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Abstract

How do experts respond to computerized recommendation systems? We study
the workers’ compensation insurance program covering 40% of the Chilean
population, where physicians decide whether a medical visit is work-related
and therefore is fully covered by the law. We quantify effects of a comput-
erized recommendation system on physicians’ coverage decisions. Leverag-
ing the staggered introduction of the system, we find that the alert improves
physicians’ decisions as measured by the extent to which coverage decision
is reversed by a second-stage panel of expert reviewers. Decisions improved
mostly by lowering coverage rates by 11% (4pp). A model of physician decision-
making with learning and idiosyncratic preferences coupled with an analysis of
physicians’ heterogeneous responses show that the system alert had an effect
both through information provision and by changing preferences. Our results
help to understand the extent to which, and how, experts process system rec-
ommendations, which is key to assess both the desirability of providing recom-
mendations and their optimal design.

*This paper uses confidential data from the Asociación Chilena de Seguridad (ACHS), which
were handed to the authors as part of a collaborative agreement. We owe special thanks to ACHS’s
Data Analytics team for numerous conversations. We also thank Hannah Trachtman and conference
participants in LACEA-LAMES 2021 for helpful feedback. The data used in this paper was given
to the researchers fully anonymized as part of their agreement with ACHS. González-Cabello was a
full time employee at ACHS until 2021.

1



1 Introduction

Judges, bankers, teachers, physicians, and other experts make decisions that have
important consequences on other people’s lives. Indeed, a petition for asylum, a
loan, a grade of a large-stakes exam, or a life-threatening diagnosis can have large
long-run consequences. However, those experts are potentially subject to behavioral
biases or performance deficiencies like everybody else. In fact, recent papers have
shown that personal biases and seemingly unrelated environmental or social events,
such as warm weather, high pollution levels, or—egregiously—the outcome of a
sports game, may cause large losses of future income and utility.1

The rise in recent years of information systems and machine learning has the
potential to make experts’ decisions more accurate and limit the effect of biases
(Ganju et al., 2020). However, either due to the inherent limitations of prediction
algorithms—which are based on historical and partial information—or due to eth-
ical concerns, most of these systems do not make decisions on their own. Instead,
the systems rely on algorithms that provide a recommendation, which the decision-
maker may or may not follow (Dietvorst et al., 2018; Kawaguchi, 2021). Still, little is
known about how expert decision-makers respond to data-driven recommendation
systems. This knowledge is especially important in contexts where the decisions are
of high stakes. Thus, understanding the extent to which, and how, experts process
recommendations is key to assessing the overall desirability of providing recom-
mendations in the first place, as well as their optimal design (Rayo and Segal, 2010;
Kamenica and Gentzkow, 2011).

In this paper, we ask how experts react to computerized recommendations. Our
empirical setting consists of physicians that make coverage decisions for occupa-
tional accidents insurance. We use data from one insurer that provides coverage and
treatment of work-related accidents and injuries to roughly 2.6 million workers—

1Ingroup biases are present in judges and courts (e.g., Shayo and Zussman, 2011; Kuran and
Lustig, 2012), teachers (Hanna and Linden, 2012; Lavy et al., 2018), and sport referees (Price and
Wolfers, 2010; Parsons et al., 2011) Also, there is a broad literature on non-directly relevant factors
that affect decision-makers. For example, judges make decisions less favorable for the defendant
in warmer days (Heyes and Saberian, 2019), more favorable on the defendant’s birthday, and give
lengthier sentences on weeks where there was an unexpected football game loss of the main state
team (Eren and Mocan, 2018). Judges, loan application reviewers, and major league baseball um-
pires, are influenced by past decisions (Chen et al., 2016). There is also growing evidence on people’s
worse performance during heavily polluted days (see Huang et al., 2020; Ebenstein et al., 2016 for ev-
idence of investors and students, respectively). Norris (2019) show low levels of agreement between
pairs of judges in refugee appeals.
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around 40% of all salaried employees—in 82 clinics in Chile. Coverage is decided
by primary care physicians in these clinics that, when receiving a patient, have to de-
cide whether to classify the accident as work-related or not. A work-related accident
is eligible for generous coverage: The patients get full monetary compensation of the
lost workdays (compared to coverage starting on day four for regular healthcare
coverage), as well as treatment and rehabilitation in the insurer’s network, which is
strongly preferred by workers relative to the public health-care system.

