . .m, so

Xk (i, j)−κck (xi) = Xn (i, j)−κck
(
xj

)
.

The second set of equations becomes Xn (i, j) = Ξij ; plugging this equation into the one

above, we get

Xk (i, j) = κck (xi)−κck
(
xj

)
+Ξij .

Therefore, in every state k = 1, . . . ,n, and every j = 1, . . . ,m, we can write tkj = tkm +Xk (j,m).

We have established

Proposition 3.4. The principal’s problem of optimally inducing a distribution over posteriors

reduces to an n-variable optimization problem, where n is the number of states. The principal

fixes a benchmark message m, then chooses
(
tkm

)k
m

, k = 1, . . . ,n; the payoff to the agent from

sending message m in each state k.

That is, optimality allows us to reduce transfers to a single variable for each state.

4 Main Results I. No Limited Liability

4.1 Risk-Neutral Agent

Recall that fH is the function that identifies the concavifying hyperplane H, the agent’s

value from acquiring information for the principal can be written as fH(µ). Then efficient

implementation requires fH(µ) = v0, which implies that Constraint IC must bind at x = µ.

It is not difficult to see that, in this case, Constraint IC can be reduced to

tkm − tnm −κck (xm) = −κck (µ) for all k = 1, . . . ,n− 1 . (IC −R)
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Armed with this observation, when there is no limited liability and the agent is risk

neutral, the question of whether a distribution can be implemented boils down to that

whether the system of equations defined by the n− 1 equations in Constraint IC −R and

fH(µ) = v0 has a solution. In fact,

Proposition 4.1. If the agent is risk neutral and not protected by limited liability, every distri-

bution F with supp(F) ⊆ int∆(Θ) can be implemented efficiently.

When there is no limited liability, the amount of incentive constraints is “just right”

such that there exists a transfer scheme that delivers the right incentives and keeps the

agent’s surplus at her outside option. Figure 1 illustrates this construction. There, the

agent’s induced value function, W , is depicted in black and its concavification in orange.

The gross payoffs (as a function of posterior x) to agent from the two messages are the

blue and purple lines. Finally, the agent’s net payoff from taking the outside option v0 is

the red curve. The state dependent payoffs for each message are chosen in such a way that

the agent is willing to choose the desired distribution (and report truthfully) and cannot

gain by taking her outside option at any point.

It is instructive to compare Proposition 4.1 to Proposition 2 in Rappoport and Somma

(2017), which states that when the realized posteriors are contractible (but the true state

is not), efficient implementation is possible when the agent is risk neutral even if she

is protected by limited liability. This is made possible in their problem by assigning a

transfer for each posterior in the support of the distribution as a divergence from the

prior–which is by construction nonnegative and hence satisfies limited liability–and the

expected transfer equals the cost of generating the distribution.

If we require limited liability, for some distributions and outside option values, effi-

cient implementation cannot be achieved. In particular, because posteriors are unverifi-

able and hence noncontractible, Rappoport and Somma’s construction does not work. A

simple intuition is that, for unverifiable posteriors, we need to guarantee that for every

possible posterior realization, on or off path, that the agent obtains, she prefers reporting

truthfully to walking away, which constraint is absent in the verifiable posteriors world.

This is correct yet incomplete: in fact, for v0 close enough to 0, even if we do not impose

14



Figure 1: Efficient implementation of xL = 1/9, xH = 5/9 when µ = 1/ (1 + e), κ = 1, and

v0 = log {9/(1 + e)}, and with entropy cost. This contract satisfies the limited liability

constraints–as stated in Proposition 5.2, the specified ratio v0/κ is the minimum such

ratio such that efficient implementation is feasible under limited liability.
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Constraint IC − R, efficient implementation is still not possible for any non-degenerate

distribution. This is because, to induce the agent to gather information, the transfers must

be “rewarding” when the agent “gets the state right” and “punishing” when she is wrong.

The gap between the two scenarios must be large enough to justify the cost of learning.

Therefore, when v0 is small enough, to achieve an expected transfer of Γ (F) = C(F) + v0,

some “punishing” transfer must be negative.

