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1 Introduction

Identification of a structural vector autoregression (SVAR) requires to assume an a priori structure

of the model. Traditionally, identification is based on imposing structure on the interaction

of the variables, ideally derived from macroeconomic theory (e.g., short-run restrictions Sims

(1980) or long-run restrictions Blanchard and Quah (1993)). However, uncontroversial theoretical

restrictions are rare. More recently, data-driven approaches allow to identify the SVAR without

imposing any restrictions on the interaction. Instead, identification is achieved by imposing

structure on the stochastic properties of the shocks (e.g., time-varying volatility as discussed in

Rigobon (2003), Lanne et al. (2010), Lütkepohl and Netšunajev (2017), and Lewis (2021) or non-

Gaussian and independent shocks as discussed in Gouriéroux et al. (2017), Lanne et al. (2017),

Lanne and Luoto (2021), Keweloh (2021b), and Guay (2021)).

Traditional identification approaches may appear unnecessarily restrictive compared to novel

data-driven approaches. However, Olea et al. (2022) stress that these data-driven approaches rely

on information in higher moments, while traditional approaches only rely on second moments.

The data-driven approaches are sensitive to the imposed statistical properties on the higher

moments, while the traditional approaches are not and hence, are robust to these statistical

properties. Additionally, they argue that using economic theory for identification is a feature and

not a handicap and conclude that traditional identification approaches remain relevant.

We agree with their reasoning and recognize the advantages of identification approaches based

on economic theory. However, in many applications we can derive some, but not sufficiently

many convincing restrictions from economic theory to ensure identification. Therefore, with a

traditional purely restriction based approach, even the most plausible restrictions are worthless if

there are not sufficiently many. We propose a Generalized Method of Moments (GMM) estimator

that combines the traditional identification approach based on restrictions with the more recent

data-driven approach based on non-Gaussianity. Our approach allows to impose a block-recursive

structure, meaning that shocks in a given block only influence variables in the same block or

blocks ordered below. The block-recursive structure seems plausible in many macroeconomic

applications. Examples include applications analyzing (i) the interaction of macroeconomic and

financial variables, where the former respond sluggishly while the latter respond quickly, or (ii)
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the interaction of small and large open economies, where large economies may have an immediate

impact on small economics but not vice versa. Additionally, the block-recursive structure nests

two important special cases: a recursive and an unrestricted SVAR.

Identification based on higher moments and non-Gaussian shocks oftentimes relies on the assump-

tion of independent shocks which is criticized as too restrictive (see, e.g., Kilian and Lütkepohl

(2017, Chapter 14)). Importantly, our identification result does not rely on independent shocks

but is robust in the sense that it allows for various kinds of dependencies of the shocks. In par-

ticular, for a given block-recursive structure identification of the shocks within a given block is

based on a small (subset) of cokurtosis conditions derived from mean independence of the shocks

in the corresponding block.1 Therefore, identification within a block follows from Lanne and

Luoto (2021). Moreover, the impact of the shocks in one block on variables in another block is

identified based only on covariance conditions and not on higher-order moment conditions and

requires only uncorrelated shocks. Therefore, imposing a finer block-recursive structure reduces

the dependency of identification on higher-order moment conditions.

However, if the shocks are independent, using only the set of identifying conditions, which is

derived from mean independent shocks within blocks and uncorrelated shocks across blocks, can

be inefficient. To demonstrate this, we prove that in a recursive SVAR with independent shocks

the set of overidentifying higher-order moment conditions can contain additional information

and allows to decrease the asymptotic variance of the GMM estimator.2 Efficient estimation

requires to detect and select the valid and relevant overidentifying conditions. To this end, Lanne

and Luoto (2021) suggest to calculate the information and moment selection criteria proposed

by Andrews (1999) and Hall et al. (2007) for all possible combinations of moment conditions.

However, they note that this approach becomes infeasible in higher-dimensional SVARs.

In a general GMM setup, Cheng and Liao (2015) propose a LASSO-type GMM estimator, here-

after referred to as the penalized GMM estimator (pGMM), which consistently selects only rele-

1A common critique to the assumption of independent shocks is that it does not allow for multiple shocks
to be driven by the same volatility process. Thereby, it rules out a case which may be encountered for some
macroeconomic shocks. However, mean independent shocks and, in particular, the set of cokurtosis conditions
used for identification allow for these kinds of dependencies.

2Note that this is not trivial. For example, in a linear regression model yt = β1xt +εt the GMM estimator with
the moment condition E[xtεt] = 0 is identified and efficient under (conditional) homoscedastic errors. Therefore,
including additional higher-order moment conditions like E[x2t εt] = 0 does not decrease the asymptotic variance
of the GMM estimator even if the shocks or variables are non-Gaussian.
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vant and valid overidentifying conditions in a data-driven way. We apply the pGMM estimator

to the block-recursive SVAR to exploit potential efficiency gains from overidentifying moment

conditions. Our block-recursive SVAR pGMM estimator is consistent, asymptotically normal

and as efficient as the asymptotically efficient block-recursive SVAR GMM estimator, includ-

ing all valid and relevant overidentifying moment conditions. Importantly, these properties also

hold if there are invalid overidentifying moment condition which could arise due to dependent

structural shocks. Additionally, the pGMM estimator refrains from selecting valid but redundant

overidentifying conditions which would neither increase nor decrease the asymptotic variance of

the estimator but lead to imprecise estimates in small samples due to a many moments problem.

Guay (2021) also proposes to combine restrictions with non-Gaussian identification. In particular,

he tests which shocks of the SVAR are identified based on non-Gaussianity and subsequently, his

approach only uses restrictions to identify the remaining part of the SVAR. In this approach, if all

shocks are non-Gaussian, no restrictions have to be used and the SVAR can be estimated solely

by higher-order moment conditions. Consequently, the identification approach relies as heavily

on non-Gaussianity as possible and as little on restrictions as necessary. In contrast to that, our

identification approach relies as much as possible on economically justified restrictions and on

non-Gaussianity only when needed. To be precise, the more block-recursiveness restrictions the

researcher imposes, the less identification depends on higher order-moment conditions.

We conduct two Monte Carlo experiments. In the first one, we demonstrate that the performance

of a purely data-driven estimator based on non-Gaussianity deteriorates substantially with both

a decreasing sample size and an increasing model size. However, exploiting the block-recursive

order can mitigate this performance decline. In the second Monte Carlo experiment, we illustrate

that the pGMM estimator successfully selects relevant moment conditions and increases the

finite sample performance compared to other block-recursive SVAR estimators for a given block-

recursive structure.

We use the block-recursive SVAR pGMM estimator to analyze the impact of oil supply and oil

demand shocks, including speculative oil supply and demand shocks, on the oil price. In his

seminal work, Kilian (2009) highlights that it is necessary to distinguish between oil supply and

demand shocks rather than including solely an oil price shock in the SVAR for the oil market.

However, oil prices are not only affected by supply and demand shocks, but also by speculative
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shocks causing shifts in the expectations of forward-looking traders (see, e.g., Baumeister and

Kilian (2016)). In particular, new oil production technologies, anticipated wars, or news about

oil discoveries or about the (future) state of the economy can shift expectations of future oil

supply and future oil demand. The studies of Kilian and Murphy (2014), Juvenal and Petrella

(2015), Byrne et al. (2019), and Moussa and Thomas (2021) extend the original oil market SVAR

from Kilian (2009) to include speculative shocks. We contribute to this literature by explicitly

distinguishing between speculative supply and speculative demand shocks.

The remainder of the paper is organized as follows: Section 2 reviews the SVAR and differ-

ent identification schemes. Section 3 introduces the block-recursive SVAR. Section 4 derives

identifying and overidentifying moment conditions in a block-recursive SVAR, analyzes which of

the overidentifying conditions are redundant or relevant in a recursive SVAR, and describes the

pGMM estimator. In Section 5, we present the Monte Carlo experiments. In Section 6, we use

the proposed block-recursive estimator to analyze the impact of flow and speculative supply and

demand shocks in the oil market. Section 7 concludes.

2 Overview SVAR

This section briefly recalls the identification problem and common identification approaches for

SVAR models. A detailed overview can be found in Kilian and Lütkepohl (2017). Consider the

SVAR

yt = A1yt−1 + ...+Apyt−p +B0εt, (1)

with parameter matrices A1, ..., Ap ∈ Rn×n, an invertible matrix B0, an n-dimensional vector

of time series yt = [y1,t, ..., yn,t]
′ and an n-dimensional vector of i.i.d. structural shocks εt =

[ε1,t, ..., εn,t]
′ with mean zero and unit variance.

W.l.o.g. we focus on the simultaneous interaction of the SVAR given by

ut = B0εt, (2)
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with the reduced form shocks ut = yt−A1yt−1− ...−Apyt−p, which can be estimated consistently

by OLS. The reduced form shocks are an unknown mixture B0 of the unknown structural shocks

εt. So far, neither the mixing matrix B0 nor the structural shocks εt are identified. To see this,

define the unmixed innovations e(B) as the innovations obtained by unmixing the reduced form

shocks with some matrix B

et(B) := B−1ut. (3)

Note that for B = B0, the unmixed innovations are equal to the structural shocks εt, i.e.,

et(B0) = εt. Additionally, given an estimate B̂ of B0 we refer to et(B̂) as the estimated structural

shocks. The true structural shocks εt and the true mixing matrix B0 are unknown and without

imposing further structure, we cannot verify whether the mixing matrix B and the unmixed

innovations et(B) are equal to the true mixing matrix B0 and the true structural shocks εt.

To identify B0 and the shocks εt, the researcher has to impose structure on the SVAR. The

structure can be specified in two ways: We may

(i) impose more structure on the interaction of the shocks (see Sims (1980) for short-run re-

strictions, Blanchard (1989) for long-run restrictions, and Uhlig (2005) for sign restrictions),

(ii) impose more structure on the stochastic properties of the structural shock (see Lanne et al.

(2010) for time-varying volatility or Gouriéroux et al. (2017), Lanne et al. (2017), Lanne

and Luoto (2021) Keweloh (2021b), and Guay (2021) for non-Gaussian shocks).

Imposing structure on the stochastic properties of the shocks can be used to derive conditions

for the unmixed innovations, while imposing structure on the interaction narrows the space of

possible mixing matrices used to unmix the reduced form shocks.

In applied work, the probably most frequently imposed structure are uncorrelated structural

shocks (meaning εi,t is restricted to be uncorrelated with εj,t for i 6= j) and a recursive interaction

(meaning restricting B0 such that bij = 0 for i < j where bij denotes the element at row i and

column j of B0). Uncorrelated shocks with unit variance can be used to derive (n + 1)n/2 (co-

)variance conditions from I = E [εtε
′
t]

!
= E [et(B)et(B)′]. A recursive interaction implies that

n(n − 1)/2 parameters of B0 are known a priori, leaving only (n + 1)n/2 unknown parameters
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in the mixing matrix B. It is then straightforward to show that, if the remaining (n + 1)n/2

parameters of the restricted B matrix generate unmixed innovations et(B) which satisfy the

(n+ 1)n/2 (co-)variance conditions, the matrix B has to be equal to B0 and, hence, the unmixed

innovations are equal to the structural shocks, meaning the SVAR is identified.3

However, economic theory rarely allows to derive the required n(n− 1)/2 parameter restrictions

to ensure identification. More recently, identification methods based on non-Gaussian and in-

dependent shocks have been put forward in the literature (see Gouriéroux et al. (2017), Lanne

et al. (2017), Lanne and Luoto (2021), Keweloh (2021b), or Guay (2021)). These identification

schemes do not require to impose any restrictions on the impact of the shocks, in particular on

the matrix B0. Instead, the researcher has to impose structure on the stochastic properties of the

shocks. If the structural shocks are not only mutually uncorrelated but mutually independent, we

can derive additional moment conditions. For example, independent and mean zero shocks imply

that all entries of coskewness matrices E [εtε
′
tεi,t] for i = 1, . . . , n are zero except for the ith di-

agonal element, which contains the (unknown) skewness of the shock εi,t. Hence, we can exploit

that the mixing matrix B has to generate unmixed innovations, which satisfy the coskewness

moment conditions derived from E [εtε
′
tεi,t]

!
= E [et(B)et(B)′ei,t(B)]. Similarly, we can use that

the mixing matrix B has to generate unmixed innovations which satisfy the cokurtosis moment

conditions derived from E [εtε
′
tεi,tεj,t]

!
= E [et(B)et(B)′ei,t(B)ej,t(B)].

3 Imposing structure in a SVAR

This section introduces the framework of the block-recursive SVAR. First, we discuss various

structures of the interaction of the shocks allowed in this framework and then, assumptions on

the stochastic properties of the shocks.

3.1 Imposing structure on the interaction of shocks

Traditionally, identification of a SVAR is based on the structure imposed on the interaction of the

shocks (see Section 2). These restriction based approaches require restrictions on the interaction

3Note that this GMM approach is equivalent to the the frequently used estimator obtained by applying the
Cholesky decomposition to the variance-covariance matrix of the reduced form shocks.
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of the shocks to ensure identification, e.g., a recursive structure. The reasoning behind a recursive

structure is oftentimes the prejudice that some variables, e.g., some macroeconomic variables like

inflation, tend to move slowly, while other variables, e.g. financial variables like stock prices, react

faster. However, in practice this intuitive reasoning oftentimes allows to order only some, but not

all variables recursively. This motivates us to consider the block-recursive SVAR, meaning that

the structural shocks are ordered in blocks of consecutive shocks and each structural shock can

simultaneously affect all variables in the same block and in blocks ordered below but not variables

in blocks ordered above.4 Figure 1 shows different block-recursive structures in a SVAR with

four variables. The examples show that a block-recursive structure generalizes the unrestricted

Figure 1: Examples of Different Block-Recursive SVAR Models.

Note: The figure illustrate how the the block structure can be defined by the structural shocks and our definition
of ε̃pi and ũpi , i = 1, . . . ,m.

SVAR and the fully-recursive SVAR and includes both as extreme cases.

We now introduce the notation for the block-recursive SVAR. Suppose that the structural shocks

can be ordered into m ≤ n blocks of consecutive shocks. Let the indices p1 = 1 < p2 < . . . <

pm ≤ n denote the beginning of a new block and for a given block pi let ε̃pi,t and ũpi,t denote

4Zha (1999) derives identifying restrictions for the block-recursive SVAR. The author restricts not only the
simultaneous interaction, but also the lagged interaction. Our proposed block-recursive structure affects only the
simultaneous interaction, while the lagged interaction remains unrestricted.
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the vectors of all structural and reduced form shocks in the ith block, such that

ε̃pi,t :=
[
εpi,t, εpi+1,t, . . . , εpi+1−1,t

]′
and ũpi,t :=

[
upi,t, upi+1,t, . . . , upi+1−1,t

]′
, (4)

where pm+1 := n+ 1 for ease of notation. Moreover, let li denote the number of shocks in block

i for i = 1, ...,m. The vector of all structural shocks εt can then be decomposed into the m

blocks εt = [ε̃′p1,t, . . . , ε̃
′
pm,t]

′ and the reduced form shocks can be decomposed analogously into

ut = [ũ′p1,t, . . . , ũ
′
pm,t]

′. The SVAR is block-recursive with m ≤ n blocks with p1 = 1 < p2 <

. . . < pm ≤ n, if shocks in the ith block have no simultaneous impact on reduced form shocks in

blocks j with j < i such that for i = 1, . . . ,m

bql = 0, for l ≥ pi and q < pi. (5)

Any block-recursive structure can be described by the following assumption.

