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Abstract4

We consider a group of receivers who share a common prior on a finite state space5

and who observe private correlated messages that are contingent on the true state of6

the world. We focus on the beliefs of receivers that are induced via the signal chosen7

by the sender and we provide a comprehensive analysis of inducible distributions of8

posterior beliefs. We classify signals as minimal, direct, and language independent,9

and we show that any inducible distribution can be induced by a language indepen-10

dent signal. We investigate the role of the different classes of signals for the amount11

of higher order information that is revealed to receivers. Finally, we show that the12

least informative signal which induces a fixed distribution over posterior belief pro-13

files lies in the relative interior of the set of all language independent signals which14

induce that distribution.15

Keywords: Information Design, Inducible Distributions, Informativeness.16

JEL codes: D82, D83.17

1 Introduction18

In any economic model which involves a group of agents and has a payoff structure that19

depends on the posterior beliefs of the agents, one of the essential questions is “Which20

distributions over posterior beliefs of agents can be induced?” In their seminal paper,21

Kamenica and Gentzkow (2011) consider communication between a sender and a receiver22
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who share a common prior and show that the only restriction on the set of inducible23

distributions over posterior belief profiles is Bayes plausibility: the expected posterior24

belief is equal to the prior.1 It follows from their insight that Bayes plausibility and25

identical beliefs are necessary and sufficient in the case of multiple receivers and public26

communication, that is, when messages are perfectly correlated. Yet, in this case the set27

of inducible distributions over posteriors is very limited since all receivers have the same28

ex-post belief. In the present paper we are interested in private communication, which,29

in contrast, enables the sender to achieve a richer belief space. It is straightforward to30

verify that Bayes plausibility is not sufficient to ensure inducibility in such setups; this31

raises the first question we tackle in the paper: providing a characterization of the set of32

inducible posterior beliefs under private communication.33

Another aspect which is important for both the sender and receivers is the informa-34

tiveness of a signal. In the original information design setup introduced by Aumann,35

Machler and Stearns (1995), the authors were interested in communication that reveals36

as little private information as possible. In our paper, a signal realization does not only37

reveal information about the true state of the world: as there are multiple receivers who38

each obtain a private message, it also induces information partitions that determine what39

any receiver knows about another receiver’s knowledge of the true state and the signal40

realization. Thus, we compare the informativeness of signals in terms of “knowledge” in41

the sense of Hintikka (1962). To be more precise, we compare information sets induced by42

a signal, which are similar to elements of information partitions in Aumann (1976). The43

second main question we answer is: what types of signals are the least informative? In44

particular, we first find which distributions of posterior beliefs are feasible for the sender,45

and then provide a characterization for least informative signals that induce a posterior46

distribution.47

We consider a sender who commits to a signal that sends private correlated messages48

to the receivers. Receivers know the joint distribution of message profiles, but they only49

observe their own private message from the message profile realization. We first show50

that there are posterior belief profiles, which the sender cannot achieve with positive51

probability. More precisely, for a given posterior belief profile, there exists a signal that52

induces a distribution which puts positive weight on it if and only if there exists a state53

which is deemed possible by all receivers according to this belief profile. As an example,54

consider an operative who follows Machiavelli’s advice divide et impera and, thus, wants55

to create political unrest in a foreign country by implementing a very heterogeneous belief56

profile. Suppose that there are only two states, say blue and red. Then it is impossible for57

the operative to implement a distribution that puts positive weight on a posterior belief58

profile in which one receiver believes the state is blue with probability 1 and another59

receiver believes that the state is red with probability 1. At the same time, a posterior60

belief profile in which the first receiver’s belief that the state is blue is equal to 1, and the61

1This is also known as the martingale property.
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second receiver’s belief is arbitrarily close to 0 can be achieved with positive probability.62

We next define particular classes of signals. We first consider minimal signals under63

which distinct message profiles lead to distinct posterior belief profiles. While this ensures64

that no two message profiles implement the same posterior belief profile, there might still65

be individual receivers for whom different messages lead to the same posterior. If for each66

receiver every posterior is induced by a unique message, the signal is called direct. If,67

additionally, the sent messages are themselves posteriors such that each message induces68

itself, we call the signals language independent (LIS). Here, a sender simply tells the69

receivers what belief they should have, and the messages are sent with probabilities such70

that receivers will believe the message. We show that restricting attention to language71

independent signals is without loss of generality, that is, if a posterior distribution can be72

induced, it can be induced by an LIS.73

As mentioned before, in the presence of multiple receivers Bayes plausibility is nec-74

essary but not sufficient for a distribution to be inducible. We characterize the set of75

inducible distributions of posteriors by showing that a Bayes plausible distribution is in-76

ducible if and only if there exists a non-negative matrix p with dimensions equal to the77

number of states and the number of posterior belief profiles, respectively, which satisfies a78

particular system of linear equations. In particular, the set of matrices that satisfy these79

equations is a convex polytope, which implies that the set of language independent signals80

that induce a given distribution over posterior belief profiles is a convex polytope as well.81

82

We next explore the informativeness of different signals which induce the same distri-83

bution of posterior beliefs: the message a receiver obtains reveals not only information84

about the true state of the world, but also about the information that other receivers85

have. Let’s return to our operative who wants to create chaos in a foreign country. If one86

receiver knew (i.e., believes with probability 1) that another receiver knew whether the87

true state is red or blue, he might decide not to engage in an argument at all. Thus, our88

operative might want to reveal as little information as possible to any receiver about what89

other receivers know. As an example suppose that before the operative engages, two re-90

ceivers believe that either state might be true with probability 1/2. Suppose the operative91

engages in private communication with both and sends message profiles as follows.92

π′ (m, r) (m, b) (x, x)
Red 1

2
0 1

2

Blue 0 1
2

1
2

93

In this case receiver 2 knows that the true state is red if he observes r, he knows the true94

state is blue if he observes b, and he learns nothing if he observes x. Agent 1 never learns95

anything about the true state. If he observes m, however, he knows that receiver 2 knows96

the true state. If the sender would replace m by x, receiver 1 would not learn anything97

at all.98
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This example illustrates that a receiver’s knowledge about the true state and the99

message profile realization can differ among signals, even if the latter induce identical100

distributions over posterior belief profiles. In particular, a receiver may have different101

knowledge about another receiver’s knowledge about the true state and the message profile102

realization. It is then natural to ask what types of signals that induce the same distribution103

restrict this knowledge the most. In the example above, different messages might lead to104

the same posterior belief but to different higher order knowledge. By employing direct105

or even language independent signals we could avoid this issue. But even then: not106

all language independent signals reveal the same amount of information. To make this107

more precise, we define information correspondences that describe what receivers know108

about the true state and the true posterior belief profile (instead of the message profile109

realization), where we call a tuple of a state and a posterior belief profile a posterior110

history. A signal is more informative than another if for every receiver, every state, and111

every message profile that can occur in this state, the set of posterior histories that the112

receiver deems possible is smaller under the former than under the latter. We prove that113

for any inducible distribution over posterior belief profiles the least informative signals114

that induce it lie in the relative interior of the set of all language independent signals that115

induce it.116

The rest of the paper is organized as follows. In Section 2 we discuss related litera-117

ture. In Section 3 we provide preliminary definitions and results. We then characterize118

sets of belief profiles that can be a subset of the support of an inducible distribution119

over posterior belief profiles in Section 4. In Section 5 we introduce minimal and direct120

signals, and in Section 6 we turn to language independent signals. In Section 7 we char-121

acterize inducible distributions of posteriors and provide several implications. Section 8122

introduces information and posterior correspondences, and in Section 9 we explore the123

informativeness of signals.124

2 Related Literature125

Regarding the part of the paper where we focus on inducible distributions of posteriors,126

one close study to ours is Arieli, Babichenko, Sandomirskiy and Tamuz (2021). They127

consider multiple receivers who share a common prior belief on a binary state space and128

study joint posterior belief distributions. They first show that for the case of two receivers129

a quantitative version of the Agreement Theorem of Aumann (1976) holds; beliefs of re-130

ceivers are approximately equal when they are approximately common knowledge. For131

more than two receivers, they relate the feasibility condition to the No Trade Theorem132

of Milgrom and Stokey (1982) and provide a characterization of feasible joint posteriors.133

These characterizations are then applied to study independent joint posterior belief distri-134

butions. While we pose the same question as Arieli et al. (2021), we obtain a completely135
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different characterization while allowing for an arbitrary finite state space. Another re-136

lated paper is Ziegler (2020), which follows a similar approach to Arieli et al. (2021).137

While the author also provides a characterization of feasible joint posteriors, Arieli et al.138

(2021) show that the necessary and sufficient condition provided by Ziegler (2020) be-139

comes insufficient if the support of the marginal distributions contains more than two140

points.141

Levy, Moreno de Barreda and Razin (2021) also study the question which joint dis-142

tributions of posterior belief profiles are feasible. They provide a necessary condition for143

such to be the case. They also show that the convex combination of a symmetric joint144

distribution and a fully correlated distribution with the same marginal distribution is145

inducible when the weight on the fully correlated distribution is sufficiently high. Finally,146

they demonstrate that a joint distribution satisfying their necessary condition becomes147

feasible when each belief profile in the support is moved sufficiently far in the direction148

of the prior.149

There is a literature in mathematics which studies the extent of difference in opinions150

of agents. Burdzy and Pal (2019) consider two experts who have access to different151

information and show that they can give radically different estimates of the probability152

of an event. In a related study, Burdzy and Pitman (2020) show that the opinion of153

two agents who share the same initial view can substantially differ if they have different154

sources of information; whereas Cichomski and Osekowski (2021) provide a bound for this155

difference in opinions. Related to these studies, we consider an economic interpretation156

of such situations, where there is an agent with the goal of driving a wedge between the157

beliefs of other agents and we provide a characterization for maximal polarization.158

Like Arieli et al. (2021), Ziegler (2020), and Levy et al. (2021) we provide a char-159

acterization of inducible distributions over posterior belief profiles.2 Mathevet, Perego160

and Taneva (2020) focus instead on inducible distributions over belief hierarchies. Their161

characterization requires Bayes plausibility at the level of the sender and formulates two162

equations to obtain the correct belief hierarchies of the receivers. A central concept in163

their characterization is sender’s belief about the state given the entire hierarchy profile.164

Our central tool is in terms of a matrix with dimensions given by the number of states165

and the number of posterior belief profiles.166

While we focus on inducible distributions of posterior belief profiles, Bergemann and167

Morris (2016) consider a game-theoretic set-up and study the distributions of receivers’168

actions that sender can induce, more precisely they characterize the set of Bayes corre-169

lated equilibria of the game. An advantage of their approach is that there is no need170

to make explicit use of information structures. They also develop an extension of the171

classic sufficiency condition of Blackwell (1953) for the multi-player set-up and show that172

more information according to that criterion results in a smaller set of Bayes correlated173

2All papers were developed independent from each other and written roughly around the same time.
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equilibria. A similar set-up is studied by Taneva (2019), who derives sender’s optimal174

information structure.175

In the single receiver case, introducing heterogeneity may render Bayes plausibility176

insufficient for a distribution to be inducible. Alonso and Camara (2016) consider a177

single receiver who does not share a common prior with the sender and show that an178

additional condition is required on top of Bayes plausibility. Beauchêne, Li and Li (2019)179

also consider a single receiver, who is ambiguity averse, and a sender who may use an180

ambiguous communication device. In that case they are able to show that a modified181

version of Bayes plausibility holds. When there are multiple receivers, if information is182

perfectly correlated, then Bayes plausibility is still the only condition for inducibility since183

in this case all receivers have the same ex-post belief. The first part of Wang (2013) and184