4.2 Risk-Averse Agent

When the agent is risk averse, but unprotected by limited liability, characterizing the

optimal contract is more involved. The following remark is obvious: the principal’s payoff

is strictly decreasing in each of the n control variables
(
tkm

)n
k=1

and so the principal wants

to set each one as low as possible. Unencumbered by limited liability, the lone constraint

is IC, which necessarily binds (since otherwise, the principal could reduce the control

variables). Thus,

Remark 4.2. When the agent is risk averse, there exists an x∗ ∈ ∆ (Θ) such that fH (x) is

tangent to v0 −κc (x) at x∗.

Given this, solving for the optimal implementation of a distribution over posteriors F

can be turned into an n−1 variable optimization problem by using the tangency condition

to substitute in for each tkm.8 This yields the principal an objective that is a function of

x∗, with the lone constraint that x∗ lies in ∆ (Θ). Unless x∗ = µ, which does not hold in

general, the principal does not attain the first best, and the agent obtains positive rents.

This finding contrasts interestingly with the standard finding in the classic moral haz-

ard problem that the agent is left with zero rents in both the first- and second-best worlds.

Not so here, since the agent’s risk aversion alters the optimal way for the principal to pre-

vent deviations to the outside option. Here the principal optimally trades off between risk

sharing and efficiency: when a contract that makes the agent break even entails too much

risk, by moving x∗ away from µ, the risk in the contract is mitigated; then although the

8More precisely, we have tkm − tnm −κck (xm) = −κck (x∗) for all k = 1, . . . ,n− 1.
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agent receives strictly positive rent, implementing the new contract can be much cheaper

to the principal.

This is similar to the trade-off studied in Proposition 5 in Rappoport and Somma

(2017). Both this problem and theirs require some tangency conditions to hold at op-

timum. Beyond this superficial resemblance, the exact conditions differ: in their work,

the most cost-efficient way for compelling the agent to choose the right distribution is to

have the hyperplane determined by the wage contract (which, in their setting, is a func-

tion of the verifiable posterior) to be tangent to the agent’s value function. In our problem,

averting double deviations to the outside option is what begets this tangency condition.

4.2.1 Entropy Cost & Logarithm Utility Example

It is straightforward to solve for the optimal contract when there are just two states, the

agent’s utility v (t) = log(t + 1) and the agent’s cost c (x) = x logx+(1− x) log(1− x)−µ logµ−

(1−µ) log(1−µ). After some algebra, the principal’s problem reduces to

min
x∈[0,1]

−1 +
(µ− xL)

(
xκ+1
H
x + (1−xH )κ+1

1−x

)
xH − xL

+
(xH −µ)

(
xκ+1
L
x + (1−xL)κ+1

1−x

)
xH − xL

 .

This objective is strictly convex and equals +∞ as x ↓ 0 and x ↑ 1. Consequently, there is

a unique interior minimizer pinned down by the first-order condition

(µ− xL)
(

(1− xH )κ+1

(1− x)2 −
xκ+1
H

x2

)
+ (xH −µ)

(
(1− xL)κ+1

(x − 1)2 −
xκ+1
L

x2

)
= 0 .

It can be checked that when κ = 1, x∗ = µ (and so the agent obtains zero surplus) if and

only if µ = 1/2. When κ = 2, x∗ = µ = 1/2 if and only if xL = 1− xH .

5 Main Results II. Limited Liability

In this section, we assume that the agent is protected by limited liability.
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5.1 Low Outside Option

In this subsection we solve for the optimal incentives when the agent’s value for her out-

side option is sufficiently small; we set v0 = 0 for simplicity.9 For expository ease, we start

with the two state case, and then we show that most of our results generalize when there

are more than two states.

5.1.1 Two States

When there are just two states, Θ = {θ1,θ2}; by Corollary 3.3 (ii), we can identify a

distribution by its support {xL,xH }. Without loss of generality α B t1
1 ≥ t1

2 C γ ; and

δB t2
2 ≥ t2

1 C β. In this case, it is convenient to write down the agent’s value function:

W (x) =


α (1− x) + βx −κc (x) , if 0 ≤ x ≤ α−γ

α−γ+δ−β

γ (1− x) + δx −κc (x) , if α−γ
α−γ+δ−β ≤ x ≤ 1

.