Assumption 1. (Block-recursive interaction.)

For m ≤ n blocks with p1 = 1 < p2 < . . . < pm ≤ n and q, l = 1, ..., n let

B0 ∈ Bbrec ≡ Bbrec(p1, . . . , pm) := {B ∈ B| bql = 0 if ∃pi ∈ {p1, ..., pm} with l ≥ pi and q < pi}.

3.2 Imposing structure on the stochastic properties of shocks

Imposing structure according to Assumption 1 on the interaction is not sufficient to ensure

identification and further assumptions on the dependence and potential non-Gaussianity of the

shocks are required. In the following, we discuss different structures imposed on the mutual

dependencies of the shocks.

Almost all identification approaches at least assume uncorrelated structural shocks such that

E [εi,tεj,t] = E [εi,t]E [εj,t] for i 6= j.5 Uncorrelated shocks are justified by the idea that a

given structural shock contains no information on other structural shocks, e.g., a structural

monetary policy shock should not depend on other structural shocks. In general, imposing

uncorrelated structural shocks does not rule out that the structural shocks are dependent. If they

are dependent, the interpretation of the estimated SVAR via impulse response functions can be

5Proxy-variable identification approaches are different and instead assume that structural shocks are uncorre-
lated with an external proxy variable (see, e.g., Stock and Watson (2012), or Mertens and Ravn (2013)).
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misleading. For example, consider the two random variables ε1 ∼ N (0, 1) and ε2 = ε2
1 − 1 such

that both random variables are uncorrelated, but dependent. Policy analysis based on impulse

response functions typically uses the ceteris paribus assumption that only a single shock varies,

while the other shocks remain unchanged. In the example above, both shocks are uncorrelated,

but nevertheless always move simultaneously. Therefore, uncorrelated structural shocks are not

sufficient to guarantee that the ceteris paribus assumption holds.

A more rigorous implementation of the idea that a given shock contains no information on

other shocks is to assume independent shocks such that E [h(εi,t)g(εj,t)] = E [h(εi,t)]E [g(εj,t)]

for i 6= j and any bounded, measurable functions g(·) and h(·). If shocks are independent,

a structural shock cannot contain any information on any other structural shock. Therefore,

independent structural shocks justify the ceteris paribus interpretation used in policy analysis

based on impulse response functions. However, several authors argue that the assumption of

independent structural shocks is too strong (cf. Kilian and Lütkepohl (2017, Chapter 14), Lanne

and Luoto (2021), Lanne et al. (2021), or Olea et al. (2021)). In particular, independence of

the shocks implies that also the volatility processes of the shocks are independent, which may

be too restrictive for some macroeconomic applications. For example, suppose that ε̃1,t and ε̃2,t

are drawn independently of each other and represent unscaled structural shocks. Moreover, in

each period an additional volatility shock vt is drawn independently of the other shocks and

the structural shocks are given by ε1,t = ε̃1,tvt and ε2,t = ε̃2,tvt. These structural shocks are

uncorrelated, but dependent since the variance of one shock contains information on the variance

of the other shock.

A compromise between the two extreme cases of uncorrelated and independent shocks is the

assumption of mean independent shocks, such that E [εi,tg(εj,t)] = E [εi,t]E [g(εj,t)] for i 6= j

with a bounded, measurable function g(·). If shocks are mean independent, a structural shock

cannot contain any information about the mean of other structural shocks. Mean independent

shocks can justify the ceteris paribus assumption used in impulse response analysis and at the

same time allow for dependent volatility processes. In particular, the two shocks ε1,t = ε̃1,tvt and

ε2,t = ε̃2,tvt defined above are mean independent since a given shock contains no information on

the mean of the other shock.

Imposing structure on the dependence of the structural shocks allows to derive moment conditions
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(see, e.g., Lanne and Luoto (2021), Keweloh (2021b), or Guay (2021)). For i, j, k, l = 1, ..., n we

define the following moment conditions:

Variance: E[e(B)2
i,t]− 1 = 0 (6)

Covariance: E[e(B)i,te(B)j,t] = 0, for i < j (7)

Coskewness: E[e(B)2
i,te(B)j,t] = 0, for i 6= j (8)

E[e(B)i,te(B)j,te(B)k,t] = 0, for i < j < k (9)

Cokurtosis: E[e(B)3
i,te(B)j,t] = 0, for i 6= j (10)

E[e(B)2
i,te(B)j,te(B)k,t] = 0, for i 6= j, i 6= k, j < k (11)

E[e(B)i,te(B)j,te(B)k,te(B)l,t] = 0, for i < j < k < l (12)

E[e(B)2
i,te(B)2

j,t]− 1 = 0, for i < j (13)

The variance conditions in Equation (6) follow from the unit variance normalization. The remain-

ing conditions are derived from different assumptions on the dependence of the structural shocks.

In particular, uncorrelated structural shocks only imply the covariance conditions in Equation

(7). Mean independent shocks additionally imply the coskewness conditions in Equation (8) and

(9) and the cokurtosis conditions in Equation (10)-(12). In addition, the symmetric cokurtosis

conditions in Equation (13) follow from independent shocks.

Moreover, note that if all structural shocks are Gaussian, the conditions in Equation (8)-(13)

do not contain information beyond the information contained in the variance and covariance

conditions.

4 Estimation of a block-recursive SVAR

In this section, we combine identification based on recursiveness restrictions and non-Gaussian

shocks. First, for a given block-recursive structure we derive corresponding identifying asym-

metric cokurtosis conditions based on mean independent shocks within the blocks. Importantly,

identification is achieved without many higher-order moment conditions and holds under fairly

general conditions on the dependencies of the shocks. Second, we show that additional overiden-
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tifying higher-order moment conditions implied by independent shocks can decrease the asymp-

totic variance of the estimator if the imposed structure is correct. Third, we propose to use a

LASSO-type GMM estimator to select the valid and relevant overidentifying higher-order mo-

ment conditions in a data-driven way. Consistency of the estimator only relies on the identifying

moment conditions and, thus, is robust to various kinds of dependencies of the shocks. Further-

more, it can exploit efficiency gains from valid and relevant overidentifying conditions and ignore

noise from valid but redundant overidentifying conditions.

4.1 Identification

In this section, we show that identification in a block-recursive SVAR can be achieved by the

variance and covariance conditions in Equation (6) and (7) and the asymmetric cokurtosis condi-

tions in Equation (10) corresponding to innovations in the same block. The identification result

is robust in the sense that it allows for various sorts of dependencies of the shocks. To be clear,

shocks in different blocks only need to be uncorrelated and shocks in the same block only need

to fulfill the asymmetric cokurtosis conditions.

Let E[f2(B, ut)] = 0 contain all variance and covariance conditions in Equation (6) and (7)

and let E[f4pk
(B, ut)] = 0 contain all asymmetric cokurtosis conditions from Equation (10)

corresponding to shocks in block k, e.g., E[e(B)3
i,te(B)j,t] = 0 for i, j = pk, ..., pk+1−1 and i 6= j.

We define the identifying moment conditions as

E[fN(B, ut)] := E


f2(B, ut)

f4p1
(B, ut)
...

f4pm
(B, ut)

 = 0. (14)

In the following, we simplify the notation for moment conditions, e.g., we write E[fN(B, ut)]

instead of E[fN(B, ut)] = 0. Note that the identifying moment conditions do not con-

tain asymmetric cokurtosis conditions of shocks in different blocks, e.g., the moment condi-

tions E[e(B)3
i,te(B)j,t] for shocks e(B)i,t and e(B)j,t in different blocks are not contained in

E[fN(B, ut)]. The conditions E[fN(B, ut)] can be justified by the following assumption.
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Assumption 2. (Block-recursive mean independence.)

For m ≤ n blocks with p1 = 1 < p2 < . . . < pm ≤ n,

(i) all shocks are uncorrelated, i.e., E [εi,tεj,t] = 0 for i 6= j.

(ii) all shocks within the same block are mean independent, i.e., E [εi,t|ε−i,t] = 0 for i ∈ {pk, pk+

1, ..., pk+1 − 1} and −i = {pk, pk + 1, ..., pk+1 − 1}\i for k = 1, . . . ,m.

The identifying moment conditions contain n variance conditions, n(n−1)/2 covariance conditions

and
∑m
k=1 lk(lk − 1)/2 asymmetric cokurtosis conditions, where lk := pk+1 − pk denotes the

number of shocks in block k. Therefore, each additional specified block refines the identifying

moment conditions E[fN(B, ut)] such that they contain fewer higher-order moment conditions.

In the extreme case when the SVAR is specified recursively, meaning each block contains only one

variable, the identifying moment conditions contain no higher-order moment conditions. In the

other extreme case of a single block containing all variables, the identifying moment conditions

contain all n(n− 1) asymmetric cokurtosis conditions and are similar to the conditions proposed

in Lanne and Luoto (2021).6

The following proposition shows that the identifying moment conditions are sufficient to locally

identify the block-recursive SVAR.

Proposition 1. (Identification in the block-recursive SVAR.)

Let ut = B0εt with m ≤ n blocks and B0 ∈ Bbrec ≡ Bbrec(p1, . . . , pm) such that Assumption 1

holds. Moreover, suppose that Assumption 2 holds. If at most one structural shock in each block

has zero excess kurtosis, the identifying moment conditions E[fN(B, ut)] = 0 locally identify

B = B0 for B ∈ Bbrec.

Proof. The proof recursively applies the identification result from Lanne and Luoto (2021) and

can be found in Appendix A.3.

6Lanne and Luoto (2021) propose to select n(n − 1)/2 asymmetric cokurtosis conditions, which is sufficient
for local identification if none of the asymmetric conditions does include the third power of a Gaussian shock.
They advocate to rely on a moment selection criterion to avoid including redundant conditions or conditions of
Gaussian shocks. Additionally, Lanne and Luoto (2021) note that including all n(n − 1) asymmetric cokurtosis
conditions ensures local identification even if conditions related to Gaussian shocks are included. We argue that
the degree of overidentification remains reasonably small even if we include all asymmetric cokurtosis conditions
and therefore, including redundant conditions can be expected to be rather harmless. For example, in a SVAR
with four variables and no restrictions the identifying moment conditions consists of 22 conditions to identify
16 parameters. Thus, we suggest to use all asymmetric cokurtosis conditions in order to avoid the cumbersome
process of selecting a subset of the conditions.
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In Proposition 1 the impact of shocks on variables in different blocks is identified based on co-

variance conditions. The interaction of shocks on variables within the same block is identified

based on asymmetric cokurtosis conditions and the local identification result of Lanne and Luoto

(2021). Local identification means that the moment conditions E[fN(B, ut)] identify B0 in a

small neighborhood of B0 (see Hall (2005)). Importantly, the proposition also holds for differ-

ent higher-order moment conditions ensuring identification within the blocks. For example, the

identifying conditions E[fN(B, ut)] could contain all variance-covariance, coskewness and cokur-

tosis conditions implied by independent structural shocks for each block. In this case, global

identification up to sign and permutation within each block follows from Keweloh (2021b).

Without further restrictions, data-driven approaches relying on non-Gaussian and independent

shocks can only ensure identification up to sign and permutation. This means that the order

and sign of the shocks in the impulse response functions is not identified. In practice, the

researcher has to manually assign labels to the shocks. Restricting the solution to a given block-

recursive structure simplifies the permutation or labeling problem. In particular, shocks can only

be permuted inside blocks. For instance, in example (b) in Figure 1 shocks from the second

block cannot be permuted into the first block since this violates the block-recursive structure.

Therefore, specifying a finer block-recursive structure simplifies the labeling of the shocks.

Define the block-recursive SVAR GMM estimator which minimizes the variance, covariance and

the asymmetric cokurtosis conditions over the set of block-recursive matrices as

B̂N := arg min
B∈Bbrec

gN(B)′WNgN(B), (15)

with a suitable weighting matrixWN and gN(B) := 1/T
∑T
t=1 fN(B, ut). Consistency and asymp-

totic normality follow from the identification result in Proposition 1 and standard assumptions

including valid moment conditions implied by the dependence structure imposed in Assumption

2. That is,

B̂N
p→ B0 (16)

√
T
(

(vec
(
B̂N

)
− vec (B0)

)
d→ N (0, VN) , (17)
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where the formula for the asymptotic variance, VN, is standard but lengthy and, therefore, de-

ferred to Appendix A.1. Moreover, under standard assumptions the weighting matrix W ∗N := S−1
N

with SN := limT→∞E[gN(B)gN(B)′] leads to the estimator B̂∗N with lowest possible asymptotic

variance (see, e.g., Hall (2005)).

In many applications, the researcher is only interested in some structural shocks. For this case,

we derive a partial identification result under weaker assumptions.

Proposition 2. (Partial identification in the block-recursive SVAR.)

Let ut = B0εt with m ≤ n blocks and B0 ∈ Bbrec ≡ Bbrec(p1, . . . , pm) such that Assumption 1

holds. Moreover, let Bi,0 denote the columns of B0 representing impact of the structural shocks

in the ith block. Let B̃brec := Bbrec(p̃1, . . . , p̃m̃) denote a potentially different block-recursive

interaction. Assume that there exists a block p̃j of B̃brec which contains the shocks of block pi,

i.e., there exits a j, 1 ≤ j ≤ m̃, such that p̃j = pi and p̃j+1 = pi+1.

The moment conditions E

 f2(B, ut)

f4p̃j
(B, ut)

 = 0 locally identify Bi,0 for B ∈ B̃brec if the following

conditions hold:

1. The shocks εt are uncorrelated.

2. The asymmetric cokurtosis conditions of block p̃j hold.

3. At most one shock in block p̃j has zero excess kurtosis.

Proof. The proof can be found in Appendix A.3.

