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Abstract

When different stimuli belong to the same category, learning about their attributes should be
guided by this categorical structure. Here, we demonstrate how an adaptive response to atten-
tion constraints can bias learning toward shared qualities and away from individual differences.
In three preregistered experiments using an information sampling paradigm with mousetracking,
we find that people preferentially attend to information at the category level when idiosyncratic
variation is low, when time constraints are more severe, and when the category contains more
members. While attention is more diffuse across all information sources than predicted by
Bayesian theory, there are signs of convergence toward this optimal benchmark with experience.
Our results thus indicate a novel way in which a focus on categories can be driven by rational
principles.

Introduction

Categorical thinking helps us deal with our complex world in many ways. The use of categories
is often thought to be optimized for making predictions under various constraints on information
processing (Anderson, 1991; Markman & Ross, 2003; Fryer & Jackson, 2008). When forming
judgments of stimulus magnitude, a bias toward category averages and a neglect of individual
differences has been shown, in several cases, to reflect an adaptive response to limited or noisy
information (Huttenlocher, Hedges, & Vevea, 2000; Feldman, Griffiths, & Morgan, 2009; Hemmer
& Steyvers, 2009; Brady & Alvarez, 2011). When noise can be controlled by acquiring data,
a related tendency to focus learning on category averages may reflect an adaptive response to
attention constraints.

Suppose, for example, that you are an investor gathering information, trying to figure out how much
various stocks should be worth. You have limited time and effort and cannot learn about all of the
countless stocks in the market. There are idiosyncratic factors which affect the value of each stock
separately, and shared factors which have a common impact on all stocks in the same industry. Do
you focus your learning on the former or the latter? The efficient allocation of limited attention
can favor learning about shared qualities because they are informative about all category members,
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whereas idiosyncratic information pertains only to each individual (Peng & Xiong, 2006). This
mechanism could help explain why investors consult financial indices while neglecting data from
specific firms (Huang, Huang, & Lin, 2019), why children prefer to inquire about kinds of animals
rather than particular instances (Cimpian & Park, 2014), and why people forming impressions of
others favor stereotypic information over attending to individuating attributes (Fiske & Neuberg,
1990).

However, it is not known whether rational principles account for human judgment in this setting.
Prominent perspectives in psychology, neuroscience, and economics maintain that attention is spent
where it has maximum benefit (Gottlieb & Oudeyer, 2018; Caplin, 2016), but the extent to which
its allocation is guided by such hierarchical statistical structure in the environment remains unclear
(Radulescu, Niv, & Ballard, 2019). If attention is deployed optimally, one’s focus on shared qualities
should adjust flexibly to environmental features that affect the value of information attainable from
each source.

Several predictions follow from this core idea. First, when members of a category are similar, there
is little to be gained by learning each one’s unique qualities; thus, people should focus more on
information at the category level when idiosyncratic variation is low relative to shared variation.
Second, continuing to accumulate information about a given variable yields diminishing returns;
thus, people should focus more on information at the category level when they face severe attention
constraints. Finally, category-level information reduces uncertainty about every member, and so
its value scales with category size; thus, people should focus more on information at the category
level when the category contains many members.

In this study, we conducted experimental tests of these predictions to investigate how learning in
categories can be driven by the optimal allocation of attention. Our task was designed to let us
directly measure attention using mousetracking, while precisely controlling the statistical structure
of information via an abstract sampling paradigm. This setup allowed us to carefully test the
implications of a formal Bayesian model of attention allocation.

People playing our “stock prediction game” had to estimate the values of various hypothetical stocks
based on a stream of incoming information. These values were generated by a known categorical
structure—participants were told that the stocks were all in the same industry and so the value of
each was equal to the arithmetic sum of two latent components, a common industry-level factor
(reflecting the category average) and a unique stock-specific factor (reflecting individual deviation
from the average). These factors varied stochastically and independently across trials. In a given
trial, participants could reveal noisy signals in every moment of time about any component (either
the common industry factor or any one of the stock-specific factors) by hovering their mouse over the
corresponding factor, until time ran out. They were thus able to allocate their attention with high
temporal precision to learn about the relevant variables. In this way, we were able to investigate
the theoretical predictions by measuring the amount of time spent mousing over each factor, and
evaluating how this changed when we manipulated the factors’ prior variances, the time limit, and
the number of stocks. Using this approach we found that people do adapt their degree of categorical
focus approximately in line with rational principles.
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Figure 1: Screenshot of experiment.