Consequently, the equations that pin down the agent’s optimal learning simplify to

κ (c′ (xH )− c′ (xL)) = A+B ,

and

A+κ (c (xH )− c (xL)) = κ (c′ (xH )xH − c′ (xL)xL) ,

where AB α −γ ≥ 0, BB δ − β ≥ 0. Because c is strictly convex, both A and B are strictly

positive if xL < µ < xH , and zero if xL = xH = µ. Furthermore, the concavifying line is

f (x) = (β −γ −A−κc′ (xL))x+γ +A−κ (c (xL)− xLc′ (xL)) . (⋆)

The principal’s objective function is

p
(
v−1 (γ) (1− xH ) + v−1 (B+ β)xH

)
+ (1− p)

(
v−1 (A+γ) (1− xL) + v−1 (β)xL

)
,

where p = (µ− xL)/(xH − xL) is the (unconditional) probability that posterior xH realizes.

It is easy to see that the principal’s objective function is strictly decreasing in both β

and γ . Moreover, the limited liability constraint guarantees that the agent never wants to

9In the next subsection (Section 5.2) we assume the agent is risk neutral and allow for an arbitrary

outside option.
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deviate to take her outside option: the agent’s (on path) payoff gross of information costs

is strictly above 0 and hence the concavification of her objective lies strictly above −κc (x)

for all x. Therefore, it is optimal for the principal to set γ = β = 0; and so α = A and δ = B.

Given this, we can easily back out the principal’s cost of implementing any binary

posterior {xL,xH }. For instance, if the agent is risk neutral and her cost of information

acquisition is the quadratic cost,10

α = κ
(
x2
H − x

2
L

)
and δ = κ (xL (xL − 2)− xH (xH − 2)) .

After some algebra, the principal’s cost of implementing a binary posterior {xL,xH } is

κ (xH − xL) (xH (1−µ) +µ (1− xL)) .

When the agent’s cost of information is entropy,11

α = κ log
1− xL
1− xH

and δ = κ log
xH
xL

.

5.1.2 More Than Two States

When there are n > 2 states, consider a distribution F whose support is {x1,x2, . . . ,xm},

where m ≤ n. Recall from the discussion precedes Proposition 3.4 that for each state

k = 1, . . . ,n and posterior xj , optimal learning requires

tkj = tkm +Xk (j,m) .

Importantly, note that unlike the two state case it is possible that X (j,m) < 0. Define

N (k) =
{
j : Xk(j,m) < 0

}
. If N (k) = ∅, let j∗(k) = m; otherwise let j∗(k) be an arbitrary

selection of argminj∈N (k)X
k(j,m). By setting tkj∗(k) = 0, the agent’s honesty is not affected,

and it is not hard to check that the limited liability constraints are satisfied. For every

i , j∗(k), we have

tki = Xk(i, j∗(k)) = κck (xi)−κck
(
xj∗(k)

)
+Ξij∗(k)

for each k = 1, . . . ,n − 1; and tni = Ξij∗(n) for i , j∗(n). Since the argument above works for

an arbitrary state k, we have thus completely identified the optimal transfers:

10That is, c(x) = (x −µ)2.
11That is, c(x) = x logx+ (1− x) log(1− x)−µ logµ− (1−µ) log(1−µ).
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Proposition 5.1. Suppose v0 = 0, and the agent is protected by limited liability. Then for

each state k = 1, . . . ,n, there exists j∗(k) such that t
(
xj∗(k),θk

)
= 0, and all other transfers are

determined by optimal learning.

Proposition 5.1 is intuitive: for sufficiently small outside option, Constraint IC always

holds; so the transfer scheme is pinned down by optimal learning and limited liability.

Optimal learning leaves, for each state, one degree of freedom to the principal; and to

satisfy limited liability, the best that the principal can do is to find the smallest transfer

in each state and set it to zero.

5.2 Risk Neutral Agent

Now, we dispense with the assumption that the outside option is small–v0 can take any

value.