Proposition 2 reveals that we can identify a specific block of shocks by using only the second

moments of all shocks and the asymmetric cokurtosis conditions of the shocks in the block of

interest as long as the block of interest is specified correctly and contains at most one Gaussian

shock. To see the advantages of the partial identification result, consider that we are only

interested in the last two structural shocks in Figure 1 (b). In this example, Proposition 2 implies

that the impact of the last two shocks is identified even if (i) the first and second shock are both

Gaussian, (ii) the first and second shock do not satisfy the asymmetric cokurtosis conditions but

are only uncorrelated, or (iii) the block-recursive structure is misspecified as the one displayed in
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Figure 1 (c). Additionally, Proposition 2 implies that the moment conditions used in Proposition

1 identify the shocks in a block of interest if the block of interest is specified correctly, contains

at most one Gaussian shock, and there exists a B such that the moment conditions are fulfilled.

However, the B matrix can differ from B0, except for the columns corresponding to the block of

interest.

4.2 Overidentification and efficiency gains

In the previous section, we proposed a block-recursive SVAR GMM estimator, which uses only

a (small) subset of asymmetric cokurtosis conditions, and provide an identification result which

does not require independent shocks. However, the excluded set of coskewness and cokurtosis con-

ditions can decrease the asymptotic variance of the estimator and hence, increase the efficiency of

the estimator. In this section, we define the overidentified block-recursive SVAR GMM estimator

which contains all coskewness and cokurtosis conditions implied by independent shocks. Addi-

tionally, we derive conditions for the redundancy and relevance of the overidentifying coskewness

and cokurtosis conditions in a recursive SVAR with independent structural shocks.

Assumption 3. (Independent shocks.)

All shocks are independent, i.e., εi,t is independent of εj,t for i 6= j.

For a given block-recursive SVAR, define the overidentifying moment conditions as

E[fD(B, ut)] = E

f3\N(B, ut)

f4\N(B, ut)

 , (18)

where E[f3\N(B, ut)] contains all coskewness conditions from Equation (8)-(9), and

E[f4\N(B, ut)] contains all cokurtosis conditions from Equation (10)-(13), implied by indepen-

dent shocks and not included in the identifying moment conditions E[fN(B, ut)].

The overidentified block-recursive SVAR GMM estimator is defined as

B̂N+D := arg min
B∈Bbrec

gN(B)

gD(B)

′WN+D

gN(B)

gD(B)

 , (19)
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with a suitable weighting matrix WN+D and gD(B) := 1/T
∑T
t=1 fD(B, ut). Note that the overi-

dentified block-recursive SVAR GMM estimator uses all coskewness and cokurtosis conditions

implied by independent shocks. That is, the moment conditions used for estimation are the same

as in the SVAR GMM estimator proposed by Keweloh (2021b). However, the latter estimator

neither uses restrictions nor distinguishes between identifying and overidentifying moment con-

ditions. In contrast to that, we allow for block-recursive restrictions. These restrictions allow to

transform identifying into overidentifying moment conditions.

Consistency and asymptotic normality of the overidentified block-recursive SVAR GMM estima-

tor in Equation (19) require that not only the identifying but also the overidentifying moment

conditions are valid, which holds if the shocks are independent as assumed in Assumption 3.

That is,

B̂N+D
p→ B0 (20)

√
T
(

(vec
(
B̂N+D

)
− vec (B0)

)
d→ N (0, VN+D) , (21)

where the formula for the asymptotic variance, VN+D, is standard and can be found in Appendix

A.1. Again, under standard assumptions the weighting matrix W ∗N+D := S−1
N+D with SN+D :=

limT→∞E[gN+D(B0)gN+D(B0)′], where gN+D(B0) := [gN(B0)′, gD(B0)′]′, leads to the estimator

B̂∗N+D with lowest possible asymptotic variance (see, e.g., Hall (2005)).

Adding additional valid moment conditions can never increase the asymptotic variance of the

GMM estimator (see, e.g., Breusch et al. (1999)). Therefore, if the structural shocks are inde-

pendent such that the overidentifying conditions hold, the asymptotic variance of B̂∗N+D is equal

to or smaller than the asymptotic variance of B̂∗N. If including an additional moment condition

decreases the asymptotic variance of the estimator, the moment condition is called relevant, oth-

erwise the moment condition is called redundant. A moment condition is called partially relevant

for a subset of parameters if it decreases the asymptotic variance of a subset of parameters. If

this is not the case, the moment condition is called partially redundant.

In the following proposition, we show that overidentifying higher-order moment conditions in

E[fD(B, ut)] can decrease the asymptotic variance of the estimator. To this end, we consider the

special case of a recursive SVAR with independent shocks. In this case, the SVAR is identified
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solely by second-order moment conditions and all coskewness and cokurtosis moment conditions

are overidentifying. The proposition highlights that some coskewness and cokurtosis conditions

are always (partially) redundant, while other conditions are relevant if certain conditions for the

skewness, excess kurtosis, and elements of the inverse of B0 are fulfilled. The proposition also

implies that if at least one shock has a non-zero skewness, at least one higher-order moment

condition will be relevant and consequently, the recursive SVAR GMM estimator based solely

on second-order moment conditions, which is equal to frequently used estimator obtained by

applying the Cholesky decomposition, is inefficient.

Proposition 3. (Redundant and relevant moment conditions in the recursive SVAR.)

Let A := B−1
0 and let aql denote the element at row q and column l of A. Additionally let i, j, k, l ∈

{1, ..., n} and i 6= j 6= k 6= l. The impact of a shock εq,t is equal to the unrestricted elements in the

q-th row of B0. In a recursive SVAR with independent structural shocks the following redundancy

statements hold w.r.t. the identifying second-order moment conditions E[f2(B, ut)].

Coskewness condition:

1. E[e(B0)ie(B0)je(B0)k] is redundant.

2. E[e(B0)2
i e(B0)j ] is partially redundant for the impact of the shock εq,t with q 6= j.

3. E[e(B0)2
i e(B0)j ] is partially redundant for the impact of the shock εj,t if and only if

for i < j for i > j

2E[ε3j,t]

E[ε4j,t]−1
ajj = 0.

2E[ε3j,t]

E[ε4j,t]−1
ajj + E[ε3i,t]aij = 0,

E[ε3i,t]ai,z = 0, z = j + 1, . . . , i.

Cokurtosis condition:

1. E[e(B0)ie(B0)je(B0)ke(B0)l] and E[e(B0)2
i e(B0)je(B0)k] are redundant.

2. E[e(B0)3
i e(B0)j ] is partially redundant for the impact of the shock εq,t with q 6= j.
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3. E[e(B0)3
i e(B0)j ] is partially redundant for the impact of the shock εj,t if and only if

for i < j for i > j

2E[ε3j,t]E[ε3i,t]

E[ε4j,t]−1
ajj = 0.

2E[ε3j,t]E[ε3i,t]

E[ε4j,t]−1
ajj + (E[ε4i,t]− 3)aij = 0,

(E[ε4i,t]− 3)ai,z = 0, z = j + 1, . . . , i.

4. E[e(B0)2
i e(B0)2

j − 1] is partially redundant for the impact of the shock εq,t with q 6= i and

i < j.

5. E[e(B0)2
i e(B0)2

j − 1] is partially redundant for the impact of the shock εi,t with i < j if and

only if

E[ε3j,t]E[ε3i,t]ajz = 0, z = i, . . . , j.

Proof. The proof can be found in Appendix A.4.

In practice, the conditions in Proposition 3 cannot be verified since the matrix B0, the skewness,

and the kurtosis of the structural shocks are unknown a priori. Furthermore, Proposition 3 only

covers a recursive SVAR with independent shocks, i.e., if the shocks are only mean independent

or the SVAR has a different block-recursive structure, we do not have a theoretical result on

which moment conditions are relevant and which are not.

4.3 Data-driven moment selection

Section 4.1 provides an identification result for block-recursive SVARs only requiring a (small)

subset of cokurtosis conditions which is robust in the sense that it allows for various kinds of

dependencies of the shocks. Section 4.2 stresses that there is a trade-off between robustness and

efficiency of the estimator. For robustness, we leave out overidentifying conditions, which has the

downside that some of these conditions may be valid and relevant, i.e., decrease the asymptotic

variance of the estimator. However, an advantage is that one does not include potentially in-

valid overidentifying conditions, which could lead to an inconsistent overidentified block-recursive
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SVAR GMM estimator in Equation (19). Additionally, valid but redundant overidentifying con-

ditions can lead to a many moment problem and a poor finite sample performance of the overi-

dentified block-recursive SVAR GMM estimator, compare Cheng and Liao (2015), Hall (2005),

and Hall (2015). Therefore, we propose to use the pGMM estimator of Cheng and Liao (2015)

to detect and include only the relevant and valid overidentifying moment conditions in a data-

driven way. By including valid and relevant moment conditions in the estimation, we exploit the

asymptotic efficiency gains of relevant moments. By leaving out invalid or redundant moment

conditions, we can avoid inconsistent estimates and issues related to many moment conditions.

In general, the overidentifying higher-order moment conditions E[fD(B, ut)] can be separated into

three sets: E[fA(B, ut)] contains valid and relevant moment conditions, E[fR(B, ut)] contains

valid but redundant conditions, and E[fI(B, ut)] contains invalid moment conditions. The goal is

to select the moments E[fA(B, ut)] and to leave out the moments E[fR(B, ut)] and E[fI(B, ut)].

However, in practice the researcher does not know whether a given moment condition is invalid,

redundant, or valid and relevant. Therefore, we propose to detect and select the relevant and

valid overidentifying moment conditions in a data-driven way. Based on Cheng and Liao (2015),

we define the block-recursive SVAR pGMM estimator

{B̂pGMM
N+D , β̂} := arg min

{B,β}∈Λ

 gN(B)

gD(B)− β

′WN+D

 gN(B)

gD(B)− β

+ λ
∑
j∈D̃

ωj |βj |, (22)

where λ ≥ 0 is a tuning parameter specified by the researcher, β ∈ RkD is the vector of slackness

parameters, Λ := {Bbrec,R1×kD} is the parameter space of {B, β}, ω ∈ RkD is a vector of weights

used in the penalty term, and D̃ := {1, . . . , kD} with kD denoting the number of conditions in

E[fD(B, ut)].

The vector of slackness parameters β allows the moment conditions E[fD(B, ut)] to deviate from

zero without increasing the first part of the loss function and therefore, to decrease their impact on

the estimation. However, each element of β gets penalized in the second part of the loss function

and consequently, giving slack to overidentifying moments adds a cost, i.e., increases the loss

function. The vector of weights ω and the tuning parameter λ govern the cost of giving slack to

moment conditions. In particular, a smaller λ makes it cheaper to give slack to all overidentifying

moments and a smaller ωj makes it less costly to give slack to a specific overidentifying moment
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j.

The pGMM estimator in Equation (22) has two special cases. First, if λ = 0, adding slack

to the overidentifying moments is not penalized. Therefore, the solution of the pGMM estima-

tor is B̂pGMM
N+D = B̂N and β̂ = gD

(
B̂N

)
, where B̂N is the solution of the the block-recursive

SVAR GMM estimator in Equation (15) using only the identifying moments E[fN(B, ut)] and

the weighting matrix WN, equal to the block of the weighting matrix WN+D corresponding to

the identifying conditions E[fN(B, ut)]. Second, if λ = ∞, deviations of β̂ from zero become

infinitely costly for overidentifying moments with ωj > 0. Assuming ω > 0, the pGMM esti-

mator cannot give slack to any overidentifying moment condition. Thus, B̂pGMM
N+D = B̂N+D and

β̂ = 0 minimize the loss function of the pGMM estimator, where B̂N+D is the solution of the

the overidentified block-recursive SVAR GMM estimator in Equation (19), using the weighting

matrix WN+D. Choices of λ other than λ = 0 or λ =∞ lead to solutions which lie between these

extreme cases. In practice, we recommend using cross-validation to find the optimal value of λ.

The penalty term uses weights ωj ≥ 0, ∀j ∈ D̃, to shrink the elements of β differently. Let

E[fDj (B, ut)] for j ∈ D̃ correspond to one specific moment of E[fD(B, ut)]. A higher ωj leads

to more shrinkage for βj and consequently, makes it more likely that βj becomes zero, meaning

that the corresponding moment E[fDj
(B, ut)] gets selected. Furthermore, ωj = 0 implies that

even if the tuning parameter λ is large, there is no cost for giving slack to the moment condition

E[fDj (B, ut)], implying that those moments do not influence the estimated B̂pGMM
N+D . Since we

aim to select only the relevant and valid moment conditions E[fA(B, ut), and not the invalid

E[fI(B, ut)] or redundant moment conditions E[fR(B, ut)], we would specify ωj > 0 for all valid

and relevant conditions, and ωj = 0 for all invalid or redundant conditions. To achieve this

without prior knowledge on E[fA(B, ut)], E[fR(B, ut)], and E[fI(B, ut)], Cheng and Liao (2015)

construct ωj allowing information-based adaptive adjustment for each moment in E[fD(B, ut)].

More precisely, they use

ωj =
µr1j
|β∗j

r2 |
, j ∈ D̃, (23)

where µj is a measure for the empirical relevance of the moment condition E[fDj
(B, ut)], relative

to the identifying moment conditions E[fN(B, ut)], and β∗j is a preliminary consistent estimator
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of E[fDj
(B0, ut)] and r1 ≥ r2 ≥ 0 are constants specified by the researcher. The use of 1/|β∗j

r2 |

resembles an adaptive LASSO penalty (cf. Zou (2006)) and implies that moments with small β∗j

are subject to more shrinkage. Since β∗j is a consistent estimator and the true value of β∗j for a

valid moment is zero, the adaptive penalty ensures that valid moments get selected. However,

using only the adaptive penalty, we would unintendedly incentivize the estimator to select also

redundant moments since, by definition, these are also valid. To avoid selecting redundant

moments, Cheng and Liao (2015) suggest to multiply the adaptive penalty with

µj = ρmax

(
V̂N − V̂N+Dj

)
, j ∈ D̃, (24)

where ρmax(A) is the maximum eigenvalue of a square matrix A and V̂N and V̂N+Dj
are consistent

estimators of the efficient asymptotic variance-covariance matrices V ∗N and V ∗N+Dj
, defined in

Appendix A.1. If the maximum eigenvalue of V ∗N − V ∗N+Dj
is positive, then adding moment

condition E[fDj
(B, ut)] to the conditions E[fN(B, ut)] decreases the asymptotic variance of the

estimator and hence, moment condition E[fDj
(B, ut)] is relevant. Therefore, µj estimates the

empirical relevance of the moment E[fDj (B, ut)].
7

Cheng and Liao (2015) show that, under conditions, the pGMM estimator consistently se-

lects the valid and relevant moments, i.e., limT→∞ P (β̂j = 0) = 1 if the moment condition

E[fDj (B, ut)] is in E[fA(B, ut)], and does not select the invalid or redundant moments, i.e.,

limT→∞ P (β̂j = 0) = 0 if the moment condition E[fDj
(B, ut)] is in E[fR(B, ut)] or E[fI(B, ut)].