σindustry σstock σsignal n of stocks time

Experiment 1 - low category variance 5 30 10 5 12 s
Experiment 1 - high category variance 30 5 10 5 12 s

Experiment 2 - long time limit 30 5 10 5 20 s
Experiment 2 - short time limit 30 5 10 5 8 s

Experiment 3 - few category members 30 5 10 2 12 s
Experiment 3 - many category members 30 5 10 8 12 s

Table 1: Design parameters.
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Method

Participants

Four hundred and thirty-eight participants from the United States were recruited on Amazon Me-
chanical Turk across three experiments (experiment 1, n = 147; experiment 2, n = 146; experiment
3, n = 145). They were paid a base of $2 plus a bonus of up to $6 that depended on performance
as described below. Sample sizes were documented in the preregistration, and based on monetary
constraints, informed partly by our pilot studies which suggested that this number should be suffi-
cient to detect the hypothesized effects if present. Participants provided informed consent, and the
study was approved by the Harvard Committee on the Use of Human Subjects. The preregistration
can be found at https://osf.io/6mcqy/.

Procedure

All three experiments used the same “stock prediction” paradigm (see Figure 1). In each trial,
participants had to estimate the values of several hypothetical stocks after selectively acquiring
a stream of information about the components of value (a common industry-level factor and id-
iosyncratic stock-specific factors). These factors were generated independently in every trial from
zero-mean Gaussian distributions portrayed on screen by sideways bell curves. For simplicity, all
stock-specific factors had the same prior distribution.

However, the exact factor values were not explicitly provided, and participants instead had to learn
about them by mousing over the corresponding factor. While their mouse cursor was positioned over
a given factor, a noisy Gaussian signal of its true value would be revealed every 500 milliseconds.
Participants could mouse over any factor they wanted at any moment before a limited budget of
time ran out, which was represented by an on-screen timer.

After time expired in a trial, participants recorded their estimate of each stock’s total value (the sum
of the two relevant factors) on sliders. They did not provide an estimate of the industry factor by
itself. Upon submitting these estimates, they were shown the true stock values and the magnitude
of their errors. At the end of the experiment, they were paid a bonus based on the average accuracy
of their estimates according to a quadratic loss function of which they were informed.

We used a within-subjects design in each of the three experiments. All experiments consisted of two
blocks of 10 periods each. Within each block the design parameters were fixed, and the treatments
occurred across blocks. Experiment 1 varied the prior variances of the factors (simultaneously
increasing σindustry from 5 to 30 and decreasing σstock from 30 to 5), experiment 2 varied the time
budget (decreasing time from 20 seconds to 8 seconds), and experiment 3 varied the number of
stocks (increasing n of stocks from 2 to 8). All of the design parameters for each experiment
are documented in Table 1. The order of blocks was counterbalanced. The serial position of the
industry factor was also counterbalanced across subjects, but kept the same across blocks for any
given subject.

After reading the instructions, participants were provided with two self-paced practice trials in
which they were told the true values of each factor and allowed unlimited time to sample informa-
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Category focus

Coefficient Posterior mean Posterior 95% CI P (β > 0)

Experiment 1 Intercept 0.067 [0.040, 0.095] >0.999
Higher category variance 0.053 [0.026, 0.080] >0.999
N 100

Experiment 2 Intercept 0.129 [0.090, 0.167] >0.999
Shorter time limit 0.029 [−0.005, 0.064] 0.951
N 100

Experiment 3 Intercept 0.039 [0.001, 0.079] 0.976
Larger category size 0.133 [0.093, 0.175] >0.999
N 91

Table 2: Posterior estimates from Bayesian random effects models predicting relative attention to
industry factor from experimental condition. P (β > 0) denotes the posterior probability that the
coefficient is positive. CI = credible interval.

tion. This was intended to clearly explicate the task structure. They were subsequently asked two
basic comprehension check questions to verify their understanding of the task (see Appendix).

Results

Preregistered analysis

The following analyses exclude participants who failed to correctly answer the two comprehension
check questions, participants who spent more than 20% of their available viewing time on average
not mousing over any factor, and trials in which more than 20% of the available viewing time was
spent not mousing over any factor.