Alonso and Câmara (2016) both consider public communication and are examples of such185

a situation.186

There is a wide literature that focuses on informativeness in the sense of Blackwell187

(1953).3 Rick (2013) considers an informed sender and an uninformed receiver and shows188

that miscommunication expands the set of distributions of beliefs the sender expects to189

induce. Gentzkow and Kamenica (2016) consider multiple senders and a single receiver190

and show that the amount of revealed information increases with the number of senders.191

Ichihashi (2019) considers a model of a single sender and receiver in which a designer192

can restrict the most informative message profile that the sender can generate, and he193

characterizes the information restriction that maximizes the receiver’s payoff. While these194

papers compare the informativeness of different information structures by investigating195

the induced distributions of posteriors, we analyze informativeness according to the higher196

order knowledge a receiver has about the posterior history.197

3 Preliminaries and Notation198

Let N = {1, . . . , n} be the set of receivers and Ω be a finite set of states of the world. For199

any set X denote by ∆(X) the set of probability distributions over X with finite support.200

We assume that sender and receivers share a common prior belief λ0 ∈ ∆(Ω).201

Let Si be a non-empty set of messages sender can send to receiver i ∈ N , and let202

S =
∏

i∈N Si. The elements of S are called message profiles. A signal is a function203

π : Ω→ ∆ (S) that maps each ω ∈ Ω to a finite probability distribution over S. The set204

of possible message profile realizations is denoted by Sπ = {s ∈ S| ∃ω ∈ Ω : π(s|ω) > 0} .205

Note that receiver i ∈ N knows the joint distributions π (·|ω) for all ω ∈ Ω, but only206

observes his private message si when message profile s realizes. Denote the set of all207

3Li (2017) considers a different criterion and measures informativeness in the sense of Ganuza and
Penalva (2010), where more informative message profiles lead to greater variability of conditional expec-
tations.

6



signals by Π. For each π ∈ Π, si ∈ Si, and ω ∈ Ω, let208

πi(si|ω) =
∑

t∈S:ti=si

π(t|ω),209

210

which is the probability that receiver i ∈ N observes si given that the true state is ω.211

For each i ∈ N, define Sπi = {si ∈ Si| ∃ω ∈ Ω : πi(si|ω) > 0}, which is the set of messages212

receiver i observes with positive probability under π.213

Given a signal π ∈ Π, a message profile s ∈ Sπ generates the posterior belief profile214

λs ∈ ∆(Ω)n defined by215

λsi (ω) =
πi(si|ω)λ0(ω)∑

ω′∈Ω πi(si|ω′)λ0(ω′)
, i ∈ N, ω ∈ Ω. (1)216

217

So, λsi (ω) is i’s posterior belief that the true state is ω upon receiving message si.218

A signal π ∈ Π induces the distribution σ ∈ ∆(∆(Ω)n) over posterior belief profiles if219

for all λ ∈ ∆(Ω)n it holds that220

σ (λ) =
∑

s∈Sπ :λs=λ

∑
ω∈Ω

π(s|ω)λ0(ω). (2)221

222

In words, σ(λ) is the probability of posterior belief profile λ. The distribution over223

posterior belief profiles induced by π is denoted by σπ. We define the set of inducible224

distributions over posterior belief profiles by225

Σ = {σ ∈ ∆(∆(Ω)n)| ∃π ∈ Π such that σπ = σ} .226
227

Observe that Σ depends on the set S of message profiles that the sender can use: a228

distribution σ might only be inducible if S is sufficiently rich. This becomes relevant229

in situations where the sender’s message profile space is a priori limited, be it in case230

of schools who are bound to reveal information about students’ qualities within a grad-231

ing framework (Boleslavsky and Cotton, 2015), or in case of a regulator who can reveal232

information about a bank’s financial situation only by a simple pass/fail stress test (In-233

ostrozosa and Pavan, 2020). Thus, we will provide necessary and sufficient conditions on234

the size of S whenever appropriate.235

We denote the support of σ ∈ ∆ (∆ (Ω)n) by supp(σ). By our assumptions made so236

far, the support of σ is a finite set. For each i ∈ N and λi ∈ ∆(Ω), define237

σi (λi) =
∑

λ′∈supp(σ):λ′i=λi

σ(λ′). (3)238

239
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That is, σi (λi) is the probability that receiver i has posterior belief λi.
4 We denote the240

support of σi by supp(σi).241

Let σ, σ′ ∈ ∆(∆(Ω)n) be two distributions over posterior belief profiles and let α ∈242

[0, 1]. The convex combination σ̂ = ασ + (1− α)σ′ is defined by243

σ̂(λ) = ασ(λ) + (1− α)σ′(λ), λ ∈ ∆ (Ω)n .244
245

Even in the case with a single receiver, Σ need not be convex. For instance, if S consists of246

two messages, then it is possible to induce σ, σ′ ∈ Σ with disjoint supports of cardinality247

2. If σ̂ is a strict convex combination of σ and σ′, then |supp (σ̂)| = 4, so that σ̂ cannot248

be induced with two messages only. The next result shows that Σ is convex when the249

message profile space is sufficiently rich.250

Proposition 3.1. Let σ, σ′ ∈ Σ and α ∈ (0, 1). Then ασ + (1 − α)σ′ ∈ Σ if and only if251

|Si| ≥ |supp(σi) ∪ supp(σ′i)| for all i ∈ N .252

Proof. Let σ̂ = ασ + (1− α)σ′.253

If there is i ∈ N such that |Si| < |supp(σi) ∪ supp(σ′i)|, then there are not sufficient254

messages to implement all of i’s possible beliefs in supp (σ̂i).255

For the other direction, let |Si| ≥ |supp(σi) ∪ supp(σ′i)| for all i ∈ N . Let π, π′ ∈ Π256

be such that σπ = σ and σπ
′

= σ′. Since |Si| ≥ |supp(σi) ∪ supp(σ′i)|, we can assume257

without loss of generality that there is s ∈ S with si ∈ Sπi ∩ Sπ
′

i if and only if there are258

λ ∈ supp(σ) and λ′ ∈ supp (σ′) such that λi = λ′i = λsi .259

Let π̂ = απ+ (1−α)π′. Let s ∈ Sπ̂ and i ∈ N . Without loss of generality let si ∈ Sπi .260

Assume first that si /∈ Sπ
′

i . It holds that, for every ω ∈ Ω,261

λ̂si (ω) =
π̂i(si|ω)λ0(ω)∑

ω′∈Ω π̂i(si|ω′)λ0(ω′)
=

απi(si|ω)λ0(ω)

α
∑

ω′∈Ω πi(si|ω′)λ0(ω′)
= λsi (ω).262

263

Assume next that si ∈ Sπ
′

i and observe that in this case264

πi(si|ω)λ0(ω)∑
ω′∈Ω πi(si|ω′)λ0(ω′)

=
π′i(si|ω)λ0(ω)∑

ω′∈Ω π
′
i(si|ω′)λ0(ω′)

.265

266

Thus,267

λ̂si (ω) =
απi(si|ω)λ0(ω) + (1− α) π′i(si|ω)λ0(ω)

α
∑

ω′∈Ω πi(si|ω′)λ0(ω′) + (1− α)
∑

ω′∈Ω π
′
i(si|ω′)λ0(ω′)

= λsi (ω).268

269

4Recall that ∆ is defined for distributions with finite support and note that if λ is such that there is
no s with λ = λs, then the right hand side of (3) is 0.
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We have shown that supp (σ̂) = supp(σ)∪ supp (σ′). We now have, for every λ ∈ ∆ (Ω)n ,270

σ̂(λ) =
∑

s∈Sπ̂ :λ̂s=λ

∑
ω∈Ω

π̂(s|ω)λ0(ω)271

= α
∑

s∈Sπ :λs=λ

∑
ω∈Ω

π(s|ω)λ0(ω) + (1− α)
∑

s∈Sπ′ :λ′s=λ

∑
ω∈Ω

π′(s|ω)λ0(ω)272

= ασ(λ) + (1− α)σ′(λ).273
274

Hence, π̂ induces σ̂.275

Most of the literature considers Si an arbitrary set that contains all messages that are276

necessary. The previous proposition implies that in this case the set of inducible posteriors277

is convex.278

A distribution over posterior belief profiles σ ∈ ∆ (∆ (Ω)n) is Bayes plausible if279 ∑
λi∈supp(σi)

λi(ω)σi (λi) = λ0(ω), i ∈ N, ω ∈ Ω. (4)280

281

That is, for each receiver the expected posterior belief equals his prior belief. Kamenica282

and Gentzkow (2011) show that Σ is the set of Bayes plausible posterior distributions in283

the single receiver case, given that S is sufficiently rich. It now follows for the multiple re-284

ceiver case that every σ ∈ Σ satisfies Bayes plausibility. We therefore obtain the following285

result, which is stated for later reference and without proof.286

Proposition 3.2. Every σ ∈ Σ is Bayes plausible.287

4 Implementing belief profiles288

When a sender is interacting with a single receiver who has no private information, Bayes289

plausibility of a distribution σ ∈ ∆(∆(Ω)n) is necessary and sufficient for σ to belong to290

Σ when S is sufficiently rich. In particular, for any λ ∈ ∆(Ω) there is σ ∈ Σ such that291

σ(λ) > 0. In contrast, in the multiple receiver case it is not true that any single posterior292

belief profile λ ∈ ∆(Ω)n can occur with positive probability for a suitably chosen signal.293

Our first proposition shows that λ ∈ ∆(Ω)n can belong to the support of some σ ∈ Σ294

if and only if there is at least one state which, according to λ, is deemed possible by all295

receivers.296

Proposition 4.1. For every i ∈ N, let Si contain at least two messages. Let λ ∈ ∆(Ω)n.297

There exists σ ∈ Σ with σ(λ) > 0 if and only if there is ω ∈ Ω such that
∏

i∈N λi(ω) > 0.298

Proof. Assume π ∈ Π is such that σπ = σ with σ(λ) > 0. Suppose that
∏

i∈N λi(ω) = 0299

for all ω ∈ Ω, that is, for all ω ∈ Ω there exists iω ∈ N such that λiω(ω) = 0. Let s ∈ Sπ300
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be such that λs = λ. Then it holds that, for all ω ∈ Ω, π(s|ω) ≤ πiω(siω |ω) = 0. We find301

by (2) that σ(λ) = 0, leading to a contradiction. Consequently, there exists ω ∈ Ω such302

that
∏

i∈N λi(ω) > 0.303

For the converse, assume there exists ω ∈ Ω such that
∏

i∈N λi(ω) > 0. Let i ∈ N and304

βi = maxω∈Ω(λi(ω)/λ0(ω)) be the highest ratio across states of posterior belief to prior305

belief for receiver i. Let xi, yi ∈ Si be two distinct messages. We define, for every ω ∈ Ω,306

ρi(xi|ω) =
1

βi

λi(ω)

λ0(ω)
,307

ρi(yi|ω) = 1− ρi(xi|ω),308

ρi(si|ω) = 0, si ∈ Si \ {xi, yi}.309
310

Notice that ρi(xi|ω) ≤ 1. We define π : Ω→ ∆ (S) by311

π(s|ω) =
∏
i∈N

ρi(si|ω), s ∈ S, ω ∈ Ω.312

313

It holds that π is a signal with πi(si|ω) = ρi(si|ω) for every receiver i ∈ N.314