In particular, we study the effects of a data-driven recommendation system for
physicians’ coverage decisions, which provided doctors with coverage information
based on historical data. The recommendation system was implemented as an alert
in the physician’s computer system—a pop-up message—that appeared just after
the physician typed in a diagnosis with low historical coverage rates. Key for our
econometric analysis, the alert messages were first implemented in a random subset
of clinics before being rolled out to the whole clinic network.

Our main empirical analysis studies the alert’s effect on physicians’ behavior
leveraging the alert staggered rollout. The analysis uses a difference-in-differences
strategy that compares outcomes before and during the pilot in clinics that partic-
ipated in the pilot with those that did not (i.e., treated and untreated clinics) with
heterogeneous effect by alert diagnosis (comparing diagnoses that received the pop-
up message with those that did not) while conditioning on a rich set of controls. Our
results show that the alert message reduced coverage in the alert diagnoses by 11%
(3.9 percentage points). This effect comes mainly from diagnoses with intermediate
coverage levels, where there should be more uncertainty regarding the coverage de-
cision. In addition, while the policy could have affected coverage of other diagnoses,
we find that there were no statistically significant spillover effects. The results also
show some persistent differences between treated and untreated clinics more than a
month after the end of the pilot. Moreover, there is no evidence for statistically dif-
ferent trends between treated and untreated clinics, which lends credibility to our
empirical design.

A common hurdle in evaluating empirically the performance of experts in their
decisions is the absence of an observable measure of the true outcome. A distinc-
tive feature of our setting is that, after the physician makes the coverage decision,
the case is reviewed by a small committee of experienced physicians and assistants
in each clinic that may potentially overturn the physician’s decision. We find that
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the alerts reduced the overturning decisions of the committee by 63% (2 percentage
points). This finding shows that the alerts were effective in achieving the manage-
ment’s objectives and improving the quality of decisions 2.

In the last part of the paper, we leverage physicians’ heterogeneity to shed light
on the mechanisms by which the alert affects coverage decisions. Following the per-
suasion literature (DellaVigna and Gentzkow, 2010) we aim to understand whether
the alert persuaded physicians about coverage decisions through an information
provision channel or through preferences. We motivate this exercise with a model
of physician decision-making with learning and physician idiosyncratic preferences.
Our empirical test of the model consists of studying the heterogeneous effects of the
alert by physician experience and by physician coverage preferences on both physi-
cian coverage and on correction probability. We find evidence for both mechanisms
at play.

Contribution

This paper contributes to a growing strand of the literature that examines the effects
of information technology (IT) adoption in the context of health care. Among oth-
ers, Athey and Stern (2002) evaluates the effect of IT adoption in emergency calls
systems on patients outcomes; Agha (2014) and McCullough et al. (2016) estimate
the impact of health information technology adoption on patients’ outcomes; Ep-
stein and Ketcham (2014) studies the impact of IT on physicians’ prescribing deci-
sions; and Bundorf et al. (2019) analyzes the effect of AI recommendation system
on health insurance choice (Medicare Part D).3 We focus on automatized informa-
tion provision to physicians. Close to our paper, McNamara (2021) finds that the
implementation of an alert that reminds physicians that a patient is likely to need
colorectal cancer testing is effective to improve screening tests. Our contribution
relative to McNamara’s is that we are able to examine how physicians responded
relative to the impartial committee’s assessment, and that we examine the mecha-
nisms by which physicians responded to the alert. Other recent work, such as Ribers

2While the committee knew that the pilot was implemented, the committee did not know which
case was receiving the alert and which was not. The fact that we find decreases in correction only for
alert diagnoses indicates that it is driven by an improvement in physician’s coverage decision and
not by a change in overall correction for the committee

3Also, a broad set of papers study the effects of adoption of electronic medical records (Parente
and McCullough, 2009; McCullough et al., 2010; Miller and Tucker, 2011) or clinical decision support
systems (Ganju et al., 2020) on patients’ outcomes, hospital quality, and discrimination.
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and Ullrich (2019, 2020); Hastings et al. (2020), shows with simulations that machine
learning recommendations could improve upon physicians’ decisions. In contrast,
our paper studies the implementation of such recommendation systems in a real
setting, which is something those papers suggest doing.4

Some recent studies analyze the potential role of data-driven methods in assist-
ing decision-making. Dietvorst et al. (2015, 2018) show in the lab that the take up
of recommendations is higher if decision-makers can modify the algorithms them-
selves. Kawaguchi (2021) analyzes the implementation of a new recommendation
system and examines the conditions under which retail workers are more likely to
adopt algorithmic recommendations. We study the adoption of an algorithmic rec-
ommendation on physicians in a setting which has large stakes for patients.