The category focus—by which we mean the fraction of time spent mousing over the industry factor
compared to the average stock factor—is displayed for each experiment in Figure 2. The results
appear to be in line with the three predictions. These conclusions are formally supported by
Bayesian random effects models reported in Table 2, which predict category focus based on the
treatment condition, with subject-specific coefficients for both intercept and treatment effect. The
regressions were computed using the brms package in R with default weakly informative priors
(Bürkner, 2017). They indicate positive effects of higher category-level variance (P (βvariance >
0) > 0.999), time pressure (P (βtime > 0) = 0.951), and category size (P (βsize > 0) > 0.999). Our
preregistered test criterion of P (β > 0) > 0.95 is met in all three cases. Thus, participants appear
to alter their patterns of attention as qualitatively predicted by the theory.
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Figure 2: Attention allocation patterns. Mean time spent on each factor (left), and difference
between proportions of time spent on category and average member (right). Low vs high category
variance (experiment 1; top), lengthy vs brief time limit (experiment 2; middle), few vs many
category members (experiment 3; bottom). Error bars depict 95% confidence intervals.
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Relative proportion of time spent on category factor

Coefficient Higher category variance Lower category variance

Experiment 1 Intercept 0.086 [0.042, 0.131] (.999) 0.042 [0.000, 0.085] (.974)
Trial 0.010 [0.003, 0.017] (.997) −0.004 [−0.009, 0.002] (.102)
Block 0.018 [−0.046, 0.081] (.712) 0.079 [0.016, 0.140] (.995)
Trial × Block −0.008 [−0.019, 0.002] (.049) 0.002 [−0.006, 0.010] (.685)

Shorter time limit Longer time limit

Experiment 2 Intercept 0.088 [0.033, 0.146] (.999) 0.102 [0.048, 0.156] (>.999)
Trial 0.014 [0.008, 0.021] (>.999) 0.000 [−0.007, 0.007] (.552)
Block 0.073 [−0.008, 0.158] (.957) 0.066 [−0.008, 0.139] (.960)
Trial × Block −0.013 [−0.023,−0.004] (.003) −0.004 [−0.013, 0.006] (.226)

Larger category size Smaller category size

Experiment 3 Intercept 0.100 [0.056, 0.144] (>.999) 0.023 [−0.044, 0.087] (.770)
Trial 0.011 [0.003, 0.020] (.995) −0.005 [−0.013, 0.003] (.128)
Block 0.036 [−0.026, 0.100] (.867) 0.101 [0.013, 0.193] (.991)
Trial × Block 0.001 [−0.011, 0.013] (.556) −0.007 [−0.018, 0.004] (.109)

Table 3: Posterior estimates from Bayesian random effects models predicting relative attention to
industry factor from trial and block number. 95% credible intervals in brackets and P (β > 0) in
parentheses.

Exploratory analysis

While we find qualitative support for the theory, participants appear to fall short of the quanti-
tatively optimal strategy laid out in the Appendix, which prescribes a particular level of category
focus. As shown in Figure 3, their degree of category focus falls in between the Bayesian prediction
and an equal split of their attention across all factors. Statistically, the average category focus is
lower than the Bayesian benchmark in each case according to Bayesian regressions predicting cat-
egory focus from individual-specific intercepts (P (β < λ̄) > .999 in every condition; not reported).
Attention is thus more diffuse across all information sources than the quantitative Bayesian bench-
mark. This deviation seems to be strongest at the outset of the experiment, generally in the first
block participants encounter.

Note that this discrepancy cannot be naturally explained by a difference between objective and
subjective signal precision. If people were able to only partially extract the information from
the noisy signals, making their subjective precision lower than the objective precision, this would
enhance rather than reduce the optimal focus on the category. Intuitively, blunted precision has an
effect similar to that of a constraint on information processing capacity and amplifies the value of
the focused strategy which makes efficient use of limited attention. Neither can the observations be
reasonably captured by subjectivity in priors. A reduced category focus would require subjective
prior variance to be higher than objective variance at the member level or lower at the category
level. However, even doubling the former and halving the latter is not sufficient to totally account
for the data, as shown in the Appendix.
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Figure 3: Attention allocation across trials. Color indicates which block was encountered first.
Error bars depict 95% confidence intervals.
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Do people learn toward the optimal strategy with experience? Across trials, there is some evidence
of convergence, as indicated by the positive coefficients on the trial term in the regressions of Table
3. These dynamics appear only in the experimental conditions that demand a greater emphasis
on the category, with hints of the opposite pattern in the other conditions. Across blocks, people
tend to more consistently move closer to the Bayesian benchmark. This is formally indicated by
the generally positive coefficients on the block term in Table 3. Hence, the data taken together
suggests that experience may bring people nearer to optimality.