Let i ∈ N. For every s ∈ Sπ with si = xi it holds that315

λsi (ω) =
πi(xi|ω)λ0(ω)∑

ω′∈Ω πi(xi|ω′)λ0(ω′)
=

1
βi

λi(ω)
λ0(ω)

λ0(ω)

1
βi

∑
ω′∈Ω

λi(ω′)
λ0(ω′)

λ0(ω′)
=

λi(ω)∑
ω′∈Ω λi(ω

′)
= λi(ω), ω ∈ Ω.316

317

We have that λx̄ = λ, where x̄ = (x1, . . . , xn).318

Let ω ∈ Ω be such that λi(ω) > 0. Then319

σ (λ) ≥ π (x̄|ω)λ0 (ω) = λ0 (ω)
∏
i∈N

ρi(xi|ω) > 0,320

321

which implies that λ ∈ R(σπ).322

Let there be two receivers and a binary state space, say Ω = {X, Y } , as in our example323

in the introduction. It follows from Proposition 4.1 that a posterior belief profile λ with324

λ(X) = (0, 1) cannot result with positive probability under any signal since λ1(X)λ2(X) =325

0 and λ1(Y )λ2(Y ) = 0. At the same time, for each ε > 0, the posterior belief profile λ326

with λ (X) = (ε, 1) can be obtained with positive probability.327

We now generalize Proposition 4.1 from a single posterior belief profile to finite sets328

of posterior belief profiles.329

Proposition 4.2. Let R ⊆ ∆ (Ω)n be finite. For every i ∈ N, let Si contain at least330

|Ri|+1 messages, where Ri = {λi ∈ ∆(Ω) | λ ∈ R}. There exists σ ∈ Σ with R ⊆ supp(σ)331

if and only if for each λ ∈ R there exists ω ∈ Ω such that
∏

i∈N λi(ω) > 0.332
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Proof. Proposition 4.1 implies necessity. For the other direction, let Ri = {λ1
i , . . . , λ

mi
i },333

let {x1
i , . . . , x

mi
i , yi} ⊆ Si be such that xki 6= x`i , yi for all k 6= ` and all i ∈ N . Let R =334

{λ1, . . . , λm} and define π1, . . . , πm as in the proof of Proposition 4.1, where, for all i ∈ N335

and all k = 1, . . . ,m one has λk ∈ supp(σπ
k
) and Sπ

k

i ⊆
{
xki , yi

}
. Let α1, . . . , αm > 0336

with
∑m

k=1 α
k = 1, and let σ =

∑m
k=1 α

kσπ
k
. Since |Si| ≥ mi + 1 = |

⋃m
k=1 supp

(
σπ

k

i

)
|,337

iterative application of Proposition 3.1 implies that σ ∈ Σ. Moreover, by construction,338

σπ
(
λk
)

= αkσπ
k (
λk
)
> 0.339

Observe that Proposition 4.2 sharpens an earlier result in Sobel (2014). There the author340

showed that collections of strictly positive posterior belief profiles can be implemented.341

Our proposition characterizes the set of posterior belief profiles that can be implemented:342

in particular, we allow belief profiles that assign zero probability to some states as long343

as there is no such disagreement as in Proposition 4.1, i.e., as long as for each posterior344

belief profile there exists at least one state that is deemed possible by all receivers.345

At this point we have identified sets that can be subsets of the support of an inducible346

distribution over posterior belief profiles. In Section 7 we characterize all inducible dis-347

tributions over posterior belief profiles and the sets that can be the support of such348

distributions.349

5 Minimal and Direct Signals350

A large part of the literature is interested in “straightforward” signals (Kamenica and351

Gentzkow, 2011) that send recommendations to receivers about what action to take. In352

the present paper, we do not specify sets of feasible actions for receivers, so that sending353

recommendations has no meaning. Nevertheless, some signals are easier to handle than354

others and this and the next section will introduce some important classes.355

Given a signal π ∈ Π and s, s′ ∈ Sπ with s 6= s′, it is possible that λs = λs
′
. That is,356

two distinct message profiles can generate the same posterior belief profile. This motivates357

the following definition.358

Definition 5.1. A signal π ∈ Π is minimal if |Sπ| = |supp(σπ)|. The set of minimal359

signals is denoted by Πm.360

Under a minimal signal, different message profiles lead to different posterior belief profiles.361

We give an illustration of a minimal signal in the following example.362

Example 5.2. Let N = {1, 2}, Ω = {X, Y }, S1 = {v, w}, and S2 = {w, x, y}. Assume363

that agents have a common prior λ0(X) = 1/2. Let π be given as follows:364

π (v, x) (v, y) (w,w)
X 1

2
0 1

2

Y 0 1
2

1
2

.365
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We have Sπ = {(v, x), (v, y), (w,w)}. Irrespective of the message received, receiver 1366

gathers no information about the state: he has posterior beliefs λ
(v,x)
1 (X) = λ

(v,y)
1 (X) =367

λ
(w,w)
1 (X) = 1/2. For receiver 2, we have λ

(v,x)
2 (X) = 1, λ

(v,y)
2 (X) = 0, and λ

(w,w)
2 (X) =368

1/2. It follows that369

supp(σπ) = {((1/2, 1/2), (1, 0)) , ((1/2, 1/2), (0, 1)) , ((1/2, 1/2), (1/2, 1/2))} .370
371

Since |Sπ| = |supp(σπ)|, π is minimal. 4372

In case of a single receiver, it is sufficient to have a bijection between Sπ and supp(σ)373

to ensure that each message leads to a different posterior, that is, to ensure that the374

signal employs a minimal number of messages. If there are multiple receivers, however,375

the existence of such a bijection does not guarantee that the number of messages for each376

receiver is indeed minimal. For instance, the two messages v, w in Example 5.1 both lead377

to the posterior belief λ1(X) = 1/2 for receiver 1.378

Definition 5.3. A signal π ∈ Π is direct if for all i ∈ N it holds that |Sπi | = |supp(σπi )|.379

The set of direct signals is denoted by Πd.380

Under a direct signal any two different messages must lead to two different posterior381

beliefs. Hence, the number of different posterior beliefs a receiver can have equals the382

cardinality of Sπi .383

Example 5.4. Recall the minimal signal π in Example 5.2. Receiver 1 has the same384

posterior belief after observing v and observing w, i.e., λ
(v,x)
1 (X) = λ

(w,w)
1 (X). Thus, π is385

not direct. Consider the signal π′ defined by:386

π′ (w, x) (w, y) (w,w)
X 1

2
0 1

2

Y 0 1
2

1
2

.387

We have Sπ
′
= {(w, x), (w, y), (w,w)} and accordingly we can write the support of σπ

′
as388

supp(σπ
′
) = {((1/2, 1/2), (1, 0)) , ((1/2, 1/2), (0, 1)) , ((1/2, 1/2), (1/2, 1/2))} .389

Note that supp(σπ) = supp(σπ
′
). Since for all s, t ∈ Sπ′

and each i ∈ N we have λ′si = λ′ti390

if and only if si = ti, π
′ is direct. 4391

For any signal π ∈ Π, |Sπi | = |supp(σπi )| guarantees that a minimal number of messages392

is employed and implies that the number of employed message profiles is minimal as well.393

Thus, the following lemma does not come as a surprise.394

Lemma 5.5. It holds that Πd ⊆ Πm.395
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Proof. Let π ∈ Πd. For each i ∈ N there exists a bijection φi : Sπi → supp (σπi ) since396

π is direct. In particular, for every s ∈ Sπ, we have λs = (φi (si))i∈N so that there is a397

bijection between Sπ and supp (σπ). Hence, |Sπ| = |supp(σπ)|, that is, π is minimal.398

We close this section by claiming that any distribution in Σ can be induced by a direct399

signal. We do not provide a proof of Theorem 5.6 here, as it will follow easily from later400

results. The proof can be found after Corollary 7.3.401

Theorem 5.6. If σ ∈ Σ, then there exists π ∈ Πd such that σπ = σ.402

6 Language Independent Signals403

The same distribution over posterior belief profiles can be induced by various signals404

with potentially disjoint message profile spaces. We now proceed to show that there is405

a canonical way to describe signals. The principal idea is that the sender sends to each406

receiver the belief that he should have after observing the message.407

Definition 6.1. A signal π ∈ Π is a language independent signal (LIS) if Sπ ⊆ ∆(Ω)n408

and, for all s ∈ Sπ, λs = s. The set of language independent signals is denoted by Π`.409

Example 6.2. Let N = {1, 2}, Ω = {X, Y }, and λ0(X) = 1/3. The signal π ∈ Π is410

defined as follows:411

π (x, x) (x, y) (y, x) (y, y)
X 1

4
1
4

1
4

1
4

Y 1
8

1
8

1
8

5
8

.412

For any i ∈ N , we have λ
(x,x)
i (X) = 1/2 and λ

(y,y)
i (X) = 1/4. Hence, π is in fact direct.413

The support of σπ is equal to414

supp(σπ) =
{
λ(x,x), λ(x,y), λ(y,x), λ(y,y)

}
415

=
{

((1
2
, 1

2
), (1

2
, 1

2
))((1

2
, 1

2
), (1

4
, 3

4
)), ((1

4
, 3

4
), (1

2
, 1

2
)), ((1

4
, 3

4
), (1

4
, 3

4
))
}
.416

417

It holds that σπ
(
λ(x,x)

)
= σπ

(
λ(x,y)

)
= σπ

(
λ(y,x)

)
= 1/6 and σπ

(
λ(y,y)

)
= 1/2.418

The signal π′ ∈ Π is obtained by switching messages x and y, so419

π′ (x, x) (x, y) (y, x) (y, y)
X 1

4
1
4

1
4

1
4

Y 5
8

1
8

1
8

1
8

.420

It is immediate that σπ = σπ
′
.421

Next, consider the signal π̂ that corresponds to the convex combination of π and π′422

with equal weights: π̂ = 1/2π + 1/2π′. We have that423
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π̂ (x, x) (x, y) (y, x) (y, y)
X 1

4
1
4

1
4

1
4

Y 3
8

1
8

1
8

3
8

.424

Perhaps surprisingly, it holds that σπ̂ 6= σπ = σπ
′
.5 It is easily verified that σπ̂ is the425

distribution that assigns probability 1 to the posterior belief profile (λ0, λ0). It follows426

that the set of signals which induce a particular distribution is not convex. Observe that427

π̂ is not direct, which implies that Πd is also not convex.428

The signals π`, π′`, and π̂` are obtained by relabeling the message profiles sent by π, π′,429

and π̂, respectively, with the posterior belief profiles they lead to. We have that π` = π′`.430

Both are equal to431

π`, π′`
(
(1

2
, 1

2
), (1

2
, 1

2
)
) (

(1
2
, 1

2
), (1

4
, 3

4
)
) (

(1
4
, 3

4
), (1

2
, 1

2
)
) (

(1
4
, 3

4
), (1

4
, 3

4
)
)

X 1
4

1
4

1
4

1
4

Y 1
8

1
8

1
8

5
8

.432

Each receiver has posterior belief (1/2, 1/2) upon observing message (1/2, 1/2) and has433

posterior belief (1/4, 3/4) upon observing message (1/4, 3/4). Thus, π` and π′` are lan-434

guage independent.435

Finally, π̂` sends λ0 to both players with probability 1. In particular, π̂` is not a convex436

combination of π` and π′`. 4437

The next result states that an LIS is direct.438

Lemma 6.3. It holds that Π` ⊆ Πd.439

Proof. Let π ∈ Π`, s ∈ Sπ, and i ∈ N. It holds that λsi = si by definition of an LIS. This440

defines an identity between Sπi and supp(σπi ). It follows that |Sπi | = |supp(σπi )|.441