They also derive that, under conditions, the pGMM estimator is a consistent estimator of B0 and

asymptotically normal with asymptotic variance VN+A.8 In our case, the conditions in particular

require that Assumption 2 holds. However, consistency and asymptotic normality do not rely

on independent shocks, i.e., Assumption 3. Even though the SVAR pGMM estimator uses the

moment conditions E[fN(B, ut)] and E[fD(B, ut)] for estimation, its asymptotic variance only

7Cheng and Liao (2015) show that V ∗N − V ∗N+Dj
is positive semidefinite for every j ∈ D̃, implying that

the maximum eigenvalue of V ∗N − V ∗N+Dj
is nonnegative. Furthermore, note that both V̂N ≡ V̂N

(
B̂N

)
and

V̂N+Dj
≡ V̂N+Dj

(
B̂N

)
are evaluated at B̂N, which is obtained from Equation (15). Thereby, we do not rely on

B̂N+Dj
to estimate V ∗N+Dj

since the moment associated with Dj may be invalid and hence, V̂N+Dj

(
B̂N+Dj

)
inconsistent for V ∗N+Dj

.
8This result is not explicitly stated in Cheng and Liao (2015) but follows from their Remark 3.5 using the

Cramér-Wold device, an arbitrary weighting matrix W and replacing the variance of the sample GMM estimator
with the asymptotic variance. We prove the result in Appendix A.5 under Assumption 1 and 2.
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depends on the moments conditions E[fD(B, ut)] and E[fA(B, ut)]. That is, the SVAR pGMM

estimator successfully ignores the redundant and invalid moments and decreases the asymptotic

variance by incorporating the information contained in the relevant and valid moments. The

weighting matrix W ∗N+D := S−1
N+D leads to the estimator with the lowest possible asymptotic

variance (Hall, 2005), corresponding to the asymptotic variance of the oracle estimator. The

oracle estimator uses only moment conditions E[fN(B, ut)] and E[fA(B, ut)] and is infeasible in

practice without prior knowledge of E[fD(B, ut)] and E[fA(B, ut)]. However, the SVAR pGMM

estimator is as efficient as the oracle estimator asymptotically.

5 Finite sample performance

In this section, we conduct two Monte Carlo studies. The first one illustrates that the perfor-

mance of SVAR estimators can be improved substantially by exploiting the block-recursive struc-

ture. This is especially relevant for SVARs with well-justified restrictions and a large number of

variables. The second Monte Carlo study focuses on how to incorporate information in overi-

dentifying higher-order moment conditions. More concretely, we demonstrate that the pGMM

estimator selects relevant and does not select redundant moment conditions in a data-driven way

and thereby, improves the finite sample performance.

For both Monte Carlo experiments, we consider three different sample sizes T = {100, 250, 1 000}

to analyze the influence of the sample size on the performance of the estimators. We independently

and identically draw each structural shock εit, i = 1, . . . , n, t = 1, . . . , T, from the two-component

mixture

εit ∼ 0.79 N (−0.2, 0.72) + 0.21 N (0.75, 1.52),

where N (µ, σ2) indicates a normal distribution with mean µ and standard deviation σ. The

shocks have skewness 0.9 and excess kurtosis 2.4.

We compare the finite sample performance of various SVAR estimators.9 Based on the simula-

tions presented in Keweloh (2021a), we use continuous updating estimators (CUEs) instead of

GMM estimators and estimate the asymptotically efficient weighting matrix based on serially and

9The estimators are implemented in python and the pGMM estimator uses the solvers of Defferrard et al.
(2017).
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mutually independent shocks.10 Since CUE estimators are closely related to GMM estimators,

we use both terms interchangeably. More specifically, we refer to the estimators as follows:

• GMM: Continuous updating estimator based on Equation (15) using only the identifying

moment conditions E[fN(B, ut)].

• oGMM: Overidentified continuous updating estimator based on Equation (19) using

the identifying moment conditions E[fN(B, ut)] and overidentifying moment conditions

E[fD(B, ut)].

• GMM-Oracle: Overidentified continuous updating estimator based on Equation (19) using

the identifying moment conditions E[fN(B, ut)] and the relevant overidentifying moment

conditions E[fA(B, ut)].

• pGMM: Continuous updating LASSO estimator based on Equation (22).

We only indicate which block-recursive structure is imposed for estimation, when necessary (e.g.,

when comparing an GMM estimator without restrictions with a block-recursive GMM estimator).

5.1 Block-Recursive Structure

We simulate a SVAR with n = 2 and n = 4 variables. The mixing matrices B0 are given by

B0 =

10 5

5 10

 and B0 =


10 5 0 0

5 10 0 0

5 5 10 5

5 5 5 10

 . (25)

The Monte Carlo study analyzes the impact of imposing a block-recursive structure for GMM

estimators. In the small SVAR with n = 2, we impose no restrictions. In the large SVAR

10Keweloh (2021a) demonstrates that the inability to precisely estimate S, the long-run covariance matrix of the
moment conditions, and as consequence the efficient weighting matrix leads to a poor small sample performance
of two-step GMM and CUE estimators. Recognizing this downside, Keweloh (2021a) proposes a novel estimator
for S exploiting serially and mutually independent shocks.Keweloh (2021a) illustrates that the estimator for S
substantially increases the small sample performance of the two-step GMM and CUE estimator. Additionally,
Keweloh (2021a) illustrates that CUE estimators are less biased than GMM estimator in small samples.
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with n = 4, we estimate the GMM estimator without restrictions and the block-recursive GMM

estimator, using the block-recursive structure in Equation (25), i.e., we apply zero restrictions

for all elements where B0 is zero.11

Table 1 summarizes the results of M = 3, 500 Monte Carlo simulations. The table shows the

average of each estimated element b̄ij = 1/M
∑M
m=1 b̂

m
ij and the estimated mean squared error

(MSE), σ̂2
i,j = 1/M

∑M
m=1

(
b̂mij − bij

)2

, where bij denotes the element of B0 in row i and column

j and b̂mij its estimated value in Monte Carlo run m. Moreover, we calculate the average over the

empirical biases, Bias :=
∑n
i=1

∑n
j=1 wi,j

(
b̄ij − bij

)
, and the average over the estimated MSEs,

V ar :=
∑n
i=1

∑n
j=1 wi,j σ̂

2
i,j , across estimated elements in B̂, i.e., wi,j equals zero if b̂mij is restricted

to be zero and one over the number of estimated elements in B̂ otherwise. Additionally, we report

the number of moments used by each estimator. For each estimator, the average bias and MSE

decreases with the sample size. Furthermore, the simulation highlights how the performance of

the GMM estimators, which are based entirely on non-Gaussianity, decreases with an increasing

model size (e.g., the average bias and MSE for each sample size is up to 2.1 and 1.9 times higher for

the GMM estimator with n = 4 compared to the GMM estimator with n = 2). The Monte Carlo

study illustrates how in a typical macroeconomic application, which rarely or if at all contains

more than a few hundred observations, data-driven estimates based on non-Gaussianity become

less reliable the more variables the SVAR contains. However, the simulation also stresses that

exploiting the block-recursive structure annihilates the deterioration of the performance induced

by a larger model. That is, the average bias and MSE for each sample size in Table 1 is at least

1.8 and 1.8 times higher for the GMM estimator with n = 4 compared to the block-recursive

GMM estimator with n = 4. Using the block-recursive structure allows the block-recursive GMM

estimator to estimate the four elements on the lower left of B0 (each with a value of 5) only by

covariance moment conditions (which explains why the average MSE of the block-recursive GMM

estimator with n = 4 even can be lower than or comparable to the GMM estimator with n = 2,

which relies on higher-order moment conditions).

Our results suggest that if in a given application well-justified restrictions are available, these

restrictions should be used as they substantially improve the performance of the estimator.

11In this Monte Carlo study, we focus on GMM estimators. We include the oGMM, GMM-Oracle and pGMM
estimator in the second Monte Carlo study.
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Table 1: Finite sample performance of the GMM and block-recursive GMM estimator.

n=2 n=4

GMM GMM block-recursive GMM
T

=
1
00 B̂

[
9.78
(2.26)

4.90
(4.31)

4.90
(4.24)

9.76
(2.18)

] 
9.28
(3.24)

4.63
(4.82)

0.04
(5.31)

0.07
(5.27)

4.70
(4.87)

9.23
(3.20)

0.08
(5.32)

0.05
(5.14)

4.68
(6.54)

4.62
(6.74)

9.27
(5.01)

4.74
(6.54)

4.67
(6.67)

4.65
(6.53)

4.66
(6.48)

9.33
(4.93)




9.74
(2.31)

4.91
(4.30)

. .

4.87
(4.43)

9.74
(2.18)

. .

4.86
(2.51)

4.89
(2.44)

9.63
(2.17)

4.84
(4.41)

4.87
(2.56)

4.91
(2.45)

4.84
(4.24)

9.64
(2.34)


#Mo 5.00 22.00 14.00
Bias −0.1649 −0.3314 −0.1878
MSE 3.25 5.41 3.03

n=2 n=4

GMM GMM block-recursive GMM

T
=

25
0 B̂

[
9.88
(1.10)

4.90
(2.30)

4.98
(2.22)

9.85
(1.13)

] 
9.56
(1.64)

4.79
(2.77)

0.02
(3.19)

0.06
(3.21)

4.77
(2.69)

9.54
(1.65)

−0.01
(3.14)

0.04
(3.26)

4.74
(4.05)

4.83
(3.94)

9.56
(2.76)

4.83
(3.92)

4.74
(4.10)

4.82
(3.91)

4.79
(3.86)

9.61
(2.85)




9.87
(1.07)

4.91
(2.41)

. .

4.94
(2.33)

9.83
(1.15)

. .

4.93
(1.16)

4.91
(1.20)

9.81
(1.13)

4.92
(2.30)

4.94
(1.14)

4.92
(1.21)

4.91
(2.32)

9.84
(1.09)


#Mo 5.00 22.00 14.00
Bias −0.0982 −0.2065 −0.1069
MSE 1.69 3.18 1.54

n=2 n=4

GMM GMM block-recursive GMM

T
=

1
00

0 B̂

[
9.96
(0.24)

5.00
(0.46)

4.97
(0.48)

9.97
(0.22)

] 
9.92
(0.26)

4.99
(0.53)

0.00
(0.64)

0.02
(0.54)

4.95
(0.51)

9.94
(0.29)

0.00
(0.61)

0.02
(0.53)

4.95
(0.73)

4.99
(0.72)

9.92
(0.56)

4.99
(0.65)

4.95
(0.69)

4.99
(0.66)

4.96
(0.75)

9.95
(0.43)




9.97
(0.22)

5.02
(0.48)

. .

4.97
(0.46)

9.99
(0.24)

. .

4.98
(0.25)

5.01
(0.28)

9.96
(0.21)

4.99
(0.40)

4.98
(0.25)

5.01
(0.27)

4.98
(0.41)

9.97
(0.20)


#Mo 5.00 22.00 14.00
Bias −0.0262 −0.0295 −0.0124
MSE 0.35 0.57 0.31

The table reports the average b̄ij and the corresponding estimated MSE (in paren-

theses) of each estimated element in B̂ as well as the BIAS and MSE across esti-

mated elements in B̂ over 3, 500 Monte Carlo replicates. We estimate the GMM
estimator without restrictions for n = 2 and n = 4, and the block-recursive GMM
estimator for n = 4, which uses zero restrictions highlighted by the dots.
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5.2 Recursive Structure

In this subsection, we simulate a recursive SVAR using n = 4 variables and

B0 =


10 0 0 0

5 10 0 0

5 5 10 0

5 5 5 10

 . (26)

For the estimation of B0, we impose a recursive order for all considered estimators, i.e., we use zero

restrictions for all elements where B0 is zero. In this setup, the pGMM, GMM-Oracle, and the

oGMM estimator are efficient estimators and have a smaller asymptotic variance than the GMM

estimator, which is equivalent to the estimator obtained by applying a Cholesky decomposition.

By using a recursive structure, we can apply Proposition 3 to calculate whether an overidentifying

moment condition is relevant or redundant. Therefore, we can analyze whether the pGMM

estimator selects relevant moment conditions and does not select redundant moment conditions.

With the imposed recursive order, the identifying moment conditions E[fN(B, ut)] contain 10

and the overidentifying conditions E[fD(B, ut)] contain 47 conditions. All moment conditions

in E[fD(B, ut)] are valid. More precisely, 17 of overidentifying conditions are redundant and 30

overidentifying conditions are relevant.

The construction of the weights for the pGMM estimator as in Equation (23) requires an initial

consistent estimate B̂ to estimate β∗ and the asymptotic variance in Equation (24). To this end,

we apply the GMM estimator, which is the Cholesky estimator in this case. Moreover, we again

use the assumption of independent shocks to estimate the asymptotic variance, as proposed by

Keweloh (2021a). We use r1 = 2 and r2 = 1 in Equation (23) and additionally, we normalize the

weights such that they sum to one, i.e., we use ω∗j := ωj/
∑
k∈D̃ ωk, allowing for straightforward

comparison among the weights.

We choose the optimal λ for the pGMM estimator with 5-fold cross-validation from a sequence

of 10 potential values. The maximum value of the sequence of λ’s depends on the sample size,
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ensuring that it is large enough to select all moments j for which ω∗j > 10−4.12 We also include

λ = 0 in the range of possible values to allow our estimator to simplify to the recursive SVAR.

The selection of the optimal tuning parameter is based on the median of the GMM loss of each

left-out fold.

Table 2 summarizes the results of M = 3, 500 Monte Carlo simulations. We report the same

summary statistics as in Table 1. In addition, we calculate the average number of moments

selected by the pGMM estimator and the median of the chosen λ’s for the pGMM estimator across

Monte Carlo runs. In Appendix B.1, we display results including the Post-pGMM estimator which

uses the moments selected by pGMM in a second stage estimation.

The GMM estimator performs well in the smallest sample size in terms of bias and MSE. However,

the GMM estimator is asymptotically inefficient and has the largest MSE among all considered

estimators for T = 250 and T = 1000. Due to many moments, the oGMM estimator performs

worst in terms of bias and MSE among the considered estimators for T = 100. Yet, its perfor-

mance improves with sample size and it eventually outperforms the GMM estimator in terms of

MSE. The bias is highest for the oGMM and GMM-Oracle estimator across sample sizes, which

might be explained by the greater number of moments used by these estimators. Note that both

estimators are asymptotically efficient. Nevertheless, many moment conditions can still lead to a

finite sample bias. The MSE of the GMM-Oracle estimator is already comparable to the GMM

estimator in small samples. Relative to the other estimators, its MSE further decreases with the

sample size and it performs best in the largest sample size. In general, the GMM-Oracle estima-

tor is infeasible since the redundant moments are unknown a priori.13 In contrast to that, the

pGMM estimator is feasible and uses a data-driven approach to select the relevant and valid mo-

ments. The pGMM estimator performs well across all sample sizes in terms of bias and MSE. For

T = 100, its bias and MSE is notably smaller than the one of the oGMM and the GMM-Oracle

estimator and surprisingly, also smaller than the one of the GMM estimator. In the largest sam-

ple, the pGMM estimator performs similar to the oGMM and GMM-Oracle estimator in terms of

12We specify the maximum value of the sequence of λ’s in a data-driven way using the subgradient of Equation
(22) with respect to β. We give more details on how to construct the maximum value of the sequence of λ’s in
the cross-validation in Appendix A.6.