This paper also contributes to a vast work of empirical papers that analyze the
effects of communication. This work, related to theoretical literature that is con-
cerned about the design of information provision (e.g., Kamenica and Gentzkow
2011), seeks to quantify the effects of communication on behavior and to understand
the mechanisms through which it operates (Gentzkow and Shapiro, 2006; DellaVi-
gna and Kaplan, 2007; Martin and Yurukoglu, 2017; Dubois and Tunçel, 2021). Our
quasi-experimental setting allows us to examine the mechanism through which the
message acted. We distinguish between information- and preference-based mod-
els (DellaVigna and Gentzkow, 2010). This approach is related to Ackerberg (2001),
which performs a similar exercise in advertising.

2 Institutions

Since 1968 Chilean law requires all companies to provide insurance for work-related
accidents. Such workers’ compensation insurance is provided either by a public
insurer or by non-profit private organizations (mutualidades) the largest of which
is ACHS (”Asociación Chilena de Seguridad”), our partner organization. Private
organizations cover close to 80 percent of the workforce of the country, and ACHS

4We study the implementation of a binary algorithmic recommendation as opposed to giving the
decision-maker the probability calculated by the algorithm. Binary or discrete recommendations are
quite common and are used in media platforms (Hallinan and Striphas, 2016), in recent implementa-
tions of food labels (Araya et al., 2019; Alé-Chilet and Moshary, 2020), and in quality certification of
restaurants (Dai et al., 2018), and health insurance plans (McCarthy and Darden, 2017).
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covers half of them, i.e., more than 2.6 million workers.5

Workers’ compensation insurance includes full coverage of medical expenses of
work-related accidents and illnesses, including physical and occupational therapy,
and the full salary for the period when the worker is on medical leave. Work-related
accidents covered by worker’s compensation insurance include accidents that relate
to their job duties or employment, occupational illnesses that are directly caused by
work-related activities, and accidents that happen while commuting from and to the
workplace. Workers can also get a pension for permanent disability due to work-
related accidents, depending on how severe the disability is. Also, workers tend to
prefer treatment in the mutualidades than treatment in regular public insurer clinics.6

Coverage eligibility depends mainly on the primary care physician, who assesses
whether the medical event fits in the categories defined by the law. In particular,
eligibility depends on how the accident happened, the employee’s previous health
conditions, and the type of work that the employee does.

A feature of ACHS is that after physicians make their coverage decisions a com-
mittee reviews the cases and may decide to overturn the physicians’ decision. This
committee is composed of the clinic’s head physician, the administrative manager,
and an assistant. The committee meets daily and reviews the decisions of the previ-
ous day. The committee receives a list of the cases ordered by an algorithm, and it
reviews the cases until the time allocated for reviewing ends. The committee’s de-
cisions are binding so that the coverage decision process ends with the committee’s
assessment.

2.1 The alert experiment

The coverage decision is not a medical decision. Therefore, especially new and
young primary care physicians are inexperienced in coverage eligibility.7 To aid

5The public insurer is the ”Instituto de Seguridad Laboral” (ISL). The other mutualidades are: Mu-
tual de Seguridad C.Ch.C. and Instituto de Seguridad del Trabajo (IST). The default option for new
companies and for independent workers is the public insurer. In practice, most small and medium
companies never change insurer. For more details and statistics about the system, see the Appendix
and https://www.suseso.cl/608/w3-propertyvalue-59606.html [October 30th, 2021]. Also, less
than 1% of companies self insure.

667% of workers were very satisfied with the service provided by the mutualidades (“Satisfación
Mutualidades Segmento Trabajadores.´´ GFK Adimark, January 30, 2016. https://www.suseso.cl/
607/articles-496723_archivo_01.pdf Accessed on-line February 15, 2022.)

7ACHS has a physician churn rate of over 50% per year because many physicians leave ACHS to
do their medical specializations.
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physicians in their coverage decisions, ACHS introduced a message in the form of
a pop-up in the physicians’ computer interface that appeared at the moment when
the physician entered selected diagnoses codes. The message appeared whenever
the diagnosis entered had a large historical probability of not being work-related.
That probability was calculated using a boosting gradient algorithm that used data
of coverage from 2018 to June 2019. The alert message read: “According to histori-
cal decisions of physicians in ACHS, the chosen diagnosis has a high probability of
being ineligible for coverage.” The Appendix shows a computer screenshot of the
alert.