5.2.1 Two States

Again, we begin with just two states. When the agent is risk neutral (v (·) = ·), the princi-

pal’s objective function can be simplified: she chooses γ and β in order to maximize

−γ (1−µ)− βµ− pxHB− (1− p) (1− xL)A ,

subject to limited liability: β,γ ≥ 0, and

f (x) ≥ v0 −κc (x) for all x ∈ [0,1] . (IC-v0)

By construction the agent cannot deviate profitably by learning differently and reporting

to the principal. Constraint IC-v0 ensures that the agent cannot deviate profitably by

learning differently and taking her outside option.

Our first result characterizes the distributions over posteriors that a principal can

implement efficiently; viz., at the first-best cost. Defining

η1 (xH )B −µc′ (µ)− c (xH ) + c′ (xH )xH , and η2 (xL)B (1−µ)c′ (µ)− c (xL)− (1− xL)c′ (xL) ,

and η (xL,xH )Bmax
{
η1 (xH ) ,η2 (xL)

}
, we have
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Proposition 5.2. The principal can implement {xL,xH } efficiently if and only if v0/κ ≥ η (xL,xH ).

Recall from the discussion in Section 4.1 that, when the agent is risk neutral and

her outside option is zero, we can always find a transfer scheme which implements any

distribution efficiently, just that the transfer is negative for some posterior realization

in some states. When the agent’s outside option increases to some v0 > 0, to make sure

that the agent’s expected payoff equals v0 while maintaining the incentive for acquiring

the same distribution, the new transfer scheme must be “lifted up” by v0 for every pair

of state and posterior realization.12 Consequently, for v0 sufficiently high, all transfers

become nonnegative, and hence limited liability is satisfied.

The left-hand side of Proposition 5.2’s necessary and sufficient condition is strictly

increasing in the outside option v0 and strictly decreasing in the cost of information κ.

Moreover, it is easy to calculate that η is decreasing in xL and increasing in xH , strictly so

if η = η2 or η = η1, respectively. This suggests the following corollary:

Corollary 5.3. (i) For any pair of posteriors {xL,xH } with 0 < xL ≤ µ ≤ xH < 1, if v0/κ is

sufficiently large, {xL,xH } can be implemented efficiently.13

(ii) Efficient implementation is monotone with respect to the Blackwell order: if {xL,xH } can

be implemented efficiently, then any distribution that corresponds to a less informative

experiment can be implemented efficiently.

(iii) If v0 > 0 then any distribution that corresponds to a sufficiently uninformative experi-

ment can be implemented efficiently.

In the canonical moral hazard problem with a risk-averse agent, no matter what out-

side option the agent has, only the lowest action can be implemented efficiently. Corol-

lary 5.3 has a flavor of that classical result: for any outside option level, any distribution

that is Blackwell less informative than some threshold distribution can be implemented

efficiently. In particular, when v0 = 0, the only distribution that can be implemented effi-

12More precisely, optimal learning only leaves one degree of freedom on the transfers for each state,

and the tangency conditions in Constraint IC −R connect different states, so the entire transfer scheme is

determined by these up to a constant.
13If c′ (0) and c′ (1) are finite, this is true for any 0 ≤ xL ≤ µ ≤ xH ≤ 1.
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ciently corresponds to the uninformative experiment. For v0 > 0, however, a continuum

of nontrivial distributions can be implemented efficiently.

When the first-best implementation of {xL,xH } is infeasible, there are three other pos-

sibilities, listed in our next proposition.

Proposition 5.4. One of the following must occur at the optimum. Either

(i) {xL,xH } can be implemented efficiently (and Constraint IC-v0 binds); or

(ii) {xL,xH } cannot be implemented efficiently; and either

(a) Constraint IC-v0 binds and β = 0; or

(b) Constraint IC-v0 binds and γ = 0; or

(c) Constraint IC-v0 does not bind and γ = β = 0.

When the cost function is the entropy cost, it is straightforward to characterize the

four regions of {xL,xH } pairs. They are depicted in Figure 2. Curiously, note that the

boundaries of the four regions of posterior pairs are line segments. This is not true in

general but is special to the entropy cost.