13Even if we knew the non-Gaussianity of the shocks, we would not be able to derive the oracle estimator if
the block-recursive structure was not just purely recursive. In this case, we still lack the information on which
moments are redundant and which are relevant.
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Table 2: Finite Sample Performance of the pGMM estimator.

GMM oGMM GMM-Oracle pGMM

T
=

1
0
0 B̂


9.93
(1.09)

. . .

4.98
(1.21)

9.86
(1.02)

. .

4.97
(1.49)

4.95
(1.29)

9.83
(1.12)

.

4.96
(1.71)

4.93
(1.46)

4.91
(1.27)

9.78
(1.08)




9.77
(1.07)

. . .

4.90
(1.31)

9.71
(1.01)

. .

4.89
(1.69)

4.88
(1.43)

9.70
(1.10)

.

4.90
(2.07)

4.88
(1.74)

4.88
(1.46)

9.69
(1.09)




9.76
(1.07)

. . .

4.91
(1.17)

9.70
(1.02)

. .

4.91
(1.50)

4.88
(1.26)

9.69
(1.10)

.

4.92
(1.81)

4.88
(1.51)

4.88
(1.25)

9.67
(1.10)




9.96
(1.09)

. . .

5.00
(1.15)

9.88
(1.01)

. .

4.98
(1.46)

4.96
(1.22)

9.85
(1.11)

.

4.99
(1.71)

4.96
(1.42)

4.95
(1.21)

9.82
(1.10)


#Mo 10.00 57.00 40.00 24.22
Bias −0.0883 −0.1806 −0.1804 −0.0650
MSE 1.27 1.40 1.28 1.25

λ . . . 71.08

GMM oGMM GMM-Oracle pGMM

T
=

2
5
0 B̂


9.97
(0.43)

. . .

4.99
(0.51)

9.96
(0.43)

. .

4.98
(0.64)

5.00
(0.52)

9.93
(0.45)

.

4.98
(0.72)

4.99
(0.61)

4.98
(0.51)

9.91
(0.45)




9.90
(0.40)

. . .

4.96
(0.49)

9.90
(0.40)

. .

4.96
(0.65)

4.97
(0.51)

9.87
(0.42)

.

4.97
(0.73)

4.96
(0.61)

4.97
(0.49)

9.86
(0.42)




9.90
(0.40)

. . .

4.97
(0.44)

9.90
(0.40)

. .

4.97
(0.59)

4.97
(0.46)

9.87
(0.42)

.

4.98
(0.65)

4.97
(0.54)

4.96
(0.44)

9.85
(0.42)




9.99
(0.42)

. . .

5.01
(0.45)

9.97
(0.41)

. .

5.01
(0.59)

5.02
(0.46)

9.94
(0.42)

.

5.02
(0.66)

5.01
(0.55)

5.00
(0.44)

9.92
(0.43)


#Mo 10.00 57.00 40.00 27.20
Bias −0.0311 −0.0676 −0.0656 −0.0114
MSE 0.53 0.51 0.48 0.48

λ . . . 118.92

GMM oGMM GMM-Oracle pGMM

T
=

1
0
0
0 B̂


10.00
(0.11)

. . .

5.00
(0.13)

9.99
(0.11)

. .

4.99
(0.15)

4.99
(0.13)

9.99
(0.11)

.

4.99
(0.19)

4.99
(0.15)

4.99
(0.13)

9.98
(0.11)




9.98
(0.10)

. . .

4.99
(0.12)

9.97
(0.10)

. .

4.99
(0.13)

4.99
(0.11)

9.98
(0.10)

.

4.99
(0.16)

4.99
(0.14)

4.99
(0.11)

9.97
(0.10)




9.98
(0.10)

. . .

4.99
(0.11)

9.97
(0.10)

. .

4.99
(0.13)

4.99
(0.10)

9.98
(0.10)

.

4.99
(0.15)

4.99
(0.13)

4.99
(0.11)

9.97
(0.10)




10.00
(0.11)

. . .

5.00
(0.11)

9.99
(0.10)

. .

5.00
(0.13)

5.00
(0.11)

10.00
(0.10)

.

5.00
(0.16)

5.00
(0.13)

5.00
(0.11)

9.98
(0.10)


#Mo 10.00 57.00 40.00 29.59
Bias −0.0076 −0.0158 −0.0158 −0.0021
MSE 0.13 0.12 0.11 0.12

λ . . . 75.34

The table reports the average b̄ij and the corresponding estimated MSE (in parentheses) of each estimated element

in B̂ as well as the BIAS and MSE across estimated elements in B̂ over 3, 500 Monte Carlo replicates for the GMM
estimator, the oGMM estimator, the GMM-Oracle estimator, and the pGMM estimator. All estimator use zero
restrictions which are highlighted by the dots.

MSE and best in terms of bias.14 The simulation shows that the pGMM estimator can, without

prior specification, distinguish informative from non-informative overidentifying moments, which

solves the many moments problem of the oGMM estimator and allows to exploit information in

overidentifying higher-order moments already in small samples.

Table 2 indicates that the average number of selected moments increases only slightly as T

14The Post-pGMM estimator reported in Appendix B.1 performs similar to the pGMM estimator.

28



increases. Even for T = 1000, the pGMM estimator only selects 20 out of 30 valid and relevant

overidentifying moments in addition to the 10 identifying moments. That said, the remaining

10 moments would only decrease the MSE from 0.12 to 0.11, indicating that the moments not

being selected would not lower the MSE much. Figure 2 illustrates that pGMM estimator only

selects relevant moments and manages to leave out redundant moments, especially as T increases.

Moreover, the share of selections of each moment across all Monte Carlo runs rises with the

sample size for the majority of relevant moments. In Figure B.2, we plot the average weight

of each moment across Monte Carlo runs. By comparing Figure 2 and Figure B.2, we argue

that there is a clear correlation between the average weight and the number of selections of each

moment. More precisely, all redundant moments have an average weight which is very close to

zero and hence, they are not selected by the pGMM estimator.
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Figure 2: Share of Selections of Moments across Monte Carlo Runs

(a) T = 100

(b) T = 250

(c) T = 1000
Note: The figure shows how often each moment gets selected across M = 3, 500
Monte Carlos simulations. Redundant moment (orange) and relevant moments
(blue) are displayed on the x-axis. Each x-axis label abbreviates a moment
condition, e.g., [0, 1, 2, 1] corresponds to E[e(B)01,t e(B)12,t e(B)23,t e(B)14,t].
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Figure 3: Illustration of Influence of λ on β.

(a) Trace Plot (b) Selected Moments

Note: Panel (a) of the figure shows the values of β in dependence on log(λ) for one Monte Carlo run for T = 100

and the corresponding number of selected moments in D̃. Panel (b) of the figure splits the number of selected
moments into the number of selected redundant and the number of selected relevant moments for each log(λ).

Figure 3 highlights the influence of λ on β and hence, on the number of selected moment con-

ditions for one Monte Carlo run.15 For instance, for log(λ) = −6 no overidentifying moment

conditions are selected and the solution of the pGMM estimator corresponds to the one of the

GMM estimator. Further, the number of selected moments increases as λ increases, i.e., the

penalty shrinks the elements of β to zero. Furthermore, the relevant moments get selected first

when λ increases and we do not select any redundant moment until λ becomes very large.

6 Application of the block-recursive SVAR: Disentangling

speculative demand and supply shocks in the oil market

In this section, we propose a SVAR model for the oil market to analyze the impact of flow and

speculative supply and of flow and speculative demand shocks on the real oil price. A flow supply

shock for oil represents an exogenous deviation in the present amount of oil coming out of the

ground and a flow demand shock for oil an exogenous deviation in the present amount of oil being

consumed. A speculative oil supply shock represents a shift in the expected future oil supply and

a speculative oil demand shock a shift in the expected future oil demand.

15For the purpose of illustration, we use a wider range of of λ values for this plot.
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We consider a SVAR with monthly data from January 1974 to December 2019 of the form
Ot

Yt

OPt

SRt

 = α+

12∑
i=1

Ai


Ot−i

Yt−i

OPt−i

SRt−i

+


uOt

uYt

uOPt

uSRt

 . (27)

The variable Ot is the log difference of global oil production, Yt is the log difference of industrial

production, measuring economic activity, OPt is the growth rate of real oil price, and SRt are

real monthly stock returns.16 We decompose the reduced form shocks ut into four structural

shocks with 
uOt

uYt

uOPt

uSRt

 =


b11 b12 0 0

b21 b22 0 0

b31 b32 b33 b34

b41 b42 b43 b41




εst

εdt

εs−expt

εd−expt

 , (28)

where εst is a flow supply shock for oil, εdt is a flow demand shock for oil, εs−expt is a speculative

oil supply shock, and εd−expt is a speculative oil demand shock. The block-recursive restrictions

in Equation (28) imply that oil production and economic activity behave sluggishly and can

contemporaneously only respond to flow supply and demand shocks, whereas oil prices and stock

returns can immediately incorporate all available information and contemporaneously respond to

flow and speculative supply and demand shocks.

The simultaneous relationship is estimated using the block-recursive SVAR pGMM estimator.17

In line with the Monte Carlo simulations, we apply continuous updating for the weighting

16Global oil production is given by the global crude oil including lease condensate production obtained from the
U.S. EIA. We obtain industrial production by the monthly industrial production index in the OECD and six major
other countries from Baumeister and Hamilton (2019). The real oil price is equal to the refiner’s acquisition cost
of imported crude oil from the U.S. EIA deflated by the U.S. CPI. Real stock prices correspond to the aggregate
U.S. stock index constructed by the OECD deflated by the U.S. CPI.

17In Appendix B.2, we conduct various robustness checks. In particular, we estimate the block-recursive SVAR
using the GMM estimator from Equation (15) and the overidentified GMM estimator from Equation (19). Esti-
mates using the white fast SVAR GMM estimator proposed by Keweloh (2021b) and the PML estimator proposed
by Gouriéroux et al. (2017) are qualitatively similar and available on request. Additionally, we report results for
different specifications of the variables in the block-recursive SVAR, including specifications where oil production
and real economic activity are included in deviations from a trend, and where the oil price is measured in log
levels.
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matrix and use the assumption of serially and mutually independent shocks to estimate the

asymptotically efficient weighting matrix as proposed by Keweloh (2021a). With the imposed

block-recursive structure, we can divide the moment conditions into 14 identifying conditions

E[fN(B, ut)] and 43 overidentifying conditions E[fD(B, ut)]. We use the same specifications to

construct the weights as in the Monte Carlo simulation, i.e., we use r1 = 2 and r2 = 1 in Equation

(23). For the cross-validation, we consider a range of 28 values for λ, including λ = 0. The max-

imum value of λ is chosen such that all conditions E[fD(B, ut)] for which ωj/
∑
k∈D̃ ωk > 10−7

get selected. With the chosen λ = 34679, which is the 27th value of the considered sequence, 12

coskewness and 12 cokurtosis conditions are selected.18

For each estimated structural shock, Table 3 shows the estimated skewness, kurtosis and p-value

of the Jarque-Bera test. To ensure identification, at most one structural shock in each block

may be Gaussian. In our block-recursive structure, each block contains only two shocks and,

therefore, it is sufficient for identification to show that at least one structural shock in each block

is non-Gaussian. Furthermore, the block-recursive structure implies that each of the two unmixed

innovations in the first block is equal to a linear combination of the two structural shocks in the

first block, i.e., if both structural shocks are Gaussian, the two unmixed innovations have to be

Gaussian as well. However, the skewness, kurtosis, and Jarque-Bera test for normality clearly

suggest that the unmixed innovations in the first block are non-Gaussian and, hence, that at least

one structural shock in the first block is non-Gaussian. Consequently, the first block is identified.

Moreover, the unmixed innovations in the second block are equal to a linear combination of the

structural shocks in the second block (the argument follows from Equation (A.5) in the proof of

Proposition 2). Again, the skewness, kurtosis and Jarque-Bera test for normality clearly suggest

that the unmixed innovations in the second block are non-Gaussian, implying that at least one

structural shock in the second block is non-Gaussian. Thus, the second block is also identified.

Consequently, the block-recursive SVAR is identified.

In Figure 4, we show impulse response functions (IRFs).

18Additionally, we compute the block-recursive SVAR pGMM estimator using the plugin rule λ =

k
r2/4
D T (−0.5−r2/4), where kD denotes the number of overidentifying moment conditions, see Cheng and Liao

(2015). The estimator selects 8 coskewness and 6 cokurtosis conditions.
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Table 3: Non-Gaussianity of the estimated structural shocks

εst εdt εs−expt εd−extt

Skewness −0.97 −0.21 0.46 −0.82
Kurtosis 9.92 4.58 6.79 6.88
JB-Test 0.00 0.00 0.00 0.00

Note: Skewness, kurtosis and the p-value of the Jarque-Bera test for normality.

Figure 4: Impulse Responses of the block-recursive SVAR pGMM estimator.

Note: Impulse responses to the estimated structural shocks for the block-recursive SVAR pGMM estimator.
Confidence bands are symmetric 68% and 80% bands based on standard errors and 1000 replications. The rows
show the cumulative responses. The x-axis displays monthly lags.

With the block-recursive structure, labeling of the shocks in the plot of the IRFs is straightfor-

ward. In the first block, there is only one shock which leads to a significant immediate increase

of economic activity and, thus, an immediate increase in demand for oil. We label this shock

as the flow demand shock and the remaining shock in the first block as the flow supply shock.
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In the second block, one shock leads to an immediate increase of the real oil price and to a

long-run increase of economic activity. We label this shock as the speculative oil demand shock.

The remaining shock in the second block leads to an immediate decrease of the oil price and to

an increase of economic activity and oil production in the long-run, which corresponds to the

speculative oil supply shock.

Our results show that flow supply shocks immediately increase oil production and decrease the real

oil price and flow demand shocks increase real economic activity and the real oil price. Moreover,

oil production responds to the demand shock with a lagged increase. Interestingly, it seems

that real stock returns do not respond significantly to flow demand and supply shocks. With

respect to the speculative shocks, we find that a supply expectation shock leads to an increase

of oil production and of real economic activity after one year. Furthermore, it immediately and

permanently decreases the real oil price and increases real stock returns. A speculative demand

shock increases oil production and real economic activity. Additionally, the speculative demand

shocks leads to an immediate increase of the real oil price and of real stock returns.