Importantly, ACHS tested the message performance with a staggered introduc-
tion. In a first stage, that began on November 8, 2019, ACHS implemented the alert
in 25 of the 82 clinics of the network and was then rolled out to all of them on Febru-
ary 17, 2020. The choice of the clinics that participated in the first rollout (that we
refer to herein as treated clinics) was random.8

3 Data

We use administrative data on the universe of admissions of ACHS health care
providers from January 2018 to September 2020. Most of our analyses use data
until February 17, 2020, the date on which the experiment ended.9 During our
sample period, the monthly number of admissions laid between 11,000 and 15,000.
Each admission record includes ACHS’s internal diagnosis code (2,473 unique codes
groups) from which we obtain International Classification of Diseases (ICD-10) codes.
The records also include the physician and the review committee coverage decision,
patient characteristics (gender and age), clinic identifiers, and physician identifiers
and demographics (gender, age, tenure at ACHS). After dropping 134 physicians
who worked in both treatment and control clinics during the experiment period,
our sample includes 690 physicians with around 45 visits per month.10

8According to ACHS the randomization “tried to balance observed characteristics such as the
number of physicians and patients in each of the groups.” We see this as stratification. We do not
find divergent trends between treated and untreated clinics in either alert and non-alert diagnoses as
we explain in Section 5

9Due to the COVID-19 pandemic we mostly do not use data for the post-experiment period. The
pandemic had a large effect on the scope and composition of work-related accidents. The first COVID
case in Chile was reported on March 3, 2020.

10We drop those physicians to reduce the possibility of contamination between treated and not
treated clinics. More precisely, we keep physicians that saw at least 95% of their patients in either
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Table 1 presents a description of cases admitted in ACHS by patients and physi-
cians characteristics for treated and control clinics, and for and non-alert diagnoses.
Panel (A) presents cases by patient characteristics and Panel (B) shows cases by
physician characteristics. The table shows that cases admitted in our sample have
similar patient characteristics in terms of gender and age between treated and con-
trol clinics, and between alert and non-alert diagnoses. On the other hand, we see
that overall physicians’ gender, age, and tenure, are similar between control and
treated clinics, and alert and non-alert diagnosis, but present slight differences in
terms of nationality between control and treated clinics. In our empirical strategy,
we use physicians’ fix effect, correcting by each physician general level of coverage.

Table 1: Summary statistics

All Clinic Diagnosis Control Treated

Control Treated No alert Alert + Alert + Alert

(1) (2) (3) (4) (5) (6) (7)

A. Patient characteristics

Female (%) 38.0 37.1 39.4 35.8 40.1 39.3 41.3
Age 40.4 40.3 40.4∗ 39.7 40.9∗ 40.7 41.3∗

Observations 66,496 37,509 28,987 31,624 34,872 20,748 14,124

B. Physician characteristics

Female (%) 28.0 29.3 25.5∗ 28.1 27.8 30.3 24.8∗

Age 33.9 33.9 33.9 33.9 33.9 33.8 34.1
Tenure 17.3 19.0 17.0∗ 17.4 17.4 18.8 16.8∗

Observations 261 146 115 143 118 66 52

Note: Summary statistics based on our main sample. The table shows patient and physi-
cian demographics across clinics and alert groups. Control clinics correspond to clinics
where the alert was implemented. Alert diagnoses correspond to diagnoses for which the
alert was shown within the treated clinics. Statistical differences between even and odd
columns in odd columns using starting in column (3). *** p<0.01, **p<0.05, * p<0.1.

As mentioned above, the recommendation alert was implemented at treated clin-
ics and for a selected group of diagnoses with low historical coverage rates. Figure
1 shows the distribution of physician coverage decisions in our sample for alert and
non-alert diagnoses for average coverage rates lower than 99%. Panel (a) presents

treated or nontreated clinics.
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the diagnoses distribution and Panel (b) the visit distribution. The figure shows that
indeed alert diagnoses tend to have low coverage rates during the pre-pilot period.
Correspondingly, non-alert diagnoses tend to have larger physician coverage rates.