By Lemma 6.3 we know that an LIS is direct and by Lemma 5.5 directness implies442

minimality. Thus, there is a chain of inclusions between Π`, Πd, and Πm.443

Corollary 6.4. It holds that Π` ⊆ Πd ⊆ Πm ⊆ Π.444

Since we can transform any given direct signal into an LIS by relabeling each message445

with the posterior belief that message leads to, an immediate consequence of Theorem 5.6446

is that any element of Σ can be induced by an LIS if ∆(Ω)n ⊆ S, a result also obtained447

by Arieli et al. (2021) for a binary state space. One advantage of language independent448

signals is that for each σ ∈ Σ the set of all language independent signals that induce σ,449

denoted by Π`(σ), is convex. The proof of this statement, however, is postponed as it450

follows easily from later results. The proof can be found after Corollary 7.3.451

5Observe that this is no contradiction to the proof of Proposition 3.1: there we used that any fixed
message induces under every signal where it is sent with positive probability the same posterior. Here,
message x induces posterior (1/2, 1/2) under π but (1/4, 3/4) under π′.
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Proposition 6.5. Let ∆(Ω)n ⊆ S and σ ∈ Σ. Then Π`(σ) is non-empty and convex.452

Proposition 6.5 contrasts Example 6.2 where we showed that both the set of all signals453

and the set of all direct signals that induce a given σ are typically not convex. This makes454

language independent signals particularly attractive.455

Recall that given a direct signal, we can obtain an LIS by simply replacing messages456

with the posterior beliefs they lead to. More generally, given a signal π ∈ Π, one can457

define π′ ∈ Π by a one-to-one change in the names of messages in Sπi for each i ∈ N .458

In this case, we typically have Sπ
′ 6= Sπ, though we intuitively think of both signals as459

equivalent. More formally, we have the following definition.460

Definition 6.6. Two signals π : Ω → ∆(S) and π̂ : Ω → ∆(Ŝ) are equivalent (π ∼ π̂) if461

for every i ∈ N there is a bijection ψi : Sπi → Ŝπ̂i such that, for every ω ∈ Ω, for every462

s ∈ Sπ, π̂ (ψ(s)|ω) = π(s|ω).463

We can interpret equivalent signals as providing the same information in different lan-464

guages. Indeed, let si ∈ Sπi and ŝi ∈ Ŝπ̂i be such that ψi(si) = ŝi. It holds that465

πi(si|ω) =
∑

t∈Sπ :ti=si

π(t|ω) =
∑

t∈Sπ :ti=si

π̂ (ψ(t)|ω) =
∑

t̂∈Ŝπ̂ :t̂i=ŝi

π̂(t̂|ω) = π̂i(ŝi|ω), ω ∈ Ω.466

Now consider s ∈ Sπ and ŝ ∈ Ŝπ̂ such that ŝ = ψ(s). For every i ∈ N, we have that467

λsi (ω) =
πi(si|ω)λ0(ω)∑

ω′∈Ω πi(si|ω′)λ0(ω′)
=

π̂i(ŝi|ω)λ0(ω)∑
ω′∈Ω π̂i(ŝi|ω′)λ0(ω′)

= λ̂ŝi (ω). (5)468

It follows from (5) that sending message profile s under signal π and sending message469

profile ŝ under signal π̂ results in the same posterior belief profile. It is also immediate470

from Definition 6.6 that Ŝπ̂ = ψ(Sπ).471

The next proposition, stating that equivalent signals induce the same distribution over472

posterior belief profiles, now follows easily.473

Proposition 6.7. Let π : Ω→ ∆(S) and π̂ : Ω→ ∆(Ŝ) be such that π ∼ π̂. It holds that474

σπ = σπ̂.475

Proof. For every i ∈ N there is a bijection ψi : Sπi → Ŝπ̂i such that, for every ω ∈ Ω,476

for every s ∈ Sπ, π̂ (ψ(s)|ω) = π(s|ω). Let s ∈ Sπ and ŝ ∈ Ŝπ̂ be such that ψ(s) = ŝ.477

It follows from (5) that λs = λ̂ŝ. Since Ŝπ̂ = ψ(Sπ), we have that supp(σπ̂) = supp(σπ).478

Moreover, it holds that, for every λ ∈ supp(σπ),479

σπ (λ) =
∑

s∈Sπ :λs=λ

∑
ω∈Ω

π(s|ω)λ0(ω) =
∑

s∈Sπ :λs=λ

∑
ω∈Ω

π̂ (ψ(s)|ω)λ0(ω)480

=
∑

ŝ∈Ŝπ̂ :λ̂ŝ=λ

∑
ω∈Ω

π̂(ŝ|ω)λ0(ω) = σπ̂ (λ) .481

482

483
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Note that the converse of Proposition 6.7 is not true: as we will see in Example 7.6 there484

are signals that induce the same distribution over posterior belief profiles but that are not485

equivalent.486

The next proposition makes clear that each set of equivalent signals contains at most487

one LIS.488

Proposition 6.8. Let π, π′ ∈ Π` with π ∼ π′. It holds that π = π′.489

Proof. By Proposition 6.7 it holds that σπ = σπ
′
, so Sπ = supp (σπ) = supp

(
σπ

′)
= Sπ

′
.490

As π ∼ π′, for every i ∈ N there is a bijection ψi : Sπi → Sπ
′

i such that, for every ω ∈ Ω,491

for every s ∈ Sπ, π′ (ψ(s)|ω) = π(s|ω). In particular, since π, π′ ∈ Π`, we have, for every492

i ∈ N, for every λ ∈ Sπ,493

ψi (λi) (ω) =
π′i (ψi (λi) |ω)λ0 (ω)∑

ω′∈Ω π
′
i (ψi (λi) |ω′)λ0 (ω′)

=
πi (λi|ω)λ0 (ω)∑

ω′∈Ω πi (λi|ω′)λ0 (ω′)
= λi (ω) , ω ∈ Ω,

(6)

494

495

where the first and third equality follow since π, π′ ∈ Π`, and the second equality uses496

(5). It follows that π = π′.497

Observe that a signal that is not direct cannot be equivalent to an LIS as the required498

bijection between message spaces cannot exist. Nevertheless for every signal there is a499

canonical way to find an LIS that induces the same posterior. The construction heavily500

lies on the following lemma, which is straightforward and therefore stated without proof.6501

Lemma 6.9. Let π ∈ Π be a signal. It holds that502 ∑
si∈Sπi :λsi=λi

πi (si|ω)λ0 (ω)∑
ω′∈Ω

∑
si∈Sπi :λsi=λi

πi (si|ω′)λ0 (ω′)
= λi (ω) , ω ∈ Ω, i ∈ N, λi ∈ supp (σπi ) .503

504

Lemma 6.9 extends the formula for Bayesian updating and applies it to all messages505

simultaneously that lead to a particular posterior belief. According to the lemma, distinct506

messages that lead to the same posterior can be replaced by the same message. Thus, the507

following result is immediate and we present it without proof.508

Theorem 6.10. Let ∆(Ω)n ⊆ S. For π ∈ Π define π` : Ω→ ∆(S) as509

π` (λ|ω) =
∑

s∈Sπ :λs=λ

π (s|ω) , ω ∈ Ω, λ ∈ supp (σπ) . (7)510

511

Then σπ
`

= σπ. Moreover, if π ∈ Πd then π` is equivalent to π.512

6It is implied by the proof of Lemma 3.4 in Kerman et al. (2020).
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7 Inducible Distributions513

Unlike the single receiver case, when dealing with multiple receivers Bayes plausibility514

alone is not sufficient to ensure that a distribution over posterior belief profiles belongs515

to Σ.516

Example 7.1. Let N = {1, 2, 3}, Ω = {X, Y }, and S = ∆(Ω)3. Assume the agents517

have common prior λ0(X) = 1/6. Let λ1(X) = (1/2, 1/2, 0), λ2(X) = (1/2, 0, 1/2),518

λ3(X) = (0, 1/2, 1/2), and λ4(X) = (0, 0, 0) and let σ ∈ ∆
(
∆ (Ω)3) be given by σ (λ1) =519

σ (λ2) = σ (λ3) = 1/6 and σ (λ4) = 1/2. Then, for each i ∈ N, we have σi (1/2, 1/2) = 1/3520

and σi(0, 1) = 2/3.521

First note that σ is Bayes plausible:522 ∑
λi∈supp(σi)

λi(X)σi (λi) =
1

2
· σi(1/2, 1/2) + 0 · σi(0, 1) =

1

2
· 1

3
=

1

6
= λ0(X), i ∈ N.523

524

Suppose that signal π ∈ Π induces σ. By Corollary 6.10 it is without loss of generality to525

assume that π ∈ Π`. In this case, for any receiver, observing (1/2, 1/2) leads to posterior526

belief (1/2, 1/2), and observing (0, 1) leads to posterior belief (0, 1). This implies that527

receivers cannot observe (0, 1) in state X, i.e., πi((0, 1)|X) = 0 for all i ∈ N . It follows that528

π (λ1|X) = π (λ2|X) = π (λ3|X) = π (λ4|X) = 0, which obviously leads to a contradiction.529

4530

To guarantee that a distribution over posterior belief profiles belongs to Σ, additional531

conditions need to be imposed on top of Bayes plausibility. In Theorem 7.2, we provide532

necessary and sufficient conditions for a distribution over posterior belief profiles to belong533

to Σ.534

Theorem 7.2. Let σ ∈ ∆(∆(Ω)n) be such that, for every i ∈ N, |Si| ≥ |supp(σi)|. Then535

σ ∈ Σ if and only if σ is Bayes plausible and there exists p ∈ RΩ×supp(σ)
+ such that536

(i)
∑

ω∈Ω p(ω, λ) = σ (λ) , λ ∈ supp(σ),
(ii)

∑
λ′∈supp(σ):λ′i=λi

p(ω, λ′) = λi(ω)σi (λi) , ω ∈ Ω, i ∈ N, λi ∈ supp(σi).
537

If σ ∈ Σ, then the signal π : Ω→ ∆(∆(Ω)n) defined by538

π (λ|ω) =
p(ω, λ)

λ0(ω)
, ω ∈ Ω, λ ∈ supp(σ), (8)539

540

is an LIS such that σπ = σ.541

Proof. Assume that σ is Bayes plausible and there exists p ∈ RΩ×supp(σ)
+ such that (i) and542

(ii) are satisfied. Let π be defined as in (8). We first show that π is a signal.543
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Let ω ∈ Ω. Obviously, it holds that, for every λ ∈ ∆(Ω)n, π(λ|ω) ≥ 0. In formula (9)544

that follows next, i ∈ N is an arbitrarily chosen receiver. It holds that545 ∑
λ∈Sπ

p (ω, λ) =
∑

λi∈supp(σi)

∑
λ′∈supp(σ):λ′i=λi

p(ω, λ′)
(ii)
=

∑
λi∈supp(σi)

λi(ω)σi (λi) = λ0(ω), (9)546

547

where the last equality is true as σ is Bayes plausible. We find that548 ∑
λ∈Sπ

π(λ|ω) =
∑
λ∈Sπ

p (ω, λ)

λ0(ω)

(9)
=
λ0(ω)

λ0(ω)
= 1,549

550

which proves that π is a signal.551

Next, we show that π is an LIS. Let ω ∈ Ω, i ∈ N, and λi ∈ R(σi). It holds that552

πi(λi|ω)λ0(ω)∑
ω′∈Ω πi(λi|ω′)λ0(ω′)