Figure 5 shows the contribution of the estimated structural shocks to the evolution of the real

oil price. Figure B.3 in Appendix B.2 shows the historical evolution of the real oil price.
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Figure 5: Real oil price evolution explained by the estimated structural shocks.

Note: In each of the panels, we simulate the real oil price (blue line) by setting all but one of the shocks to zero
(and for ease of interpretation, we also set α = 0 in Equation (27)). The red vertical bars indicate the following
events: Iranian Revolution (1978 : 9), Iran Iraq War (1980 : 9), collapse of OPEC (1985 : 12), Persian Gulf War
(1990 : 8), Asian Financial Crisis of (1997 : 7), Iraq War (2003 : 1), the collapse of Lehman Brothers (2008 : 9),
and the oil price decline in mid 2014.

Figure 5 suggests that the increase of the real oil price from 1978 to 1981 is mainly driven by flow

supply and speculative supply shocks. Moreover, we find that the decline of the real oil price from

1981 to 1985 is largely explained by speculative supply shocks. Additionally, the decrease in real

oil prices after the collapse of OPEC in 1985 and the peak of real oil prices during the Persian

Gulf War in 1990 can to a large extent be explained explained by speculative supply shocks. The

run-up in the real oil prices from 2003 to 2008 is driven by flow demand, speculative demand,

and speculative supply shocks. Flow demand and speculative demand shocks explain the plunge

of the real oil price during the financial crisis in 2008. Additionally, most of the recovery of the
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real oil price after the financial crisis is explained by demand shocks. The collapse of the real

oil price since mid 2014 is related to flow demand, speculative demand, and speculative supply

shocks.

The IRFs in Figure 4 show no evidence against a recursive structure of the shocks in the first

block. That said, our results clearly suggest that the second block does not have a recursive

structure since the two structural shocks in the second block have an immediate impact on both

reduced form shocks in the second block. As a robustness-check and to illustrate the impact of

misspecification in the second block, we estimate a recursive specification as proposed in Kilian

and Park (2009). That is, we restrict b12 and b34 in Equation (28) to zero. In this case, the

interpretation of the shocks changes and we refer to the third and fourth shock as speculative oil

price shock and residual stock market shock, respectively.

Figure B.5 in Appendix B.2 displays the IRFs of the recursive SVAR. The response of the real

oil price to flow supply and demand shocks in the recursive model is similar to the the one in

the block-recursive model. The speculative oil price shock leads to an decrease of the real oil

price. However, none of the remaining variables shows any significant response to the speculative

oil price shock, except for economic activity which shows a small negative reaction in the first

seven month. In the recursive SVAR for the oil market, we cannot distinguish between speculative

supply and speculative demand shocks. Rather, the speculative oil price shock contains a mixture

of the speculative supply and speculative demand shock. However, the impact of the speculative

oil price shocks on oil production and the economy should depend on the source of the speculative

oil price shock and, thus, it is not surprising that we are unable to find a clear response of oil

production, economic activity, and the stock market to the speculative oil price shock in the

recursive specification.

As a further robustness-check, we estimate the SVAR without any restrictions on the interaction,

i.e., we estimate the model without the zero restrictions given in Equation (28). In this case,

the labeling of the shocks is the same as in Equation (28). However, the difference is that oil

production and economic activity can now contemporaneously respond to speculative supply

and demand shocks. Figure B.6 and Figure B.7 in Appendix B.2 show the corresponding IRFs.

Overall, the unrestricted responses in Figure B.6 are comparable to the block-recursive responses

in Figure 4. However, the confidence bands are broader and there is no significant response of
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the real oil price to flow supply and (almost) no significant response to flow demand shocks.

7 Conclusion

For a non-Gaussian block-recursive SVAR, we derive a small set of identifying moment conditions

based on mean independent shocks. Additionally, we derive overidentifying moment conditions

from independent shocks and show that these conditions can decrease the asymptotic variance

of the block-recursive SVAR estimator. In particular, we prove that the frequently applied

Cholesky estimator may be inefficient. Since some of the overidentifying moment conditions may

be redundant, i.e., may not decrease the asymptotic variance, or be invalid, i.e., may lead to

inconsistent estimates, we employ the block-recursive SVAR pGMM estimator to select only the

relevant and valid overidentifying moment conditions.

We demonstrate in a Monte Carlo experiment that imposing a block-recursive structure substan-

tially increases the finite sample performance compared to unrestricted estimators. Furthermore,

a second Monte Carlo experiment highlights that, for a given block-recursive structure, the block-

recursive SVAR pGMM estimator selects only relevant moment conditions and thereby, increases

finite sample precision compared to the block-recursive SVAR GMM estimator and overidentified

block-recursive SVAR GMM estimator.

Our application analyzes the impact of flow and speculative supply and flow and speculative

demand shocks in the oil market. We argue that there are some but not enough well-justified

restrictions available to identify the SVAR based on second moments. Traditional approaches

would either rely on additional less credible restrictions or refrain from using any restrictions

and solely rely on non-Gaussianity. The proposed block-recursive estimator allows to utilize

only the well-justified restrictions and, therefore, offers a compromise between both approaches.

The application illustrates that by combining data-driven identification with traditional zero

restrictions we are able to gain deeper insights into the transmission of demand and supply

shocks in the oil market.
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A Supplementary Notation and Proofs

We include the formulas in Appendix A.1 and A.2 for completeness, even though they are standard

textbook results (cf. Hall (2005)).

A.1 Asymptotic variance of the block-recursive SVAR GMM estimator

The asymptotic variance of the overidentified block-recursive SVAR GMM estimator defined in

Equation (19) is given by

VN := MNSNM
′
N (A.1)

where

MN := (G′NWNGN)
−1
G′NWN, SN := lim

T→∞
E [TgN(B0)gN(B0)] ,

GN := E

[
∂fN(B0, ut)

∂vec(B)′

]
.

Consequently, using the weighting matrix W ∗N := S−1
N leads to the estimator B̂∗ with the asymp-

totic variance

V ∗N := (G′NS
−1
N GN)−1, (A.2)

which is the lowest possible asymptotic variance (see Hall (2005)).

A.2 Asymptotic variance of the (overidentified) block-recursive SVAR

GMM estimator

The asymptotic variance of the overidentified block-recursive SVAR GMM estimator defined in

Equation (19) is given by

VN+D := MN+DSN+DM
′
N+D, (A.3)
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where

MN+D :=
(
G′N+DWN+DG

)−1
G′N+DWN+D, SN+D := lim

T→∞
E [gN+D(B0)gN+D(B0)′] ,

GN+D :=

GN

GD

 , gN+D(B0) :=

gN(B0)

gD(B0)

 ,
GD := E

[
∂fD(B0, ut)

∂vec(B)′

]
.

Using the weighting matrix W ∗N+D := S−1
N+D leads to the estimator B̂∗N+D with the asymptotic

variance

V ∗N+D := (G′N+DS
−1
N+DGN+D)−1, (A.4)

which is the lowest possible asymptotic variance (see Hall (2005)). To construct VN+Dj

and V ∗N+Dj
, j ∈ D̃, we replace the moment conditions fDj

(B, ut) by moment condition

fDj
(B, ut), j ∈ D̃, in Equation (A.3) and (A.4).
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A.3 Identification in the block-recursive SVAR

Proof of Proposition 1.

For ease of notation, we omit the time index t and w.l.o.g., consider an example with two blocks19

up1
up2

 =

B11,0 0

B21,0 B22,0

εp1
εp2

 and B =

B11 0

B21 B22

 ,
where up1 and up2 contain the reduced form shocks of the first and second block, εp1 and εp2

contain the structural shocks of the first and second block, and B11,0, B21,0, B22,0, B11, B21, and

B22 are the corresponding blocks of the matrices B0 and B.

First, let E[f2p1
(B, u)] = 0 contain all (co-)variance conditions of shocks in the first block. The

block-recursive structure implies that up1 = B11,0εp1 . If at most one structural shock in the

first block has zero excess kurtosis, it follows from Lanne and Luoto (2021) that the conditions

containing only shocks in the first block

E

f2p1
(B, u)

f4p1
(B, u)

 = 0

locally identify B11 = B11,0, the impact of the shocks in the first block on the variables in the

first block.

Second, let E
[
f2p1p2

(B, u)
]

= 0 contain all covariance conditions belonging to shocks in

both blocks. At the local solution B11 = B11,0, the covariance conditions containing shocks

of both blocks only hold if B21 = B21,0. To see this, rewrite the covariance conditions as

19If the SVAR contains more than two blocks, the procedure outlined in the proof can be repeated multiple
times to identify arbitrary many blocks. For example, a SVAR with three blocksup1up2

up3

 =

B11,0 0 0
B21,0 B22,0 0
B32,0 B32,0 B33,0

εp1εp2
εp3

 can be written as

[
up1
ũp2

]
=

[
B11,0 0

B̃21,0 B̃22,0

] [
εp1
ε̃p2

]
,

with ũp2 = [u′p2 , u
′
p3

]′, B̃22,0 =

[
B22,0 0
B32,0 B33,0

]
, B̃21,0 =

[
B21,0

B31,0

]
,and ε̃p2 = [ε′p2 , ε

′
p3

]′. Our proof then shows

how to identify B11,0, B̃21,0 =

[
B21,0

B31,0

]
, and εp1 . Defining

[
zp2
zp3

]
:=

[
up2
up3

]
−
[
B21,0

B31,0

]
εp1 then yields

[
zp2
zp3

]
=

[
B22,0 0
B32,0 B33,0

] [
εp2
εp3

]
,

which is another block-recursive SVAR with two blocks.
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E [ep2(B)ep1(B)′] = 0. With the partitioned inverse of B and the block-recursive structure,

it holds that ep2(B) = −B−1
22 B21B

−1
11 B11,0εp1 + B−1

22 (B21,0εp1 +B22,0εp2). Therefore, with

B11 = B11,0 it holds that

E [ep2(B)ep1(B)′] = −B−1
22 B21E

[
εp1ε

′
p1

]
+B−1

22 B21,0E
[
εp1ε

′
p1

]
+B22,0E

[
εp2ε

′
p1

]
.

With E
[
εp1ε

′
p1

]
= I and E[εp2ε

′
p1 ] = 0, the condition E [ep2(B)ep1(B)′] = 0 implies 0 =

−B−1
22 (B21 −B21,0) at B11 = B11,0. Therefore, at the local solution B11 = B11,0 the covari-

ance conditions E
[
f2p1p2

(B, u)
]
, globally identify B21 = B21,0 the impact of shocks in the first

block on variables in the second block.

Finally, let E[f2p2
(B, u)] = 0 contain all (co-)variance conditions of shocks in the second block.

At the solution B11 = B11,0 and B21 = B21,0 the unmixed innovations of the second block ep2(B)

are mixtures of the structural shocks in the second block and are not influenced by shocks from the

first block. This follows from the partitioned inverse of B and the block-recursive structure such

that ep2(B) = B−1
22 B22,0εp2 . If at most one structural shock in the second block has zero excess

kurtosis, it then again follows from Lanne and Luoto (2021) that at the solution B11 = B11,0 and

B21 = B21,0 the remaining conditions containing only shocks in the second block

E

f2p2
(B, u)

f4p2
(B, u)

 = 0

locally identify B22 = B22,0, meaning the impact of shocks in the second block on variables in

the second block.

Proof of Proposition 2.

To simplify the notation let

ũ1 := [u1, ..., upi−1]′, ẽ1(B) := [e1(B), ..., epi−1(B)]′, ε̃1 := [ε1, ..., εpi−1]′,

ũ2 := [upi , ..., upi+1−1]′, ẽ2(B) := [epi(B), ..., epi+1−1(B)]′, ε̃2 := [εpi , ..., εpi+1−1]′,

ũ3 := [upi+1
, ..., un]′, ẽ3(B) := [epi+1

(B), ..., en(B)]′, ε̃3 := [εpi+1
, ..., εn]′,
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such that ũ1, ẽ1(B), and ε̃1 contain all reduce form shocks, unmixed innovations, and structural

shocks in blocks preceding the ith block of Bbrec, ũ2, ẽ2(B), and ε̃2 contain the innovations

and shocks in the i-th block of Bbrec, and ũ3, ẽ3(B), and ε̃3 contain the innovations and shocks

following block i of Bbrec. Moreover, we denote parts of the B0 matrix as follows
ũ1

ũ2

ũ3

 =


B11,0 0 0

B21,0 B22,0 0

B31,0 B32,0 B33,0



ε̃1

ε̃2

ε̃3

 ,

and B11, B21, B31, B22, B32, and B33 denote the respective parts of a given B matrix.

With the block-recursive structure and the partitioned inverse, it holds that

ẽ1(B) = B−1
11 B11,0ε̃1,

ẽ2(B) = −B−1
22 B21B

−1
11 B11,0ε̃1 +B−1

22 (B21,0ε̃1 +B22,0ε̃2) .

For any matrix B satisfying E
[
f2(B, ut)

]
= 0 and, therefore, 0 = E [ẽ2(B)ẽ1(B)′] it holds that

0 = −B−1
22

(
B21,0 −B21B

−1
11 B11,0

)
B′11,0(B−1

11 )′ and, thus, B21 = B21,0B
−1
11,0B11. Any B Matrix

satisfying the condition 0 = E [ẽ2(B)ẽ1(B)′] thus yields innovations of the second block equal to

ẽ2(B) = B−1
22 B22,0ε̃2, (A.5)

meaning the innovations of the second block are equal to a linear combination of the structural

shocks in the second block. Applying the identification result from Lanne and Luoto (2021) yields

that the conditions E
[
f4p̃i

(B, ut)
]

= 0 locally identify B22,0.

Analogously, with the block-recursive structure and the partitioned inverse it holds that

ẽ3(B) =−B−1
33

[
B31 B32

]B11 0

B21 B22

−1 B11,0 0

B21,0 B22,0

ε̃1

ε̃2


+B−1

33

[B31,0 B32,0

]ε̃1

ε̃2

+B33,0ε̃3

 .
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With B21 = B21,0B
−1
11,0B11 it follows that

ẽ3(B) =−B−1
33

[
B31 B32

] B−1
11 0

−B−1
22 B21,0B

−1
11,0B11B

−1
11 B−1

22

B11,0 0

B21,0 B22,0

ε̃1

ε̃2


+B−1

33

[B31,0 B32,0

]ε̃1

ε̃2

+B33,0ε̃3


=−B−1

33

[
B31 B32

] B−1
11 0

−B−1
22 B21,0B

−1
11,0 B−1

22

B11,0 0

B21,0 B22,0

ε̃1

ε̃2


+B−1

33 (B31,0ε̃1 +B32,0ε̃2 +B33,0ε̃3)

=−B−1
33

[
B31B

−1
11 −B32B

−1
22 B21,0B

−1
11,0 B32B

−1
22

]B11,0 0

B21,0 B22,0

ε̃1

ε̃2


+B−1

33 (B31,0ε̃1 +B32,0ε̃2 +B33,0ε̃3) .