We focus our analysis on diagnoses for which there is an overlap between alert
and non-alert diagnoses as measured by their historical coverage probability be-
cause the alert is more likely to affect the decision on these diagnoses. Thus, we
keep diagnoses whose historical coverage probabilities are within 5 and 90%. Fig-
ure 1 shows such overlap: The vertical line shows the overlap region.

Table 2 compares the coverage decision according to patient and physician char-
acteristics before the alert experiment. Around 33% of admitted cases in the base-
line database were given coverage by ACHS physicians. Coverage was similar over
patients’ gender and slightly higher for younger patients, but the difference is not
significant at 10%. On the other hand, near 2.5% of the cases that received cover-
age by the physician in the first instance were reversed by the committee secondary
revision. This correction was similar for different patients’ characteristics. In ad-
dition, the table shows that younger physicians give a 1–2 percentage point lower
coverage on average than older ones, although the clinic committee’s correction is
larger than the former group only for physicians between 30 and 50 years old. Prob-
ably related with the age, physicians with lower tenure shows 2 percentage point
lower coverage, while the correction from the committee for both groups is similar.
Finally, there is no (or very small) difference in coverage and correction over physi-
cians’ gender, but a large difference in coverage by nationality. National physicians
give on average around 35% coverage in the sample, while foreigners, 29%. Never-
theless, we don’t see a relevant difference in the level of correction that both groups
receive.
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Figure 1: Physician Coverage Rates by Alert Inclusion
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Note: The figure shows the distribution of pre-treatment average coverage rates.
An observation in panel (a) is a diagnosis code and in panel (b) is a visit. For vi-
sual purposes, the figure includes diagnosis codes with more than 20 visits, and
it does not include 129,634 visits (out of 216,171) for which the average coverage
decision is equal or higher than 0.99. The vertical lines show the overlap region
between alert and non-alert diagnoses.
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Table 2: Summary statistics - Coverage

Patient characteristics Physician characteristics
Coverage Correction Obs. Coverage Correction Obs.

All 33.3 2.5 66.496 33.3 2.5 66.496
Women 33.0 2.8 25.286 33.4 2.7 22.851
Men 33.4∗ 2.4∗ 41.210 33.2 2.4∗ 43.645
<30 years 33.1 2.5 15.952 31.5 2.4 66.496
30 to 50 years 33.5 2.5 33.014 34.2∗ 2.8∗ 12.418
≥50 years 32.9 2.5 17.530 35.8∗ 2.1 33.397
Tenure < 2 years - - - 32.2 2.5 945
Tenure ≥2 years - - - 34.2 ∗ 2.5∗ 32.097
National - - - 35.2 2.6 34.399
Foreign - - - 29.1 ∗ 2.3∗ 45.488

Note: Summary statistics based on our main sample. Each observation is one visit. Statistical differ-
ence with respect to base group (women, <30 years, Tenure < 2 years, and National, respectively).
*** p<0.01, **p<0.05, * p<0.1.

Finally, Figure 2 presents the final coverage decision—after the committee correction—
plotted against the average physician coverage rate for each diagnosis code. Each
circle in the plot is a diagnosis code, where its size is the number of the admitted
cases for each diagnosis. The figure includes a local quadratic fit (dashed line). For
comparison, the figure also shows a 45-degree (solid) line. The figure shows that
the clinics’ revision committee generally revised the initial decision given by physi-
cians from coverage to no coverage. Also, decision reversals happen with a larger
probability for diagnoses codes with larger physician coverage rates.

4 Empirical Strategy

Our goal is to understand how the alert message changed physicians’ coverage de-
cisions. In particular, the alert may have had a direct effect of the alert on coverage
decisions, but it may also have had potential spillovers to non-alert diagnoses if
physicians infer that the absence of an alert is a message in itself. To that aim, we ex-
ploit the rollout of the alert experiment over time and over clinics and examine the
alert effect on both alert and non-alert diagnoses. Hence, our main empirical speci-
fication corresponds to a difference-in-differences (DiD) model with heterogeneous
effects on alert and non-alert diagnoses. The model allows for such heterogeneous
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Figure 2: Correction of Physicians Coverage Decision
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Note: The figure plots the final coverage rate against the initial coverage rate, a
45-degree line, and a quadratic local fit. An observation in the plot is a diagnosis
code weighted by the number of visits. The figure includes only pre-pilot visits.

effects by including interaction terms between treated group and treatment period,
with indicators of alert and non-alert diagnoses.