=

∑
λ′∈supp(σ):λ′i=λi

π(λ′|ω)λ0(ω)∑
ω′∈Ω

∑
λ′∈supp(σ):λ′i=λi

π(λ′|ω′)λ0(ω′)
553

(8)
=

∑
λ′∈supp(σ):λ′i=λi

p(ω,λ′)
λ0(ω)

λ0(ω)∑
ω′∈Ω

∑
λ′∈supp(σ):λ′i=λi

p(ω′,λ′)
λ0(ω′)

λ0(ω′)
554

=

∑
λ′∈supp(σ):λ′i=λi

p (ω, λ′)∑
ω′∈Ω

∑
λ′∈supp(σ):λ′i=λi

p (ω′, λ′)
555

(ii)
=

λi(ω)σi (λi)∑
λ′∈supp(σ):λ′i=λi

∑
ω′∈Ω p (ω′, λ′)

556

(i)
=

λi(ω)σi (λi)∑
λ′∈supp(σ):λ′i=λi

σ (λ′)
557

=
λi(ω)σi (λi)

σi (λi)
558

= λi(ω).559
560

As message λi leads to posterior λi, π is an LIS.561

We show next that σπ = σ. Let λ ∈ supp(σ). It holds that562

σπ(λ) =
∑
ω∈Ω

π(λ|ω)λ0(ω) =
∑
ω∈Ω

p (ω, λ)

λ0(ω)
λ0(ω) =

∑
ω∈Ω

p (ω, λ)
(i)
= σ(λ).563

564

At this point we have shown that σ is inducible if supp(σi) ⊆ Si. Recall that |Si| ≥565

supp(σi). For every i ∈ N, let Ti be a subset of Si with cardinality equal to |supp(σi)|566

and take a bijection ψi : supp(σi)→ Ti. Define the signal π′ : Ω→ ∆(S) by567

π′(ψ(λ)|ω) = π(λ|ω), ω ∈ Ω, λ ∈ supp(σ).568
569
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Then π ∼ π′, so by Proposition 6.7 we have that σπ
′
= σπ = σ. It follows that σ ∈ Σ.570

Now assume that σ ∈ Σ. It follows from Proposition 3.2 that σ is Bayes plausible. Let571

π ∈ Π be such that σπ = σ. For every ω ∈ Ω, for every λ ∈ supp(σ), define572

p (ω, λ) =
∑

s∈Sπ :λs=λ

π(s|ω)λ0(ω). (10)573

574

We first show that (i) holds. We have that575

σ (λ) =
∑

s∈Sπ :λs=λ

∑
ω∈Ω

π(s|ω)λ0(ω)
(10)
=
∑
ω∈Ω

p (ω, λ) , λ ∈ supp(σ).576

577

Next, we show (ii) holds. Let ω ∈ Ω, i ∈ N, and λi ∈ supp(σi). We have that578

λi(ω)σi (λi) =

∑
si∈Sπi :λsi=λi

πi(si|ω)λ0(ω)∑
ω′∈Ω

∑
si∈Sπi :λsi=λi

πi(si|ω′)λ0(ω′)

∑
λ′∈supp(σ):λ′i=λi

σ (λ′)579

=

∑
si∈Sπi :λsi=λi

πi(si|ω)λ0(ω)∑
ω′∈Ω

∑
si∈Sπi :λsi=λi

πi(si|ω′)λ0(ω′)

∑
λ′∈supp(σ):λ′i=λi

∑
s∈Sπ :λs=λ′

∑
ω′∈Ω

π (s|ω′)λ0 (ω′)580

=

∑
si∈Sπi :λsi=λi

πi(si|ω)λ0(ω)∑
ω′∈Ω

∑
si∈Sπi :λsi=λi

πi(si|ω′)λ0(ω′)

∑
ω′∈Ω

∑
si∈Sπi :λsi=λi

πi (si|ω′)λ0 (ω′)581

=
∑

si∈Sπi :λsi=λi

πi(si|ω)λ0(ω)582

=
∑

λ′∈supp(σ):λ′i=λi

∑
s∈Sπ :λs=λ′

π (s|ω)λ0 (ω)583

=
∑

λ′∈supp(σ):λ′i=λi

p (ω, λ′) ,584

585

where the first equality follows from Lemma 6.9.586

Theorem 7.2 makes explicit what is needed in addition to Bayes plausibility to ensure587

that a distribution over posterior belief profiles belongs to Σ. Observe that any p ∈588

RΩ×supp(σ)
+ which satisfies Condition (i) is a finite probability distribution, that is, p ∈589

∆ (Ω× supp(σ)).590

Note that while we pose a similar question to Arieli et al. (2021) and Ziegler (2020),591

we obtain a completely different characterization. To obtain a characterization for more592

than three players and a binary state space, Arieli et al. (2021) utilize the No Trade593

Theorem of Milgrom and Stokey (1982) and for this purpose, introduce a mediator who594

trades with the agents and provide an interval for the mediator’s expected payoff for a595

19



distribution to be inducible.7 Ziegler (2020) generalizes Kamenica and Gentzkow (2011)596

to two players and makes use of “belief-dependence bounds” to provide a characterization597

for inducible distributions, which are defined over the CDFs associated with distributions598

of beliefs. On the other hand, we allow for both a finite state space and a finite number of599

receivers, and provide a characterization by solving a system of equations, i.e. by showing600

the existence of a non-negative matrix, which represents the properties of marginal beliefs601

agents should hold for a distribution to be inducible.602

Condition (i) can be interpreted as “posterior marginality” as it states that the prob-603

ability of a posterior belief profile λ is the marginal of p(ω, λ). The right-hand side of604

condition (ii) is the probability that ω is the true state according to i’s belief λi multi-605

plied with the probability that i has belief λi. Thus, the sum on the left-hand side is the606

probability that i has belief λi and ω is the true state.607

Observe that by Equation (8) and (9) p is a common prior over Ω × supp(σ). Thus,608

Theorem 7.2 bears some resemblance to Proposition 1 in Mathevet et al. (2020). Yet,609

while they impose conditions on the common prior over belief hierarchies from which610

the posterior distribution emerges, our condition is formulated as separate marginality611

conditions for all players.612

While Theorem 7.2 is useful in determining whether a distribution of beliefs is in-613

ducible, it also provides an LIS that induces the desired distribution. In Example 7.4, we614

first use Theorem 7.2 to show that a given distribution of beliefs is not inducible. Then,615

in Example 7.6, we provide two signals that induce the same distribution via distinct616

solutions to conditions (i) and (ii).617

For any σ ∈ Σ, define618

P (σ) =
{
p ∈ RΩ×supp(σ)

+ | p satisfies (i) and (ii) of Theorem 7.2
}
.619

620

As P (σ) is defined as the set of non-negative matrix solutions to a system of linear621

equalities, where the system is such that the components of any solution matrix sum up622

to one, we immediately have the following result.623

Corollary 7.3. For every σ ∈ Σ, P (σ) is a non-empty, compact, and convex polytope.624

We are now ready to provide the remaining proofs of Sections 5 and 6.625

Proof of Theorem 5.6. Let σ ∈ Σ. Then it holds that, for every i ∈ N, |Si| ≥ supp(σi).626

Theorem 7.2 implies that there is an LIS π : Ω → ∆(∆(Ω)n) which induces σ. For every627

i ∈ N, let Ti be a subset of Si with cardinality equal to |supp(σi)| and take a bijection628

ψi : supp(σi)→ Ti. Let the signal π′ : Ω→ ∆(S) be defined by629

π′(ψ(λ)|ω) = π(λ|ω), ω ∈ Ω, λ ∈ supp(σ).630
631

7Morris (2020) provides an alternative proof for the no trade result that also applies to a finite state
space.
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Then π ∼ π′, so by Proposition 6.7 we have that σπ
′
= σπ = σ. As the LIS π is direct, it632

follows that π′ ∈ Πd.633

Proof of Proposition 6.5. As P (σ) is a non-empty, compact, and convex polytope by634

Corollary 7.3 and Π` (σ) is a linear transformation of P (σ) by (8), Π` (σ) is a non-empty,635

compact, and convex polytope as well.636

In the next example, we use Theorem 7.2 to determine whether a given distribution over637

posterior belief profiles belongs to Σ.638

Example 7.4. Recall the distribution over posterior belief profiles σ in Example 7.1 with639

supp(σ) =
{
λ1, λ2, λ3, λ4

}
640

=
{(

(1
2
, 1

2
), (1

2
, 1

2
), (0, 1)

)
,
(
(1

2
, 1

2
), (0, 1), (1

2
, 1

2
)
)
,
(
(0, 1), (1

2
, 1

2
), (1

2
, 1

2
)
)
, ((0, 1), (0, 1), (0, 1))

}
.641642

Moreover, we have σ(λ1) = σ(λ2) = σ(λ3) = 1/6 and σ(λ4) = 1/2.643

Suppose σ ∈ Σ. Then, by Theorem 7.2 there exists p ∈ P (σ) such that644

p
(
X,λ1

)
+ p

(
X,λ2

)
= p

(
X,λ1

)
+ p

(
X,λ3

)
= p

(
X,λ2

)
+ p

(
X,λ3

)
=

1

6
645

p
(
X,λ1

)
+ p

(
X,λ4

)
= p

(
X,λ2

)
+ p

(
X,λ4

)
= p

(
X,λ3

)
+ p

(
X,λ4

)
= 0,646

647

where we make use of Condition (ii) for ω = X. From the first line we obtain p (X,λ1) =648

p (X,λ2) = p (X,λ3) = 1/12. Combining this with the second, we find p (X,λ4) = −1/12.649

Thus, p fails to be non-negative and σ /∈ Σ. 4650

Proposition 4.2 gives a necessary and sufficient condition for a finite set R ⊆ ∆ (Ω)n to651

be a subset of supp(σ) for some σ ∈ Σ. We will now provide a necessary and sufficient652

condition for the opposite inclusion, i.e., we characterize those sets R ⊆ ∆ (Ω)n such that653

there is some inducible σ ∈ Σ whose support is restricted to R. We also characterize654

those sets R such that R = supp(σ) for some σ ∈ Σ.655

Proposition 7.5. Let the non-empty and finite R ⊆ ∆(Ω)n be such that, for every i ∈ N,656

|Si| ≥ |Ri|. There exists σ ∈ Σ with supp(σ) ⊆ R if and only if there is p ∈ RΩ×R
+ such657

that658

(i)
∑

λ∈R p(ω, λ) = λ0(ω), ω ∈ Ω,
(ii)

∑
λ′∈R:λ′i=λi

p(ω, λ′) = λi(ω)
∑

ω′∈Ω

∑
λ′∈R:λ′i=λi

p(ω′, λ′), ω ∈ Ω, i ∈ N, λi ∈ Ri.
659

660

If such p exists, then the signal π : Ω→ ∆(R) defined by661

π (λ|ω) =
p(ω, λ)

λ0(ω)
, ω ∈ Ω, λ ∈ R, (11)662

663

is an LIS such that supp(σπ) ⊆ R. Moreover, if p is such that, for all λ ∈ R,
∑

ω∈Ω p (λ, ω) >664

0, then supp (σπ) = R.665
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Proof. Assume that there is p ∈ RΩ×R
+ such (i) and (ii) hold. Let π : Ω → ∆(R) be as666

defined in (11). We have that667 ∑
λ′∈R

π(λ′|ω)
(11)
=
∑
λ′∈R

p(ω, λ′)

λ0(ω)

(i)
=
λ0(ω)