Discussion

The guiding role of hierarchical statistical structure in human judgment has been studied across
a variety of domains such as reinforcement learning (Collins, 2018), planning (Tomov, Yagati,
Kumar, Yang, & Gershman, 2020), decision making (Gershman, Malmaud, & Tenenbaum, 2017),
visual perception (Gershman, Tenenbaum, & Jäkel, 2016), linguistics (Xu & Tenenbaum, 2007), and
more (Tenenbaum, Kemp, Griffiths, & Goodman, 2011), and we help extend these investigations
into the arena of attention. Related work on categorization has demonstrated that people selectively
attend to features which are maximally diagnostic of category identity (Rehder & Hoffman, 2005;
Matsuka & Corter, 2008; Blair, Watson, Walshe, & Maj, 2009; Blair, Watson, & Meier, 2009; Kim &
Rehder, 2011; Meier & Blair, 2013), which could be consistent with Bayesian principles (Radulescu
et al., 2019). This work has primarily focused on how categories are learned and inferred. Here,
we take the hierarchical structure as given and consider how it can be used to guide attention for
the purpose of forming stimulus judgments.

Our work is also motivated by a sizable literature across cognitive and decision science which casts
attention in terms of optimal uncertainty reduction (Gottlieb & Oudeyer, 2018; Caplin, 2016).
We use an abstract sampling paradigm which enables us to tightly control the structure of the
information environment, and reveal attention transparently using mousetracking. These design
features allow us to directly weigh the data against qualitative and quantitative benchmarks of
optimality. The results indicate that people flexibly adjust their patterns of attention to category
information in line with rational principles.

There may be some deviation from the precisely optimal strategy in the direction of a uniform
attention split. A similar equity (aka 1/N) heuristic has been documented in other allocation
problems such as financial portfolio choice (Benartzi & Thaler, 2001) and parental effort investment
(Hertwig, Davis, & Sulloway, 2002). In the former case, this bias toward naive diversification has
been found to improve performance, potentially due to the way it approximately captures the
principle of regularization or Bayesian shrinkage (Tu & Zhou, 2011). This rationale suggests that
diffuse attention could reflect an inductive bias that improves performance when averaged across
a broader spectrum of attention allocation problems, by preventing an agent from neglecting a
potentially crucial information source. This speculative possibility awaits investigation. There
is also some evidence of convergence toward the optimal strategy across both trials and blocks.
These findings are consistent with the claim that rational inattention better describes judgment in
repeated situations, where agents can discover the optimal strategy through experience (Maćkowiak,
Matĕjka, & Wiederholt, 2018).
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While we have focused on attention and learning, other mechanisms also contribute to an emphasis
on categories, and may work in tandem with those described here. Although our study assumed a
fixed category structure, inattention to individual differences could increase the stability of category
representations by leading people to neglect evidence that certain members should be recategorized
(Kruschke, 2011). For example, in finance, this would be consistent with lengthy persistence of
asset classes until long stretches of poor performance trigger a reclassification (Barberis & Shleifer,
2003).

Much like investors, children inhabit a world in which the complexity of their environment dra-
matically outstrips their ability to process information. The adaptive framework we use here may
help illuminate why young children preferentially seek out information about kinds of things rather
than about concrete individuals (Cimpian & Park, 2014; Cimpian & Petro, 2014). This tendency
seems somewhat sensitive to the potential for information gain, as it only emerges when talking to
knowledgeable adults. If it indeed reflects an adaptive response to constraints on information pro-
cessing, new predictions follow from the theory we study: children should be especially interested
in category-level information when the category contains many members and when the individual
differences between members are minimal. These predictions await empirical testing.