One last comment about Proposition 5.4: if {xL,xH } is in the region corresponding to

(ii)c then γ = β = 0 is optimal even when the agent is risk averse. That is, this portion

of the result does not depend at all on the risk preferences of the agent but is completely

determined by incentive compatibility (in which transfers are expressed as utils). Conse-

quently the necessary and sufficient conditions described in the proposition’s proof hold

even absent risk neutrality. If β = γ = 0 is not feasible, on the other hand, then risk aver-

sion (in the presence of limited liability) complicates things. In particular, it may now be

optimal to give the agent rents even if it is possible to write a contract eliminating them.

5.2.2 More Than Two States

The discussion preceding Proposition 5.1 argues that for each state k we can find a lottery

j∗(k) that delivers the lowest payment; and by Proposition 3.4, to pin down the transfer

scheme, it suffices to determine tkj∗(k) for each state k. Thus, there are n unknowns. More-

over, we have n equations: efficient implementation is equivalent to fH(µ) = v0, and the
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(a) v0/κ = .05. (b) v0/κ = log1/ (1−µ).

(c) v0/κ = 3.

Figure 2: Implementation Regions for µ = 1/2: Pairs (xL,xH ) in the purple region can be

implemented efficiently, (xL,xH ) in the blue region are optimally implemented by γ = β =

0, (xL,xH ) in the orange region are optimally implemented by β = 0 and some γ ≥ 0; and

(xL,xH ) in the red region are optimally implemented by γ = 0 and some β ≥ 0.
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other n− 1 equations are imposed by Constraint IC −R:

tkj − t
n
j −κck

(
xj

)
= −κck (µ) ,

where k = 1, . . . ,n − 1 indicates the state, and j, which indexes the posterior, is arbitrary.

This is because optimality requires

tki − t
n
i −κck (xi) = tkj − t

n
j −κck

(
xj

)
for all i, j and each k = 1, . . . ,n − 1. Then the distribution can be efficiently implemented

if and only if tkj∗(k) ≥ 0 for each k; consequently, Proposition 5.2, Corollary 5.3 (i), and

Proposition 5.4 extend naturally to more than two states.

6 Discussion

We conclude by discussing a few of our assumptions.

The true state is contractible. A key stipulation in our model is that the true state is

observable and contractible ex post. While this assumption is standard in the literature,

and fits some applications well, it can be extended. If we assume that the state is not

observable, but there is an outcome variable that is determined probabilistically by the

state, we could merely treat this outcome (random) variable as the state and contract upon

that. Even in applications in which we cannot find such an outcome variable, our results

may still apply: if distinct action-state pairs lead to different payoffs for the principal, the

state can be inferred from the realized payoff.14 If only the unverifiable message that the

agent sends can be contracted upon; however, the agent cannot be coerced into gathering

any nontrivial information: she never learns anything and sends the message that yields

the highest reward.

14This assumption is not as restrictive as it first seems: for instance, different actions taken by firm

executives usually result in nonidentical performance under dissimilar market conditions, and distinct

portfolio choices typically yield unequal revenue under different stock market trends.
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Agent has no intrinsic preferences for learning. We make this assumption to zero in

the incentive provision problem when the principal has to delegate information acqui-

sition to an agent who cannot make verifiable reports. To allow for the agent to have

intrinsic motivation, we can assume that the agent’s intrinsic value from posterior x is

φ(x), which is known to both parties. Then it is as if that the agent’s cost of arriving at

posterior x is κc(x)−φ(x), and all of our results survive intact. It is also reasonable to as-

sume that the agent has intrinsic preferences over the action to be taken by the principal;

we leave this extension to future research.

Other objectives of the principal. For the sake of exposition, we assume that the princi-

pal would like to acquire information to improve her decision making. Our model allows

for a more general use of information produced by the agent: for all of our results to hold,

we only need to assume that the principal’s indirect utility is a function of posterior. For

example, the principal might seek to influence the choice of a third party decision maker

à la the literature on Bayesian persuasion and information design.
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A Omitted Proofs

A.1 Lemma 3.2 Proof

Proof. Let supp(F) = {x1,x2, . . . ,xm}, where m = |supp(F)| ≤ n. Consider a contract (M,t)

where M = supp(F), and for each j = 1, . . . ,m,

t
(
xj ,θk | τ

)
= κc

(
xj

)
−

n−1∑
i=1

xijκci
(
xj

)
+κck

(
xj

)
+ τ for all k = 1, . . . ,n− 1 ,
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t
(
xj ,θn | τ