λ0(ω)
= 1, ω ∈ Ω.668

669

Moreover, for every ω ∈ Ω, i ∈ N, and λi ∈ Sπi , it holds that670 ∑
λ′∈R:λ′i=λi

π(λ′|ω)λ0(ω)∑
ω′∈Ω

∑
λ′∈R:λ′i=λi

π(λ′|ω′)λ0(ω′)

(11)
=

∑
λ′∈R:λ′i=λi

p(ω, λ′)∑
ω′∈Ω

∑
λ′∈R:λ′i=λi

p(ω′, λ′)
671

(ii)
=

λi(ω)
∑

ω′∈Ω

∑
λ′∈R:λ′i=λi

p(ω′, λ′)∑
ω′∈Ω

∑
λ′∈R:λ′i=λi

p(ω′, λ′)
= λi(ω).672

673

Thus, π is an LIS and supp(σπ) = Sπ ⊆ R.674

In order to account for message sets Si that do not allow for language independent675

messages, note that, for all i ∈ N , |supp (σπi ) | ≤ |Ri| ≤ |Si|. For every i ∈ N let Ti be676

a subset of Si with |Ti| = |supp (σπi) | and take a bijection ψi : supp (σπi ) → Ti. Let the677

signal π′ : Ω→ ∆(S) be defined by678

π′(ψ(λ)|ω) = π(λ|ω), ω ∈ Ω, λ ∈ supp (σπ) .679
680

It holds that π ∼ π′, so by Proposition 6.7 we have that σπ
′

= σπ and supp(σπ
′
) =681

supp(σπ) ⊆ R.682

Now assume that σ ∈ Σ is such that supp(σ) ⊆ R. Then, by Theorem 7.2, there is an683

LIS π : Ω→ ∆(R) that induces σ. Let684

p (ω, λ) = π (λ|ω)λ0 (ω) , ω ∈ Ω, λ ∈ R. (12)685
686

By construction, Sπ = supp(σ) ⊆ R and p (ω, λ) = 0 for all λ ∈ R \ Sπ and all ω ∈ Ω.687

So, (i) is satisfied since688 ∑
λ′∈R

p(ω, λ′)
(12)
=
∑
λ′∈R

π(λ′|ω)λ0(ω) = λ0(ω)
∑
λ′∈Sπ

π(λ′|ω) = λ0(ω), ω ∈ Ω.689

690

Further, for every ω ∈ Ω, i ∈ N, and λi ∈ Ri, it holds that691 ∑
λ′∈R:λ′i=λi

p(ω, λ′)
(12)
=

∑
λ′∈R:λ′i=λi

π(λ′|ω)λ0(ω) = πi (λi|ω)λ0 (ω)692

(1)
= λi(ω)

∑
ω′∈Ω

πi(λi|ω′)λ0(ω′) = λi(ω)
∑
ω′∈Ω

∑
λ′∈R:λ′i=λi

π(λ′|ω′)λ0(ω′)693

(12)
= λi(ω)

∑
ω′∈Ω

∑
λ′∈R:λ′i=λi

p(ω′, λ′).694

695
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Hence, (ii) is satisfied.696

Lastly, let p be such that, for all λ ∈ R,
∑

ω∈Ω p (λ, ω) > 0. Then for each λ ∈ R,697

there is ω ∈ Ω such that π (λ|ω) > 0. Thus, supp (σπ) = Sπ = R.698

As π is defined by (11), (i) ensures that π (·|ω) ∈ ∆(Ω)n for all ω ∈ Ω and π is, hence, a699

signal. Condition (ii) ensures correct belief updating: as before, the left-hand side is the700

probability that i has belief λi and the true state is ω; the right-hand side is the product701

of the probability that the state is ω conditional on i’s having belief λi and the probability702

that i has belief λi.703

In our discussion of Proposition 6.7, stating that equivalent signals induce the same704

distribution, we announced that the converse need not be true. We can now easily provide705

the required counterexample.706

Example 7.6. Let N = {1, 2}, Ω = {X, Y }, λ0(X) = 1/3, and S = ∆(Ω)n. Consider the707

distribution σ defined by708

R(σπ) =
{
λ1, λ2, λ3, λ4

}
709

=
{

((1
2
, 1

2
), (1

2
, 1

2
)), ((1

2
, 1

2
), (1

4
, 3

4
)), ((1

4
, 3

4
), (1

2
, 1

2
)), ((1

4
, 3

4
), (1

4
, 3

4
))
}
,710

711

σ(λ1) = σ(λ2) = σ(λ3) = 1/6 and σ(λ4) = 1/2. One can easily verify that p, p′ ∈712

RΩ×supp(σ)
+ defined by713

p(ω, λ) λ1 λ2 λ3 λ4

X 1
12

1
12

1
12

1
12

Y 1
12

1
12

1
12

5
12

p′(ω, λ) λ1 λ2 λ3 λ4

X 1
6

0 0 1
6

Y 0 1
6

1
6

1
3

714

are both solutions to the system of equations in Theorem 7.2. We define π, π′ ∈ Π` by715

applying (8) to p and p′, respectively, that is,716

π(λ|ω) λ1 λ2 λ3 λ4

X 1
4

1
4

1
4

1
4

Y 1
8

1
8

1
8

5
8

π′(λ|ω) λ1 λ2 λ3 λ4

X 1
2

0 0 1
2

Y 0 1
4

1
4

1
2

717

Both π and π′ induce σ. Yet, as π 6= π′, Proposition 6.8 implies that π and π′ are not718

equivalent. 4719

8 The Information and Posterior Correspondences720

Our objective in this section is to provide a framework in which we can analyze what721

receivers know about each other’s messages, so that we can later answer the question of722

how a sender can make sure that receivers know “as little as possible”. We follow the723

23



standard approach as based on information correspondences, see for instance Osborne724

and Rubinstein (1994).725

Given a signal π ∈ Π, we refer to an element (ω, s) ∈ Ω × Sπ such that π(s|ω) > 0726

as a history and to an element (ω, λ) ∈ Ω× supp(σπ) such that there exists s ∈ Sπ with727

π(s|ω) > 0 and λs = λ as a posterior history. We denote the sets of histories and posterior728

histories, respectively, by729

Hπ = {(ω, s) ∈ Ω× Sπ| π(s|ω) > 0} ,730

Λπ = {(ω, λ) ∈ Ω×∆(Ω)n|∃s ∈ Sπ such that π(s|ω) > 0 and λs = λ} .731
732

Note that if π ∈ Π`, then Hπ = Λπ.733

Example 8.1. Recall π and π′ from Example 7.6. The sets of possible histories are:734

Hπ =
{(
X,λ1

)
,
(
X,λ2

)
,
(
X,λ3

)
,
(
X,λ4

)
,
(
Y, λ1

)
,
(
Y, λ2

)
,
(
Y, λ3

)
,
(
Y, λ4

)}
735

Hπ′
=
{(
X,λ1

)
,
(
X,λ4

)
,
(
Y, λ2

)
,
(
Y, λ3

)
,
(
Y, λ4

)}
.736

737

As both signals are language independent, we have Λπ = Hπ and Λπ′
= Hπ′

. 4738

We next introduce the standard notion of an information correspondence.739

Definition 8.2. Let π ∈ Π. The information correspondence P π
i : Hπ ⇒ Hπ of i ∈ N is740

defined as741

P π
i (ω, s) = {(ω′, s′) ∈ Hπ| s′i = si} , (ω, s) ∈ Hπ.742

743

That is, P π
i (ω, s) is the set of histories receiver i considers possible when the true history is744

(ω, s). As we call P π
i an information correspondence, it seems appropriate to briefly show745

that this name is deserved, i.e., consistent with the common definition of an information746

correspondence.747

Lemma 8.3. Let π ∈ Π and i ∈ N. The information correspondence P π
i satisfies the748

following two conditions:749

C1 For all (ω, s) ∈ Hπ, (ω, s) ∈ P π
i (ω, s).750

C2 If (ω′, s′) ∈ P π
i (ω, s), then P π

i (ω′, s′) = P π
i (ω, s).751

Proof. Let (ω, s) ∈ Hπ. Suppose (ω, s) /∈ P π
i (ω, s). Then, si 6= si, a contradiction. Thus,752

C1 is satisfied.753

Next, let (ω′, s′) ∈ P π
i (ω, s) and (ω′′, s′′) ∈ P π

i (ω′, s′). Then, s′′i = s′i = si, so (ω′′, s′′) ∈754

P π
i (ω, s), and consequently, P π

i (ω′, s′) ⊆ P π
i (ω, s). Since s′i = si, it holds that (ω, s) ∈755

P π
i (ω′, s′) as well, and the same arguments imply P π

i (ω, s) ⊆ P π
i (ω′, s′). So, C2 is satisfied.756

757
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Information correspondences have the property that they partition sets of histories into758

information sets. In our case we can use P π
i to define a partition of the set Hπ as759

Pπi = {P π
i (ω, s)| (ω, s) ∈ Hπ} .760

761

This partition reflects i’s knowledge about the true history: whenever the true history is762

(ω, s), i knows that the true history lies in P π
i (ω, s).763

Example 8.4. Recall π in Example 5.2. The information correspondence partitions the764

set of histories as follows:765

P π
1 (X, (v, x)) = P π

1 (Y, (v, y)) = {(X, (v, x)), (Y, (v, y))} ,766

P π
1 (X, (w,w)) = P π

1 (Y, (w,w)) = {(X, (w,w)), (Y, (w,w))} ,767

768

P π
2 (X, (v, x)) = {(X, (v, x)} ,769

P π
2 (Y, (v, y)) = {(Y, (v, y))} ,770

P π
2 (X, (w,w)) = P π

2 (Y, (w,w)) = {(X, (w,w)), (Y, (w,w))} .771
772

Now consider π′ in Example 5.4. The information correspondence partitions the set773

of histories as follows:774

P π′

1 (X, (w, x)) = P π′

1 (Y, (w, y)) = P π′

1 (X, (w,w)) = P π′

1 (Y, (w,w))775

= {(X, (w, x)), (Y, (w, y)), (X, (w,w)), (Y, (w,w))} ,776

777

P π′

2 (X, (w, x)) = {(X, (w, x)} ,778

P π′

2 (Y, (w, y)) = {(Y, (w, y))} ,779

P π′

2 (X, (w,w)) = P π′

2 (Y, (w,w)) = {(X, (w,w)), (Y, (w,w))} .780
781

It is easy to verify that both C1 and C2 are satisfied. In particular, the information782

partitions of Pπi and, respectively, Pπ′
i are given by783

Pπ1 = {{(X, (v, x)), (Y, (v, y))} , {(X, (w,w)), (Y, (w,w))}} ,784

Pπ2 = {{(X, (v, x))} , {(Y, (v, y))} , {(X, (w,w)), (Y, (w,w))}} ,785

786

Pπ′

1 = {{(X, (w, x)), (Y, (w, y)), (X, (w,w)), (Y, (w,w))}} ,787

Pπ′

2 = {{(X, (w, x))} , {(Y, (w, y))} , {(X, (w,w)), (Y, (w,w))}} .788
789

4790

Even though π and π′ in Example 8.4 induce the same distribution, it is not possible791

to compare their information partitions since they employ different messages and thus792

have distinct sets of histories. Still, we can compare such signals via the sets of possible793

posterior histories of receivers.794
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Definition 8.5. Let π ∈ Π. The posterior correspondence Qπ
i : Hπ ⇒ Λπ of i ∈ N is795

defined as796

Qπ
i (ω, s) = {(ω′, λs′) ∈ Λπ| (ω′, s′) ∈ P π

i (ω, s)}, (ω, s) ∈ Hπ.797
798

The set Qπ
i (ω, s) contains all posterior histories i deems possible if the true history is799