Future research can build on our work and address its limitations in several ways. First, other
tests will be needed to determine whether our findings extend to more covert forms of attention
(Carrasco, 2011). People might focus even more narrowly on a small number of information sources
when they are not all overtly presented and some fail to come to mind. Second, more complex
interactions between attention and decision making should be experimentally characterized. Certain
facets of uncertainty may be especially beneficial to reduce in different problems, such as when
information is gathered for the purpose of constructing a financial portfolio, and this may have
far-reaching consequences (Peng & Xiong, 2006). Finally, although our study considered only
instrumental reasons for acquiring information, non-instrumental motivations like curiosity are
doubtless important. It is valuable to assess the extent to which these subjective preferences, too,
may be ultimately grounded in rational principles (Gottlieb & Oudeyer, 2018; Gottlieb, Oudeyer,
Lopes, & Baranes, 2013).
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Appendix

Theoretical Model

We present a fully Bayesian variant of the attention allocation problem in Peng and Xiong (2006),
streamlined for the purposes of this study. In the current setup, the decision maker is tasked with
accurately estimating the values of several random variables, vi, i = 1, . . . , n, aiming to minimize
the expected quadratic loss of his estimates. The variables are generated according to a hierarchical
structure, in which they are equal to the sum of two components: a shared category factor c, and an
idiosyncratic member-specific factor mi, so vi = c+mi. Both components are drawn from normal
distributions, c ∼ N (µc, 1/τc) and mi ∼ N (µm, 1/τm).

To help form accurate judgments, the decision maker gains information by collecting noisy signals
about these factors, which requires splitting his limited attention across them. In each moment
of time, he draws a noisy signal from any one of the n + 1 factors he chooses. These signals
are generated from a normal distribution with mean equal to the true factor value (c or mi) and
precision τε. We denote the jth signal from a given factor as xjc or xjmi , and all signals collectively
as x. The decision maker has a finite attention budget, κ, denoting the total number of signals
available (in this case, the amount of time available for signal collection multiplied by the frequency
at which signals are drawn). He must thus choose which fraction λ of time to spend attending to
the shared factor c. By symmetry, the remainder is spread evenly across the idiosyncratic factors
mi, so each receives fraction 1−λ

n of the attention. We ignore the discreteness of signal timing for
simplicity.

The posterior distributions of the factors are thus

c|x ∼ N

(
τcµc + τε

∑
j x

j
c

τc + τελκ
, (τc + τελκ)−1

)
(1)
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∑
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j
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(
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n

)
κ
,
(
τm + τε

(
1−λ
n

)
κ
)−1

)
. (2)

Due to independence of the components, the objective is equivalent to minimizing the sum of their
expected posterior variances. Assuming an interior solution in what follows,

arg min
λ

V =
[
(τc + τελκ)−1 +

(
τm + τε

(
1−λ
n

)
κ
)−1
]

(3)

∂V

∂λ
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+

1
nτεκ
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(
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)
κ)2

= 0 (4)

λ∗ =

(
1
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√
n

)(
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√
nτc

τεκ

)
(5)

We evaluate how the category focus λ̄ (i.e., the fraction of time spent on the category factor
relative to the average fraction of time spent on the member-specific factors) changes based on



various parameters:

λ̄ = λ∗ −
(

1− λ∗

n

)
= λ∗

(
1 + n

n

)
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n
(6)

∂λ̄
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< 0 (7)
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∂τm
=

(
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> 0 (8)
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√
n

)(
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√
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τεκ

)
< 0 when

√
nσ2c > σ2m (9)

(10)

Comprehension Check

1. If the industry factor is −8, and the stock-specific factor for A is 30, what is the total value of
stock A?

• 30

• 38

• −8

• 22 (correct)

2. If the industry factor is 10, the stock-specific factor for A is −15, and the stock-specific factor
for B is 5, what is the total value of stock A?

• 10

• 15

• −5 (correct)

• −15



Sensitivity Analysis
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Figure 4: Attention allocation across trials with subjective member-level variance = 2σstock =
10 and subjective category-level variance = 1

2σindustry = 15. Error bars depict 95% confidence
intervals. P (β < λ̄) > .999 in all conditions except low category variance, according to Bayesian
regressions predicting category focus from individual-specific intercepts (not reported).