Hence, at B22 = B22,0 the condition E
[
f2(B, ut)

]
= 0 implies 0 = E[ẽ3(B)ẽ2(B)′] and therefore,

0 = B−1
33 (−B32B

−1
22 B22,0 +B32,0)

which implies B32 = B32,0.

A.4 Redundant and relevant moment conditions in the recursive SVAR

The proof of Proposition 3 requires to verify the redundancy conditions from Breusch et al.

(1999). However, verifying these conditions is a lengthy task. We derive analytical expressions

for the conditions in Online Appendix C and summarize them in Lemma 14 in Online Appendix

C. The following proof of Proposition 3 uses Lemma 8 and 14 in Online Appendix C.

Proof of Proposition 3.

In the recursive SVAR, the identifying moment conditions E[fN(B, ut)] only contain second-order

moment conditions and therefore, are referred to as E[f2(B, ut)] in this proof.

Breusch et al. (1999) show that overidentifying moment conditions E[fD(B, ut)] are redundant
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w.r.t. the identifying moment conditions E[f2(B, ut)] if and only if

GD = SD2S
−1
2 G2,

where

GD := E

[
∂fD(B0, ut)

∂vec(B)′

]
, G2 := E

[
∂f2(B0, ut)

∂vec(B)′

]
,

S2 := lim
T→∞

E [g2(B0)g2(B0)′] , SD2 := lim
T→∞

E [gD(B0)g2(B0)′] .

Moreover, Breusch et al. (1999) show that overidentifying moment conditions E[fD(B, ut)] are

partially redundant w.r.t. E[f2(B, ut)] for a subset of coefficients b ⊂ vec(B) w.r.t. the moment

conditions E[f2(B, ut)] if and only if

GbD − SD2S
−1
2 Gb2 =

(
G¬bD − SD2S

−1
2 G¬b2

) ((
G¬b2

)′
S−1
2 G¬b2

)((
G¬b2

)′
S−1
2 Gb2

)
, (A.6)

where

Gb2 := E

[
∂f2(ut, B0)

∂b′

]
, GbD := E

[
∂fD(ut, B0)

∂b′

]
,

G¬b2 := E

[
∂f2(ut, B0)

∂(¬b)′

]
, G−bD := E

[
∂fD(ut, B0)

∂(¬b)′

]
,

and where ¬b denotes all unrestricted elements of B not contained in b. With Lemma 8 it

holds that Gbi2
′
S−1
2 G

bj
2 = 0 for i, j ∈ {1, . . . , n} with i 6= j. Therefore, for any vector bi =

[bii, ..., bni] representing the impact of the ith structural shock εi,t it holds that Gbi2
′
S−1
2 G¬bi2 is

zero. Therefore, for any vector bi = [bii, ..., bni] the right hand side of Equation (A.6) is zero and

hence the partial redundancy condition simplifies to

GbiD − SD2S
−1
2 Gbi2 = 0.

The statements then follow from Lemma 14.
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A.5 Asymptotic variance of the block-recursive SVAR pGMM estima-

tor

We show how to derive the asymptotic variance of the pGMM estimator, VN+A, based on Remark

3.5 of Cheng and Liao (2015). We first show Lemma 1 and then apply the result in Remark 3.5 of

Cheng and Liao (2015). Recall that E[fI(B, ut)] and E[fR(B, ut)] denote the sets of invalid and

redundant moment conditions, respectively. Denote E[fU(B, ut)] as moment conditions either in

E[fI(B, ut)] or E[fR(B, ut)] and the number of moment conditions E[fU(B, ut)] by kU. Similarly,

we denote kA as the number of moment conditions in E[fA(B, ut)]. Further, define the number

of unrestricted elements in vec(B) as dB . In the proof of Lemma 1, we use the indices 1 ≡ N + A,

2 ≡ (N + A,U), 3 ≡ (U,N + A), and 4 ≡ U to keep notation uncluttered. Let ι∗ = (ι′,0′kU)′

where ι = (1, . . . , 1)′ is a dB × 1 vector, i.e., ι∗′Aι∗ gives the leading dB × dB-upper west block

of an arbitrary (dB + kU)× (dB + kU) matrix A.

Lemma 1.

ι∗′ (Γ′WΓ)
−1

(Γ′WSN+DWΓ) (Γ′WΓ)
−1
ι∗ = VN+A,

where

Γ :=

GN+A 0(kN+kA)×kU

GU −IkU

 , VN+A := MN+ASN+AM
′
N+A

with

MN+A :=
(
G′N+AW

pi
N+AGN+A

)−1

G′N+AW
pi
N+A, SN+A := lim

T→∞
E [gN+A(B0)gN+A(B0)′] ,

GN+A :=

GN

GA

 , W pi
N+A :=

(
WN+A −WN+A,I∪RW

−1
I∪RWI∪R,N+A

)
,

GA := E

[
∂fA(B0, ut)

∂vec(B)′

]
, WN+D :=

 WN+A WN+A,I∪R,

WI∪R,N+A WI∪R

 ,
WN+A ∈ R(kN+kA)×(kN+kA), WN+A,I∪R ∈ R(kN+kA)×(kD−kA),

WI∪R,N+A = W ′N+A,I∪R, WI∪R ∈ R(kD−kA)×(kD−kA).
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Proof. Recall that GN+A and GU have dimension (kN + kA) × dB and kU × dB , respectively.

We define

L :=

L1 L2

L3 L4

 := (Γ′WΓ)
−1
.

Additionally, let

N :=

N1 N2

N3 N4

 := (Γ′WSN+DWΓ) ,

and denote the inverse of W by

W ipi :=

W ipi
1 W ipi

2

W ipi
3 W ipi

4

 := W−1 =

W1 W2

W3 W4

−1

.

Let W pi
1 :=

(
W1 −W2W

−1
4 W3

)
. Then, by the partitioned inverse, W ipi

1 :=
(
W pi

1

)−1

. By similar

arguments as leading to (2.18) in the Online Appendix of Cheng and Liao (2015), we get that

L1 =
(
G′1
(
W1 −W2W

−1
4 W3

)
G1

)−1
=
(
G′1W

pi
1 G1

)−1

and, by using the partitioned inverse formula again, and similar arguments as leading to (2.10),

(2.11) and (2.18) in the Online Appendix of Cheng and Liao (2015), that

L3 = −W−1
4 (−G′1W2 −G′4W4)

′
(
G′1W

pi
1 G1

)−1

=
(
W−1

4 W3G1 +G4

)
L1

= XL1, (A.7)

where we used that W ′4 = W4, W3 = W ′2 and X :=
(
W−1

4 W3G1 +G4

)
. Further, let

H :=

H1 H2

H3 H4

 := WSN+DW,
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where

H1 := W1S1W1 +W2S3W1 +W1S2W3 +W2S4W3

H2 := W1S1W2 +W2S3W2 +W1S2W4 +W2S4W4

H3 := W3S1W1 +W4S3W1 +W3S2W3 +W4S4W3

H4 := W3S1W2 +W4S3W2 +W3S2W4 +W4S4W4.

Note that H3 = H ′2 since W3 = W ′2, W1 = W ′1, W4 = W ′4, S3 = S′2, S1 = S′1 and S4 = S′4. Hence,

similar to (2.11) in the Online Appendix of Cheng and Liao (2015),

N1 = G′1H1G1 +G′4H3G1 +G′1H2G4 +G′4H4G4

= G′1H1G1 +G′4H
′
2G1 +G′1H2G4 +G′4H4G4

N2 = −G′1H2 −G′4H4

N3 = N ′2

N4 = H4.

Then,

ι∗′ (Γ′WΓ)
−1

(Γ′WSN+DWΓ) (Γ′WΓ)
−1
ι∗ = ι∗′LNLι∗

= L1N1L1 + L2N3L1 + L1N2L3 + L2N4L3

= L1N1L1 + L′3N3L1 + L1N2L3 + L′3N4L3

(A.7)
= L1N1L1 + L′1X

′N ′2L1 + L1N2XL1 + L′1X
′N4XL1

= L1 (N1 +X ′N ′2 +N2X +X ′N4X)L1, (A.8)

where we used that L′1 = L1, L′3 = L2, and N ′3 = N2.
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Next, define Y := N1 +X ′N ′2 +N2X +X ′N4X. Then, multiplying out gives

Y =G′1H1G1 +G′4H3G1 +G′1H2G4 +G′4H4G4 +
(
G′1W2W

−1
4 +G′4

)
(−H ′2G1 −H ′4G4)

+ (−G′1H2 −G′4H4)
(
W−1

4 W ′2G1 +G4

)
+
(
G′1W2W

−1
4 +G′4

)
H4

(
W−1

4 W ′2G1 +G4

)
=G′1W2W

−1
4 H4W

−1
4 W ′2G1 +G′1H1G1 −G′1W2W

−1
4 H ′2G1 −G′1H2W

−1
4 W ′2G1

=G′1
(
W2W

−1
4 H4W

−1
4 W ′2 +H1 −W2W

−1
4 H ′2 −H2W

−1
4 W ′2

)
G1

=G′1
(
W2W

−1
4 W3S1W2W

−1
4 W3 +W1S1W1 −W2W

−1
4 W3S1W1 −W1S1W2W

−1
4 W3

)
G1

=G′1
(
W1 −W2W

−1
4 W3

)
S1

(
W1 −W2W

−1
4 W3

)
G1

=G′1W
pi
1 S1W

pi
1 G1 (A.9)

Plugging (A.9) into (A.8), we obtain

ι∗′ (Γ′WΓ)
−1

(Γ′WSN+DWΓ) (Γ′WΓ)
−1
ι∗

= L1

(
G′1W

pi
1 S1W

pi
1

)
G1L1

=
(
G′1W

pi
1 G1

)−1 (
G′1W

pi
1 S1W

pi
1 G1

)(
G′1W

pi
1 G1

)−1

=
(
G′N+AW

pi
N+AGN+A

)−1 (
G′N+AW

pi
N+ASN+AW

pi
N+AGN+A

)(
G′N+AW

pi
N+AGN+A

)−1

which was to show.

Note that in the following proposition, we treat the number of valid and relevant moment con-

ditions, kA, and the number of invalid moment conditions, kI, as fixed constants to keep our

asymptotic results for the pGMM estimator in line with the asymptotic results for the block-

recursive SVAR GMM estimator in Equation (19). Cheng and Liao (2015) allow both kA and kI

to increase with the sample size. However, their results also hold when the number of moment

conditions is fixed.

Proposition 4. Assume that the Assumptions in Theorem 3.3 of Cheng and Liao (2015) hold.

Further, assume that E
[
∂fA(B0,ut)
∂vec(B)′

]
= ∂E[fA(B0,ut)]

∂vec(B)′ and Assumption 1 and 2 hold. Then,

√
T
(
vec(B̂N+D)− vec(B0)

)
d→ N (0, VN+A)
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Proof. Define ΣCL := (Γ′WΓ)
−1

(Γ′WSN+DWΓ) (Γ′WΓ)
−1

and γ =
(
ν′,0′kU

)′
where ν ∈ RdB

is an arbitrary vector. Then, by Remark 3.5 of Cheng and Liao (2015),

∣∣∣∣∣∣Σ1/2
CL γ

∣∣∣∣∣∣−1√
Tν′

(
vec(B̂N+D)− vec(B0)

)
d→ N (0, 1),

where ||a|| :=
√
a′a is the `2-norm of an arbitrary vector a.

Note that Lemma 1 immediately implies
∣∣∣∣∣∣Σ1/2

CLγ
∣∣∣∣∣∣ =

√
γ′ΣCLγ =

√
ν′VN+A(W )ν. Hence,

∣∣∣∣∣∣VN+A(W )1/2ν
∣∣∣∣∣∣−1√

Tν′
(
vec(B̂N+D)− vec(B0)

)
d→ N (0, 1),

where VN+A(W ) is the asymptotic variance of vec(B̂N+D) since it holds that

ν∗′VN+A(W )ν∗ =
∣∣∣∣∣∣VN+A(W )1/2ν

∣∣∣∣∣∣−2

ν′VN+A(W )ν = 1

where ν∗ :=
∣∣∣∣VN+A(W )1/2ν

∣∣∣∣−1
ν.

Consequently, using the Cramér-Wold device, we get

√
T
(
vec(B̂N+D)− vec(B0)

)
d→ N (0, VN+A).

A.6 Choice of maximum λ in the cross-validation

In the following, we illustrate how to choose the maximum value of λ in the cross-validation.

Define the loss function of the pGMM estimator as

L∗(B, β) := L(B, β) + λ
∑
i∈D̃

ωi |βi|, (A.10)

where L(B, β) :=

 gN(B)

gD(B, β)

′W
 gN(B)

gD(B, β)

.

Further, let z ∈ ∂||β||1, where z ∈ RkD , denote the subgradient for the `1-norm evaluated at β,

54



i.e.,

zi = sign(βi), ifβi 6= 0,

zi ∈ [−1, 1], ifβi = 0, (A.11)

for i = 1, . . . , kD (Wainwright, 2009). Then, the first order condition of the pGMM estimator

with respect to βi, i = 1, . . . , kD, evaluated at β and B is

∂L∗(B, β)

∂βi
=
∂L(B, β)

∂βi
+ λωi zi = 0 (A.12)

Note that ωi ≥ 0. However, if ωi = 0, βi is not penalized and therefore, we only consider

i ∈ P̃ := {j ∈ D̃| ωj > 0} for which, by definition, ωi > 0 when choosing the maximum value of

λ in the cross-validation. By (A.11) and (A.12), β = 0 = (0, . . . , 0)′ and B = B0 minimize the

loss function in (A.10) only if

1

ωi

∂L(B0,0)

∂βi
∈ λ[−1, 1],

for i ∈ P̃ . Thus,

max
i∈P̃

∣∣∣∣ 1

ωi

∂L(B0,0)

∂βi

∣∣∣∣ ≤ λ.
This motivates us to use

λmax = max
i∈P̃

∣∣∣∣ 1

ωi

∂L(B0,0)

∂βi

∣∣∣∣ .
as the largest value in the cross-validation. Note that any λ > λmax would not have an effect

on β as λmax already shrinks all elements of β to zero. In practice, we replace B0 and ωi by

consistent estimators to obtain λmax. Furthermore, we consider a weight ωj to be positive and

hence, j ∈ P̃ , if ωj/
∑
k∈D̃ ωk > 10−4.
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B Supplementary Figures and Tables

B.1 Finite sample performance

Table B.1: Finite sample performance including Post-LASSO.