)
= κc

(
xj

)
−

n−1∑
i=1

xijκci
(
xj

)
+ τ ,

where xij is the i-th entry of xj , ci is the partial derivative of c with respect to its i-th

entry, and τ is a constant that scales the transfers. Now the agent is facing a decision

problem (µ,M,t). Let G be a distribution over posteriors, and let σ : ∆(Θ)→ ∆(M) denote

a reporting strategy. Then, the agent’s value of (G,σ ) is given by

Υ (G,σ ) =
∑

x∈supp(G)

∑
d∈M

G(x)σ (d | x)N (x | d) .

We claim that (F,σ ∗), where σ ∗(· | xj) = δxj is an optimal strategy for the agent. By

Lemma 1 in Caplin et al. (Forthcoming), it suffices to show that, for every xj , j = 1, . . . ,m,

there exists a n− 1 dimensional vector λ = (λ1, . . . ,λm) such that

N (x | d)−
n−1∑
i=1

λix
i ≤N

(
xj | xj

)
−

n−1∑
i=1

λix
i
j ,

for all x ∈ ∆(Θ) and d ∈M. We set λ to be the zero vector, so the above inequality reduces

to N (x | d) ≤ N
(
xj | xj

)
. We first show that for any fixed d ∈M, N (x | d) ≤ N

(
xj | d

)
, and

then we show that N
(
xj | d

)
≤ N

(
xj | xj

)
. To establish the first inequality, since c(x) is

strictly convex, the first-order conditions (FOC) are sufficient; the FOCs are

t (d,θi | τ)− t (d,θn | τ)−κci (x) = κ
(
ci
(
xj

)
− ci (x)

)
= 0 for all i = 1, . . . ,n− 1 ,

clearly setting x = xj makes all of them hold. For the second inequality,

N
(
xj | xj

)
−N

(
xj | d

)
= κ

c (xj)− c (d)−
n−1∑
i=1

(
xij − di

)
ci(d)

 ≥ 0 ,

where the inequality follows from the convexity of c. Therefore, (F,σ ∗) is indeed optimal,

and it is direct that the agent’s payoff is Υ (F,σ ∗) = τ . Moreover, there exists τ∗ <∞ large

enough, since c is bounded and differentiable on int∆(Θ), such that Constraint IC holds.

Thus, contract (M,t) induces F. The principal’s expected cost is finite since t
(
xj ,θk | τ∗

)
is

finite for all j,k. ■
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A.2 Corollary 3.3 Proof

Proof. Let extF(µ) denote the set of extreme points of F(µ). Because F(µ) is convex and

compact, by Choquet’s theorem, for any G ∈ F(µ) there exists a probability measure ΛG

that puts probability 1 on extF(µ), and

G =
∫

extF(µ)
H dΛG(H) . (R)

Therefore, any distribution G with support on int∆(Θ) can be obtained by randomizing

over distributions supported on at most n points. Then by Lemma 3.2, G can be induced

at a finite cost by randomizing over contracts we constructed therein. This establishes

part (i).

For part (ii), suppose there exists a contract (M,t) under which the agent chooses G,

where |supp(G)| > n, and (G,σ̂ ) is the induced optimal strategy of the agent. Without loss

of generality, M = supp(G) and σ̂ (· | x) = δx for all x ∈ supp(G). Then for every posterior

x ∈ supp(G) and every d ∈M with σ̂ (d | x) > 0,

N (x | d) +
n−1∑
i=1

(t (d,θi)− t (d,θn)−κci (x)) (x̃i − xi) ≥N (x̃ | d′) (H)

for all x̃ ∈ ∆(Θ) and d′ ∈M. By Equation R, for every F ∈ supp(ΛG), and every posterior x,

x ∈ supp(G). Hence, the strategy
(
F, σ̂

∣∣∣
supp(F)

)
is also optimal for the agent since Inequality

H holds for every x ∈ supp(F) and every d ∈M with σ̂
∣∣∣
supp(F)

(d | x) > 0. Now it is direct

that each F ∈ supp(ΛG) can be induced by the contract (MF , tF) where MF = supp(F), and

tF is the restriction of t to MF ; thus, G can be induced at the same cost by randomizing

over supp(ΛG).