(ω, s).800

Example 8.6. Recall the information correspondences in Example 8.4. The posterior801

correspondences related to π are as follows.802

Qπ
1 (X, (v, x)) = Qπ

1 (Y, (v, y)) =
{(
X,
(

1
2
, 1
))
,
(
Y,
(

1
2
, 0
))}

,803

Qπ
1 (X, (w,w)) = Qπ

1 (Y, (w,w)) =
{(
X,
(

1
2
, 1

2

))
,
(
Y,
(

1
2
, 1

2

))}
,804

805

Qπ
2 (X, (v, x)) =

{(
X,
(

1
2
, 1
))}

,806

Qπ
2 (Y, (v, y)) =

{(
Y,
(

1
2
, 0
))}

,807

Qπ
2 (X, (w,w)) = Qπ

2 (Y, (w,w)) =
{(
X,
(

1
2
, 1

2

))
,
(
Y,
(

1
2
, 1

2

))}
.808

809

The posterior correspondences related to π′ are as follows.810

Qπ′

1 (X, (w, x)) = Qπ′

1 (Y, (w, y)) = Qπ′

1 (X, (w,w)) = Qπ′

1 (Y, (w,w))811

=
{(
X,
(

1
2
, 1
))
,
(
Y,
(

1
2
, 0
))
,
(
X,
(

1
2
, 1

2

))
,
(
Y,
(

1
2
, 1

2

))}
,812

813

Qπ′

2 (X, (w, x)) =
{(
X,
(

1
2
, 1
))}

,814

Qπ′

2 (Y, (w, y)) =
{(
Y,
(

1
2
, 0
))}

,815

Qπ′

2 (X, (w,w)) = Qπ′

2 (Y, (w,w)) =
{(
X,
(

1
2
, 1

2

))
,
(
Y,
(

1
2
, 1

2

))}
.816

817

One can easily see that there is a bijection between the set of histories and the set of818

posterior histories for both π and π′. 4819

For π ∈ Π and i ∈ N, define Qπi = {Qπ
i (ω, s)| (ω, s) ∈ Hπ}. Note that in Example 8.6820

both Qπi and Qπ′
i are partitions for any i ∈ N. However, this is not always true.821

Example 8.7. Let N = {1, 2}, Ω = {X, Y }, and λ0(X) = 1/3. Let signal π ∈ Π be given822

as follows:823

π (x, x) (x, y) (y, x) (y, y) (a, a) (a, b) (b, a) (b, b)
X 1

6
0 0 1

6
1
6

1
6

1
6

1
6

Y 0 1
12

1
12

1
6

1
12

1
12

1
12

5
12

824
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For the posterior correspondence we find825

Qπ
1 (X, (x, x)) =

{(
X,
(

1
2
, 1

2

))
,
(
Y,
(

1
2
, 1

4

))}
,826

Qπ
1 (X, (a, a)) =

{(
X,
(

1
2
, 1

2

))
,
(
X,
(

1
2
, 1

4

))
,
(
Y,
(

1
2
, 1

2

))
,
(
Y,
(

1
2
, 1

4

))}
.827

828

Since Qπ
1 (X, (x, x)) 6= Qπ

1 (X, (a, a)) and (X, (1/2, 1/2)) ∈ Qπ
1 (X, (x, x)) ∩ Qπ

1 (X, (a, a)),829

Qπ1 is not a partition. 4830

The reason why Qπ
1 in Example 8.7 is not a partition is that message profiles (x, x) and831

(a, a) lead to the same posterior belief profile, yet (x, x) realizes only in state X whereas832

(a, a) realizes in both states. This situation, of course, can happen only as long as the833

signal is not minimal. Thus, π ∈ Πm is sufficient for Qπi to be a partition for all i ∈ N .834

In order to prove this we define, for π ∈ Π, the function φ : Hπ → Λπ by835

φ(ω, s) = (ω, λs), (ω, s) ∈ Hπ. (13)836
837

Proposition 8.8. Let π ∈ Πm. Then φ is a bijection and, for every (ω, s), (ω′, s′) ∈ Hπ
838

and every i ∈ N , it holds that (ω, s) ∈ P π
i (ω′, s′) if and only if φ(ω, s) ∈ Qπ

i (ω′, s′). In839

particular, Qπi is a partition.840

Proof. First note that since π ∈ Πm, for any (ω, s), (ω′, s′) ∈ Hπ with s 6= s′, it holds that841

(ω, λs) 6=
(
ω′, λs

′)
. That is, no two distinct histories are mapped to the same posterior842

history. Thus, φ is a bijection.843

Let (ω, s), (ω′, s′) ∈ Hπ and i ∈ N. If (ω, s) ∈ P π
i (ω′, s′), then φ (ω, s) = (ω, λs) ∈844

Qπ
i (ω′, s′) by the definition of Qπ

i (ω′, s′). If (ω, λs) = φ(ω, s) ∈ Qπ
i (ω′, s′), then (ω, s) ∈845

P π
i (ω′, s′). Therefore, (ω, s) ∈ P π

i (ω′, s′) if and only if φ(ω, s) ∈ Qπ
i (ω′, s′).846

Suppose Qπ
i (ω, s) ∩ Qπ

i (ω′, s′) 6= ∅. It follows that P π
i (ω, s) ∩ P π

i (ω′, s′) 6= ∅, so847

P π
i (ω, s) = P π

i (ω′, s′). Therefore, Qπ
i (ω, s) = φ (P π

i (ω, s)) = φ (P π
i (ω′, s′)) = Qπ

i (ω′, s′) ,848

so Qπi is a partition.849

The converse of Proposition 8.8 is not true. That is, even if the map φ in (13) is a bijection850

with the required properties, it is still possible that π is not minimal.851

Example 8.9. Let N = {1, 2}, Ω = {X, Y }, and λ0(X) = 1/3. Let the signal π ∈ Π be852

defined by853

π (a, a) (b, b) (a, c) (c, a) (b, d) (d, b) (e, e)
X 1

6
0 0 0 1

4
1
6

5
12

Y 0 1
4

1
6

1
4

0 0 1
3

854

Then, for receiver 1 we have λ
(a,a)
1 (X) = λ

(b,b)
1 (X) = 1/3, λ

(c,a)
1 (X) = 0, λ

(d,b)
1 (X) = 1,855

and λ
(e,e)
1 (X) = 5/13. For receiver 2 we have λ

(a,a)
2 (X) = λ

(b,b)
2 (X) = 1/4, λ

(a,c)
2 (X) = 0,856

λ
(b,d)
2 (X) = 1, and λ

(e,e)
2 (X) = 5/13. Note that message profiles (a, a) and (b, b) lead to857
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π Pπi

π` Pπ`i = Qπi = Qπ`i

Figure 1 Commuting Diagram for π ∈ Πd, see Corollary 8.10.

the same posterior belief profile, (1/3, 1/4). Thus, π is not minimal. For the support of858

the induced distribution σ we find859

supp(σ) =
{(

1
3
, 1

4

)
,
(

1
3
, 0
)
,
(
0, 1

4

)
,
(

1
3
, 1
)
,
(
1, 1

4

)
,
(

5
13
, 5

13

)}
.860

861

The sets Pπ1 andQπ1 defined by the information and posterior correspondences of receiver 1862

are as follows:863

Pπ1 = {{(X, (a, a)), (Y, (a, c))} , {(Y, (c, a))} , {(X, (b, d)), (Y, (b, b))} , {(X, (d, b))} ,864

{(X, (e, e)), (Y, (e, e))}} ,865

Qπ1 =
{{(

X,
(

1
3
, 1

4

))
,
(
Y,
(

1
3
, 0
))}

,
{(
Y,
(
0, 1

4

))}
,
{(
X,
(

1
3
, 1
))
,
(
Y,
(

1
3
, 1

4

))}
,
{(
X,
(
1, 1

4

))}
,866 {(

X,
(

5
13
, 5

13

))
,
(
Y,
(

5
13
, 5

13

))}}
.867868

Similar calculations can be made for receiver 2. It is easily checked that not only are Qπ1869

and Qπ2 partitions, but φ is a bijection as well. The reason Qπ1 and Qπ2 are partitions,870

even though π /∈ Πm, is that the message profiles which lead to the same posterior, (a, a)871

and (b, b), never realize in the same state. 4872

Observe that if π ∈ Π`, then φ is the identity. Hence, the proposition implies that the873

partitions Pπi and Qπi are identical. For all π ∈ Πd, let π` ∈ Π` be defined as in (7), i.e.,874

π` denotes the LIS obtained by replacing the messages of π by the posteriors they lead875

to. Then the posterior history partition of π is equal to the history partition of π`. Thus,876

we have the following corollary which is depicted in the diagram in Figure 1.877

Corollary 8.10. Let π ∈ Πd and π` ∈ Π` be defined as in (7). Then, for all i ∈ N ,878

Qπi = Qπ`i = Pπ`i .879

9 Informativeness of Signals880

Example 8.6 derives the posterior correspondences of the receivers under π and π′ from881

Examples 5.2 and 5.4. Observe that receiver 1 has more precise information about re-882

ceiver 2’s knowledge of the true state under π: while he only observes w under π′ and,883
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thus, never learns what message receiver 2 has observed, under π upon observing v he884

knows that receiver 2 knows the true state. In this sense π is “more informative”: a885

notion that depends on the posterior correspondence and which we will make more for-886

mal soon. Beforehand, we make the brief observation that the posterior correspondence887

itself is invariant under equivalence or, put differently, that the posterior correspondence888

is language independent.889

Lemma 9.1. Let π, π′ ∈ Π with π ∼ π′. Then, for every i ∈ N, Qπi = Qπ′
i .890

Proof. Since π ∼ π′, for every i ∈ N there is a bijection ψi : Sπi → Sπ
′

i such that, for891

every ω ∈ Ω, for every s ∈ Sπ, π′(ψ(s)|ω) = π(s|ω).892

Let (ω, s) ∈ Hπ and i ∈ N.893

We have that (ω′, s′) ∈ P π
i (ω, s) if and only if (ω′, s′) ∈ Hπ and s′i = si if and only if894

(ω′, ψ(s′)) ∈ Hπ′
and ψi(s

′
i) = ψi(si) if and only if (ω′, ψ(s′)) ∈ P π′

i (ω, ψ(s)).895

Let (ω′, λ′) ∈ Qπ′
i (ω, ψ (s)). Then, by the definition of Qπ′

i , there is (ω′, ψ (s′)) ∈896

P π′
i (ω, ψ (s)) with λ′

ψ(s′)
= λ′. As shown in the previous paragraph, this implies (ω′, s′) ∈897

P π
i (ω, s). Since by construction λs

′
= λ′

ψ(s′)
= λ′, it follows that (ω′, λ′) ∈ Qπ (ω, s) and898

therefore Qπ′
i (ω, ψ (s)) ⊆ Qπ

i (ω, s).899

Since ∼ is reflexive, we also have that Qπ
i (ω, s) ⊆ Qπ′

i (ω, ψ (s)) .900

We argued in Example 8.6 that the signal π is “more informative” for receiver 1 than901

signal π′. We now give a precise definition of being more informative.902

Definition 9.2. Let σ ∈ Σ and π, π′ ∈ Π(σ). The signal π′ is at least as informative as903