GMM oGMM GMM-Oracle pGMM Post-pGMM

T
=

10
0 B̂


9.93
(1.09)

. . .

4.98
(1.21)

9.86
(1.02)

. .

4.97
(1.49)

4.95
(1.29)

9.83
(1.12)

.

4.96
(1.71)

4.93
(1.46)

4.91
(1.27)

9.78
(1.08)




9.77
(1.07)

. . .

4.90
(1.31)

9.71
(1.01)

. .

4.89
(1.69)

4.88
(1.43)

9.70
(1.10)

.

4.90
(2.07)

4.88
(1.74)

4.88
(1.46)

9.69
(1.09)




9.76
(1.07)

. . .

4.91
(1.17)

9.70
(1.02)

. .

4.91
(1.50)

4.88
(1.26)

9.69
(1.10)

.

4.92
(1.81)

4.88
(1.51)

4.88
(1.25)

9.67
(1.10)




9.96
(1.09)

. . .

5.00
(1.15)

9.88
(1.01)

. .

4.98
(1.46)

4.96
(1.22)

9.85
(1.11)

.

4.99
(1.71)

4.96
(1.42)

4.95
(1.21)

9.82
(1.10)




9.84
(1.06)

. . .

4.96
(1.09)

9.79
(1.01)

. .

4.94
(1.39)

4.93
(1.19)

9.77
(1.11)

.

4.94
(1.61)

4.93
(1.38)

4.91
(1.18)

9.73
(1.11)


#Mo 10.00 57.00 40.00 24.22 24.22

Bias −0.0883 −0.1806 −0.1804 −0.0650 −0.1256

MSE 1.27 1.40 1.28 1.25 1.21

λ . . . 71.08 .

GMM oGMM GMM-Oracle pGMM Post-pGMM

T
=

25
0 B̂


9.97
(0.43)

. . .

4.99
(0.51)

9.96
(0.43)

. .

4.98
(0.64)

5.00
(0.52)

9.93
(0.45)

.

4.98
(0.72)

4.99
(0.61)

4.98
(0.51)

9.91
(0.45)




9.90
(0.40)

. . .

4.96
(0.49)

9.90
(0.40)

. .

4.96
(0.65)

4.97
(0.51)

9.87
(0.42)

.

4.97
(0.73)

4.96
(0.61)

4.97
(0.49)

9.86
(0.42)




9.90
(0.40)

. . .

4.97
(0.44)

9.90
(0.40)

. .

4.97
(0.59)

4.97
(0.46)

9.87
(0.42)

.

4.98
(0.65)

4.97
(0.54)

4.96
(0.44)

9.85
(0.42)




9.99
(0.42)

. . .

5.01
(0.45)

9.97
(0.41)

. .

5.01
(0.59)

5.02
(0.46)

9.94
(0.42)

.

5.02
(0.66)

5.01
(0.55)

5.00
(0.44)

9.92
(0.43)




9.93
(0.41)

. . .

4.98
(0.44)

9.92
(0.41)

. .

4.98
(0.57)

4.99
(0.45)

9.89
(0.43)

.

4.99
(0.64)

4.98
(0.54)

4.97
(0.44)

9.87
(0.44)


#Mo 10.00 57.00 40.00 27.20 27.20

Bias −0.0311 −0.0676 −0.0656 −0.0114 −0.0480

MSE 0.53 0.51 0.48 0.48 0.48

λ . . . 118.92 .

GMM oGMM GMM-Oracle pGMM Post-pGMM

T
=

10
00 B̂


10.00
(0.11)

. . .

5.00
(0.13)

9.99
(0.11)

. .

4.99
(0.15)

4.99
(0.13)

9.99
(0.11)

.

4.99
(0.19)

4.99
(0.15)

4.99
(0.13)

9.98
(0.11)




9.98
(0.10)

. . .

4.99
(0.12)

9.97
(0.10)

. .

4.99
(0.13)

4.99
(0.11)

9.98
(0.10)

.

4.99
(0.16)

4.99
(0.14)

4.99
(0.11)

9.97
(0.10)




9.98
(0.10)

. . .

4.99
(0.11)

9.97
(0.10)

. .

4.99
(0.13)

4.99
(0.10)

9.98
(0.10)

.

4.99
(0.15)

4.99
(0.13)

4.99
(0.11)

9.97
(0.10)




10.00
(0.11)

. . .

5.00
(0.11)

9.99
(0.10)

. .

5.00
(0.13)

5.00
(0.11)

10.00
(0.10)

.

5.00
(0.16)

5.00
(0.13)

5.00
(0.11)

9.98
(0.10)




9.99
(0.11)

. . .

5.00
(0.11)

9.98
(0.11)

. .

4.99
(0.13)

4.99
(0.11)

9.98
(0.10)

.

5.00
(0.16)

4.99
(0.13)

4.99
(0.11)

9.97
(0.11)


#Mo 10.00 57.00 40.00 29.59 29.59

Bias −0.0076 −0.0158 −0.0158 −0.0021 −0.0122

MSE 0.13 0.12 0.11 0.12 0.12

λ . . . 75.34 .

The table reports the average b̄ij and the corresponding estimated MSE (in parentheses) of each estimated

element in B̂ as well as the BIAS and MSE across estimated elements in B̂ over 3, 500 Monte Carlo replicates
for the GMM estimator, the oGMM estimator, the GMM-Oracle estimator, the pGMM estimator, and the Post-
pGMM estimator. The Post-pGMM estimator uses only the overidentifying moment conditions selected by the
pGMM estimator for the estimation of the block-recursive SVAR. All estimator use zero restrictions which are
highlighted by the dots.
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Figure B.1: Relationship of chosen λCV and Number of Selected Moments across Monte Carlo

runs.

(a) T = 100

(b) T = 250

(c) T = 1000

Note: The figure shows the chosen λCV in the cross-validation and the corre-
sponding number of selected moments for each of the M = 3, 500 Monte Carlo
simulations.
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Figure B.2: Average Weight of Moments across Monte Carlo runs.

(a) T = 100

(b) T = 250

(c) T = 1000

Note: The figure shows the average weight of each moment across M = 3, 500
Monte Carlo simulations. Redundant moment (orange) and relevant moments
(blue) are displayed on the x-axis. Each x-axis label abbreviates a moment
condition, e.g., [0, 1, 2, 1] corresponds to E[e(B)01,t e(B)12,t e(B)23,t e(B)14,t].58



B.2 Empirical illustration

This section contains supplementary material and robustness checks for the application presented

in Section 6.

Table B.2 shows descriptive statistics of the variables used in the SVAR. Table B.3 shows the

Table B.2: Descriptive statistics.

Mean Median Std. deviation Variance Skewness Kurtosis
Ot 0.078 0.19 1.5 2.26 −1.66 10.8
Yt 0.20 0.29 0.60 0.37 −1.2 5.21

OPt 0.32 0.03 7.31 53.4 0.06 4.46
SRt 0.34 0.62 3.61 13.03 −0.82 3.67

correlation between the estimated structural shocks from the block-recursive SVAR pGMM es-

timator and the reduced form shocks. Figure B.3 shows the historical evolution of the real oil

Table B.3: Correlation of reduced form and estimated structural shocks.

uO uY uOP uSR

εs 1 −0.03 −0.13 −0.05
εd 0.06 1 0.12 0.06

εs−exp −0.08 0.02 0.94 −0.27
εd−exp −0.05 0.02 0.33 0.96

price.
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Figure B.3: Real oil price.

Note: The vertical bars indicate the following events: Iranian Revolution 1978 : 9, Iran Iraq War 1980 : 9, collapse
of OPEC 1985 : 12, Persian Gulf War 1990 : 8, Asian Financial Crisis of 1997 :7, Iraq War 2003 : 1, the collapse
of Lehman Brothers (2008 : 9), and the oil price decline in mid 2014.

Figure B.4 shows the estimated structural shocks across years.
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Figure B.4: Estimated structural shocks, averaged to annual frequency.

Note: The figure shows the average across years for each estimated structural shocks of the block-recursive SVAR
pGMM estimator.

Figure B.5 shows the IRF for the recursive oil market SVAR from Section 6 estimated with

the GMM estimator from Equation (15). In the recursive SVAR, the GMM estimator is just

identified and equal to the estimator obtained by applying the Cholesky decomposition to the

variance-covariance matrix of the reduced form shocks.
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Figure B.5: Impulse Responses of the recursive SVAR GMM estimator.

Note: Impulse responses to the recursive oil market SVAR from Section 6 estimated with the GMM estimator from
Equation (15), equal to the estimator obtained by applying the Cholesky decomposition to the variance-covariance
matrix of the reduced form shocks. Confidence bands are symmetric 68% and 80% bands based on standard errors
and 500 replications. The rows show the cumulative responses. The shock εop−exp denotes a speculative oil price
shock and the shock εsm represents a residual stock market shock.

Figure B.6 shows the IRF for the unrestricted oil market SVAR from Section 6 estimated with

the GMM estimator from Equation (15) where the weighting matrix is continuously updated and

estimated based on the assumption of serially and mutually independent shocks.
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Figure B.6: Impulse Responses of the unrestricted SVAR GMM estimator.

Note: Impulse responses to the estimated structural shocks for the unrestricted oil market SVAR from Section 6
estimated with the GMM estimator from Equation (15) where the weighting matrix is continuously updated and
estimated based on the assumption of serially and mutually independent shocks. Confidence bands are symmetric
68% and 80% bands based on standard errors and 500 replications. The rows show the cumulative responses.

Figure B.7 shows the IRF for the unrestricted oil market SVAR from Section 6 estimated with the

overidentified GMM estimator from Equation (19) where the weighting matrix is continuously

updated and estimated based on the assumption of serially and mutually independent shocks.
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Figure B.7: Impulse Responses of the unrestricted SVAR oGMM estimator.

Note: Impulse responses to the estimated structural shocks for the unrestricted oil market SVAR from Section 6
estimated with the overidentified GMM estimator from Equation (19) where the weighting matrix is continuously
updated and estimated based on the assumption of serially and mutually independent shocks. Confidence bands
are symmetric 68% and 80% bands based on standard errors and 500 replications. The rows show the cumulative
responses.

Figure B.8 shows the IRF for the block-recursive oil market SVAR from Section 6 estimated with

the GMM estimator from Equation (15) where the weighting matrix is continuously updated and

estimated based on the assumption of serially and mutually independent shocks.
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Figure B.8: Impulse Responses of the block-recursive SVAR GMM estimator.

Note: Impulse responses to the estimated structural shocks for the block-recursive oil market SVAR from Section
6 estimated with the GMM estimator from Equation (15) where the weighting matrix is continuously updated and
estimated based on the assumption of serially and mutually independent shocks. Confidence bands are symmetric
68% and 80% bands based on standard errors and 500 replications. The rows show the cumulative responses.

Figure B.9 shows the IRF for the block-recursive oil market SVAR from Section 6 estimated with

the overidentified GMM estimator from Equation (19) where the weighting matrix is continuously

updated and estimated based on the assumption of serially and mutually independent shocks.
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Figure B.9: Impulse Responses of the block-recursive SVAR oGMM estimator.

Note: Impulse responses to the estimated structural shocks for the block-recursive oil market SVAR from Section 6
estimated with the overidentified GMM estimator from Equation (19) where the weighting matrix is continuously
updated and estimated based on the assumption of serially and mutually independent shocks. Confidence bands
are symmetric 68% and 80% bands based on standard errors and 500 replications. The rows show the cumulative
responses.

Figure B.10 shows the IRF for the block-recursive oil market SVAR from Section 6 using 24 lags

estimated with the GMM estimator from Equation (15) where the weighting matrix is contin-

uously updated and estimated based on the assumption of serially and mutually independent

shocks.
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Figure B.10: Impulse Responses of the block-recursive SVAR GMM estimator using 24 instead

of 12 lags.

Note: Impulse responses to the estimated structural shocks for the block-recursive oil market SVAR from Section 6
24 estimated with the GMM estimator from Equation (15) where the weighting matrix is continuously updated and
estimated based on the assumption of serially and mutually independent shocks. Confidence bands are symmetric
68% and 80% bands based on standard errors and 500 replications. The rows show the cumulative responses.

Figure B.11 shows the IRF for the block-recursive oil market SVAR from Section 6 using the

percentage deviation of industrial production from a linear trend instead of the log difference

of industrial production. The SVAR is estimated with the GMM estimator from Equation (15)

where the weighting matrix is continuously updated and estimated based on the assumption of

serially and mutually independent shocks.
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Figure B.11: Impulse Responses of the block-recursive SVAR estimator using different specifica-

tion for industrial production.

Note: Impulse responses to the estimated structural shocks for the block-recursive oil market SVAR from Section 6
using the percentage deviation of industrial production from a linear trend instead of the log difference of industrial
production. The SVAR is estimated with the GMM estimator from Equation (15) where the weighting matrix
is continuously updated and estimated based on the assumption of serially and mutually independent shocks.
Confidence bands are symmetric 68% and 80% bands based on standard errors and 500 replications. The rows
Ot, OPt, and SRt show the cumulative responses.

Figure B.12 shows the IRF for the block-recursive oil market SVAR from Section 6 using log of

real oil price instead of real oil price growth and the percentage deviation of industrial production

from a linear trend instead of the log difference of industrial production. The SVAR is estimated

with the GMM estimator from Equation (15) where the weighting matrix is continuously updated

and estimated based on the assumption of serially and mutually independent shocks.
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Figure B.12: Impulse Responses of the block-recursive SVAR GMM estimator using different

specification for industrial production and real oil price.

Note: Impulse responses to the estimated structural shocks for the block-recursive oil market SVAR from Section
6 using log of real oil price instead of real oil price growth and the percentage deviation of industrial production
from a linear trend instead of the log difference of industrial production. The SVAR is estimated with the GMM
estimator from Equation (15) where the weighting matrix is continuously updated and estimated based on the
assumption of serially and mutually independent shocks. Confidence bands are symmetric 68% and 80% bands
based on standard errors and 500 replications. The rows Ot and SRt show the cumulative responses.

Figure B.13 shows the IRF for the block-recursive oil market SVAR from Section 6 using log of

real oil price instead of real oil price growth. The SVAR is estimated with the GMM estimator

from Equation (15) where the weighting matrix is continuously updated and estimated based on

the assumption of serially and mutually independent shocks.
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Figure B.13: Impulse Responses of the block-recursive SVAR GMM estimator using different

specification for real oil price.

Note: Impulse responses to the estimated structural shocks for the block-recursive oil market SVAR from Section
6 using log of real oil price instead of real oil price growth. The SVAR is estimated with the GMM estimator
from Equation (15) where the weighting matrix is continuously updated and estimated based on the assumption
of serially and mutually independent shocks. Confidence bands are symmetric 68% and 80% bands based on
standard errors and 500 replications. The rows Ot, Yt, and SRt show the cumulative responses.
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