Note that; however, for all F ∈ supp(ΛG), (MF , tF) need not be the least costly contract

under which the agent chooses F: randomizing over supp(ΛG) and finding the least costly

contract for each F is at least weakly cheaper than (M,t). Therefore, without loss of

generality, the principal only induces distributions with support on at most n points.

This concludes the proof of part (ii). ■
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A.3 Proposition 4.1 Proof

Proof. Let F be such that supp(F) = {x1, . . . ,xm} ⊆ int∆(Θ), where m ≤ n. As noted in the

main text, there are n−1 equations given by Constraint IC−R: tkm−tnm−κck (xm) = −κck (µ)

for all k = 1, . . . ,n − 1, and efficient implementation requires fH(µ) = v0, which can be

written as
n−1∑
k=1

(
tkm − tnm −κck (xm)

)
µk + tnm = Q ,

where µk is the k-th entry of µ, and Q does not depend on t’s. To show that F can be

efficiently implemented, it suffices to find a solution of this system of n equations. Using

IC−R, the equality above can be reduced to tnm = Q+
∑n−1

k=1κµkck (µ); plugging this into the

other n−1 equations, we get tkm = Q+
∑n−1

i=1 κµici (µ)+κ (ck (xm)− ck (µ)) for each k = 1, . . . ,n.

We have thus found a solution. Because F is an arbitrary distribution over posteriors

supported on at most n points, then by randomizing ex ante, any distribution G with

supp(G) ⊆ int∆(Θ) can be implemented efficiently. ■

A.4 Proposition 5.2 Proof

Proof. Using the concavifying line (⋆), {xL,xH } can be implemented efficiently if and only

if

(i) (β −γ −A−κc′ (xL))µ+γ +A−κ (c (xL)− xLc′ (xL)) = v0; and

(ii) β −γ −A−κc′ (xL) = −κc′(µ); and

(iii) β,γ ≥ 0.

From (i) and (ii),

γ = v0 +κc′(µ)µ−A−κ (c′ (xL)xL − c (xL)) = v0 +κc′(µ)µ−κ (c′ (xH )xH − c (xH )) ,

and

β = v0 −κ(1−µ)c′(µ) +κ (1− xL)c′ (xL) +κc (xL) .

(iii) requires v0/κ ≥max
{
η1 (xH ) ,η2 (xL)

}
, as stated in the result. ■
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A.5 Proposition 5.4 Proof

Proof. (i) is a consequence of Proposition 5.2. Suppose that v0/κ < η (xL,xH ) so that effi-

cient implementation is infeasible. Recall that P wants to maximize −γ (1−µ)−βµ. Thus,

if γ = β = 0 is implementable, they are obviously optimal. Substituting them into the

concavifying line (⋆) we get

h (x) = − (A+κc′ (xL))x+A−κ (c (xL)− xLc′ (xL)) .

We need to check for which values of xL and xH h lies above v0 − κc (x). To that end, we

define function g (x)B h (x)− v0 +κc (x). Then,

g ′ (x) = − (A+κc′ (xL)) +κc′ (x) ,

and observe that g is strictly convex in x. Evidently, g ′ (0) < 0, so f is either minimized at

x◦ = x◦ (xL,xH ), implicitly defined as g ′ (x◦) = 0 (if such an x ≤ 1 exists) or x = 1. Define

x† B min {x◦,1}. Thus, γ = β = 0 is optimal if and only if g
(
x†

)
≥ 0. Note that there

is a knife-edge case where v0/κ = η (xL,xH ), x† = µ, and β = γ = 0 (and the first-best is

attained). This is the only way for all three constraints to bind.

Can we have one of the non-negativity constraints bind, γ = 0, say; and the other

constraints all be slack, i.e., β > 0 and f (x) > v0−κc (x) for all x ∈ [0,1]? No: otherwise the

principal could decrease β by a sufficiently small ε > 0, strictly increasing her payoff and

still leaving Constraint IC-v0 satisfied. This yields (ii)a and (ii)b of the result. ■
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