π if for all i ∈ N it holds that904

(i) for all Q′ ∈ Qπ′
i there exists Q ∈ Qπi such that Q′ ⊆ Q,905

(ii) for all Q ∈ Qπi , Q′ ∈ Qπ
′
i with Q ∩Q′ 6= ∅ it holds that Q′ ⊆ Q.906

Moreover, π and π′ are equally informative if π is at least as informative as π′ and vice907

versa; π′ is more informative than π if π′ is at least as informative as π and not equally908

informative.909

Our notion of informativeness depends only on the posterior correspondences that are910

induced by a signal, which are similar to the elements of information partitions in the911

seminal work of Aumann (1976). To conclude that a signal is more informative, however,912

Definition 9.2 does not require Qπi and Qπ′
i to be partitions: condition (ii) ensures that913

we are able to compare them even if they are not. When they are partitions, which is the914

case if π, π′ ∈ Πm by Proposition 8.8, then Definition 9.2 reduces to condition (i).915

It is easily verified that the notion of being at least as informative is transitive. Our916

second observation serves as a sanity check: two signals should be equally informative if917

and only if they induce the same posterior history. And this is true.918
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Lemma 9.3. Let σ ∈ Σ and π, π′ ∈ Π(σ). Then π and π′ are equally informative if and919

only if Qπi = Qπ′
i .920

Proof. Clearly, if Qπi = Qπ′
i then π and π′ are equally informative. For the other direction,921

assume that π and π′ are equally informative. As π′ is as informative as π, for all Q′ ∈ Qπ′
i922

there is Q ∈ Qπi such that Q′ ⊆ Q. As Q′ ∩ Q 6= ∅ and as π is as informative as π′, it923

must hold that Q ⊆ Q′, i.e., Q′ = Q. Thus, Qπ′
i ⊆ Qπi . Using the same arguments one924

finds Qπi ⊆ Qπ
′
i .925

Two further observations on informativeness are worth mentioning here. First, if π′ is926

at least as informative as π, then Λπ′ ⊆ Λπ. Second, and an immediate consequence927

of Lemmas 9.1 and 9.3, equivalent signals are equally informative. This is in line with928

our interpretation of equivalent signals as using different languages: if the same messages929

were conveyed in different languages, one would not expect them to become more or less930

informative.931

Example 9.4. Recall the signals π and π′ from Examples 5.2 and 5.4. The posterior932

history correspondences of π and π′ were derived in Example 8.6. Note that Λπ = Λπ′
933

and that π, π′ ∈ Πm. Thus, Proposition 8.8 implies that, for every i ∈ N , Qπi and Qπ′
i are934

partitions of the same set. More precisely, they are given as935

Qπ1 =
{{(

X,
(

1
2
, 1
))
,
(
Y,
(

1
2
, 0
))}

,
{(
X,
(

1
2
, 1

2

))
,
(
Y,
(

1
2
, 1

2

))}}
,936

Qπ2 =
{{(

X,
(

1
2
, 1
))}

,
{(
Y,
(

1
2
, 0
))}

,
{(
X,
(

1
2
, 1

2

))
,
(
Y,
(

1
2
, 1

2

))}}
,937

938

Qπ′

1 =
{{(

X,
(

1
2
, 1
))
,
(
Y,
(

1
2
, 0
))
,
(
X,
(

1
2
, 1

2

))
,
(
Y,
(

1
2
, 1

2

))}}
,939

Qπ′

2 =
{{(

X,
(

1
2
, 1
))}

,
{(
Y,
(

1
2
, 0
))}

,
{(
X,
(

1
2
, 1

2

))
,
(
Y,
(

1
2
, 1

2

))}}
.940

941

It holds that Qπ1 is a finer partition than Qπ′
1 and that Qπ2 = Qπ′

2 . Thus, π is more942

informative than π′. 4943

Note that we do not require Qπi and Qπ′
i to be partitions in order to compare π and π′.944

Nevertheless, if they are partitions, then π′ is more informative than π if the restriction945

of Qπi to Λπ′
is coarser than Qπ′

i .946

Proposition 9.5. Let σ ∈ Σ, π, π′ ∈ Π(σ), and Λπ′ ⊆ Λπ. If π ∈ Πd, then π′ is at least947

as informative as π.948

Proof. By Corollary 8.10 and Lemma 9.1 we can assume without loss of generality that949

π ∈ Π`, so that Qπi = Pπi for all i ∈ N .950

Let i ∈ N . Assume Q ∈ Qπi and Q′ ∈ Qπ′
i are such that Q ∩ Q′ 6= ∅. We first951

show Condition (ii) of Definition 9.2, i.e., Q′ ⊆ Q. Let (ω∗, λ∗) ∈ Q ∩ Q′. There is952

(ω, λ) ∈ Hπ such that Q = Qπ
i (ω, λ) = P π

i (ω, λ). Thus, by Lemma 8.3, we have that953
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Q = P π
i (ω∗, λ∗) . Consider

(
ω̄, λ̄

)
∈ Q′. There is (ω′, s′) ∈ Hπ′

such that Q′ = Qπ′
i (ω′, s′)954

and there is (ω′′, s′′) ∈ P π′
i (ω′, s′) with λ′

s′′
= λ̄. In particular, since s′′i = s′i, we have955

λ̄i = λ′
s′′

i = λ′
s′

i = λ∗i . Since Λπ′ ⊆ Λπ, we have
(
ω̄, λ̄

)
∈ Λπ, and since λ̄i = λ∗i , we have956 (

ω̄, λ̄
)
∈ P π

i (ω∗, λ∗) = Q. We have shown that Q′ ⊆ Q.957

In order to prove Condition (i) of Definition 9.2 it is now sufficient to show that for958

each Q′ ∈ Qπ′
i there is Q ∈ Qπi with Q ∩ Q′ 6= ∅. Let (ω′, s′) ∈ Hπ′

be such that959

Q′ = Qπ′
i (ω′, s′) . It holds that (ω′, λ′

s′
) ∈ Q′ ⊆ Λπ′ ⊆ Λπ. Thus, there is Q ∈ Qπi with960

(ω′, λ′
s′

) ∈ Q.961

Proposition 9.5 reveals that among those signals that induce the same distribution over962

posterior belief profiles, those that are direct and have the largest number of posterior963

histories are the least informative. We can interpret the condition Λπ′ ⊆ Λπ as π′ pro-964

viding additional information about what posterior histories are impossible. It is worth965

mentioning that this condition together with the directness of π implies that Qπ′
i contains966

at least the same number of elements as Qπi and that these elements are smaller in the967

sense of set inclusion.968

Consider π, π′ ∈ Πd that satisfy the conditions of Proposition 9.5. In this case Λπ′ ( Λπ
969

would prevent π from being at least as informative as π′. Thus the following corollary is970

immediate.971

Corollary 9.6. Let σ ∈ Σ and π, π′ ∈ Πd(σ). If Λπ′
= Λπ, then π and π′ are equally972

informative. If Λπ′ ( Λπ, then π′ is more informative than π.973

In Corollary 6.10 a signal is transformed into an LIS that induces the same distribution974

over posterior vectors. Although they are not equivalent if π is not direct, they have the975

same set of posterior histories as the next lemma shows.976

Lemma 9.7. Let ∆(Ω)n ⊆ S and π ∈ Π. For π` as defined in (7) it holds that Λπ` = Λπ.977

Proof. Observe that (ω, λ) ∈ Λπ if and only if there is s ∈ Sπ such that λ = λs and978

π (s|ω) > 0. This, however, is equivalent to π` (λ|ω) =
∑

s∈Sπ :λs=λ π (s|ω) > 0, which979

holds if and only if (ω, λ) ∈ Hπ` = Λπ` .980

Proposition 9.5 and Lemma 9.7 immediately imply the following result.981

Corollary 9.8. Let ∆(Ω)n ⊆ S, π ∈ Π, and π` ∈ Π` as defined in (7). Then π is at least982

as informative as π`.983

Corollary 9.8 suggests that using language independent signals reveals as little information984

as possible. The following example demonstrates that this is, in general, not true.985
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Example 9.9. Recall π and π′ from Example 7.6. Both signals are language independent986

and, hence, direct. However, as shown in Example 8.1, Λπ′
= Hπ′ ( Hπ = Λπ. Thus,987

by Proposition 9.5, π′ is more informative than π. Observe that it is not relevant that988

π is an LIS: when translating each message sent under π in two different languages and989

sending both with equal probability, we obtain a signal that is not even minimal, but990

equally informative as π. 4991

Our final result identifies those signals that are least informative. Let σ ∈ Σ and recall992

that the set P (σ) is convex. The relative interior of P (σ) is defined as993

relint (P (σ)) = {p ∈ P (σ)| ∀p′ ∈ P (σ), ∃α > 1, αp+ (1− α)p′ ∈ P (σ)} .994
995

Proposition 9.10. Let ∆(Ω)n ⊆ S, σ ∈ Σ, and π ∈ Π(σ). For every p ∈ P (σ), define996

the signal πp ∈ Π` by997

πp (λ|ω) =
p(ω, λ)

λ0(ω)
, ω ∈ Ω, λ ∈ supp(σ).998

999

If p ∈ relint (P(σ)) , then π is at least as informative as πp.1000

Proof. First observe that for every p ∈ relint (P(σ)) it holds that p (ω, λ) > 0 whenever1001

there is p′ ∈ P (σ) with p′ (ω, λ) > 0. Thus, for any such p, p′ it holds that1002

Λπp
′

= {(ω, λ) ∈ Ω× supp(σ)|p′(ω, λ) > 0} ⊆ {(ω, λ) ∈ Ω× supp(σ)|p(ω, λ) > 0} = Λπp
1003
1004

So, by Corollary 9.6, it holds that πp
′

is at least as informative as πp.1005

Let π` ∈ Π` be as defined in (7) and define p′ ∈ P (σ) by1006

p′(ω, λ) = λ0(ω)π`(λ|ω), ω ∈ Ω, λ ∈ supp(σ).1007
1008

Then π` = πp
′
. Thus, as seen before, π` is at least as informative as πp. Moreover, by1009

Corollary 9.8, π is at least as information as π`. Hence, π is at least as informative as1010

πp.1011

In other words, given a distribution σ ∈ Σ, if p is in the relative interior of P (σ), then1012

πp is a least informative signal. The proof consists of two steps. First, π is at least1013

as informative as the signal π` that relates to π as described in (7). It follows from1014

Corollary 9.6 that for any p′ ∈ P (σ), πp
′

is at least as informative as πp, so in particular1015

π` is at least as informative as πp.1016

Recall signals π and π′ from Example 7.6. We concluded in Example 9.9 that π′ is1017

more informative than π. The result also follows from Proposition 9.10 since it implies1018

that π is a least informative signal as we have p ∈ relint(P(σ)).1019
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10 Conclusion1020

This paper considers an information design framework with multiple receivers and inves-1021

tigates (i) the inducible distributions of posterior belief profiles and (ii) informativeness1022

of signals. The sender can restrict attention to particular classes of signals without loss1023

of generality. In particular, any distribution over posterior belief profiles can be induced1024

by a language independent signal. Moreover, any direct signal can be transformed into1025

an equivalent LIS.1026

Extending Kamenica and Gentzkow (2011) by assuming multiple receivers and private1027

communication imposes further constraints on inducible distributions over posterior belief1028

profiles, so that Bayes plausibility is no longer a sufficient condition. We formulate the1029

additional conditions in the form of a linear system of equations that needs to have a1030

non-negative solution. These conditions, together with Bayes plausibility, are necessary1031

and sufficient.1032

We define informativeness in terms of knowledge about the true posterior history.1033

For every signal there is language independent signal that is not more informative. Any1034

element in the relative interior of the set of all language independent signals which induce1035

a particular distribution belongs to the set of least informative signals.1036
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