Formally, let Yijct denote the coverage decision of physician j for visit i at clinic c
in week t. The main specification is as follows:

Yijct =β Treatedc × Postt × Alerti + γ Treatedc × Postt+

νXi + δt + µi + f j + εijct,
(1)

where Treated is a dummy variable that indicates whether the clinic was part of the
experiment, Alert indicates whether the visit was part of the alert experiment, Post
is a dummy that indicates the experiment period, X is a vector of patient-visit char-
acteristics (a quadratic polynomial of age, gender, and employer’s 1-digit Standard
Industrial Classification, SIC), µ are diagnosis-group fixed effects, δ are month×year
and day-of-the-week fixed effects, f are physician fixed effects, and ε is a random
shock.11 The parameters of interest are β, the effect of the message on alert diag-
noses, and γ, the effect on non-alert diagnoses.

11The physician fixed effects absorb almost all the variation across clinics.
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The main identification assumption is the parallel trends assumption of difference-
in-differences models. The assumption is that there are no differential trends be-
tween treated and non-treated clinics for both alert and non-alert diagnoses in the
absence of the experiment.We check for divergent trends before the intervention be-
tween treated and non-treated clinics for alert and non-alert diagnoses using the
following dynamic model:

Yijct =
T

∑
τ=1

βτTreatedc × 1{τ=t} × Alerti +
T

∑
τ=1

γτTreatedc × 1{τ=t}+

νXi + δt + µi + f j + εijct

(2)

We do not reject parallel trends if the βτ and the γτ coefficients are zero for the
pre-intervention periods.

5 Results

5.1 Main Specification

This subsection presents the results of the treatment effects on physicians’ decisions.
All specifications in the paper cluster standard errors at the clinic level because clin-
ics were the unit of treatment (Abadie et al., 2017). Also, all specifications include
month×year and day-of-the-week fixed effects, patient characteristics (a quadratic
polynomial on patient age, patient’s gender), physician (or clinic) and 1-digit SIC
fixed effects.

Table 3 presents the results of the main model. Columns (1) use the sample of all
cases, and Columns (2)–(5) use the main sample that excludes the diagnoses with
extreme average coverage rates. Also, the columns present different specifications
with different fixed effects and patient demographics. The results indicate a sig-
nificant effect of -2.8% of the alert message (-3.9% + 1.1%): Physicians reduced the
coverage they provided by 8 percentage points, from 35% to 32.2% as a result of the
alert. The effect mainly comes from the main sample where there is overlap between
alert and non-alert diagnoses. Also, we do not see any spillover effect on non-alert
diagnoses.
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Table 3: Treatment Effects on Physician Coverage Decision

(1) (2) (3) (4) (5)

Treated * Post * Alert -0.020 -0.037** -0.038** -0.039** -0.039**
(0.013) (0.018) (0.018) (0.018) (0.018)

Treated * Post -0.000 0.006 0.007 0.012 0.011
(0.005) (0.019) (0.019) (0.019) (0.019)

Patient X
Time F.E. Post Post Month Month Month
Clinic F.E. X X X
Physician F.E. X X

N 263043 64296 64296 64294 64294
No. Clusters 82 80 80 80 80
Mean Dep. Var. 0.82 0.35 0.35 0.35 0.35
R-Squared 0.63 0.22 0.22 0.24 0.24
Sample All Main Main Main Main

Note: The table shows the results of the DiD model. All specifications include diag-
nosis group, month×year, and day-of-the-week fixed effects; and patient characteristics
(quadratic polynomial on patient’s age, and patient’s gender and employer’s 1-digit SIC
fixed effect). Standard errors clustered at the clinic level * p<0.10, ** p<0.05, *** p<0.01

5.2 Dynamic Effects

Figure 3 shows the point estimates and the 95% confidence intervals of the triple-
difference coefficients of Equation (2) for every month. The figure shows no signif-
icant effects before the beginning of the alert experiment, which indicates no differ-
ences between alert and non-alert diagnoses before the messaging experiment, and
thus no differential pre-trends. Also, there is a significant negative effect starting in
December 2019, two weeks after the beginning of the experiment. Finally, the figure
shows some persistent differential effects on treated clinics (between alert and non-
alert diagnoses) one month after the experiment ended, which disappeared when
the COVID pandemic began to unfold.
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Figure 3: Dynamic Effects on Physician Coverage
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Note: The figure shows the point estimates and the 95% confidence intervals of
the estimation of the dynamic DiD models (Equation 2) for the main sample. The
regressions include diagnosis group, month×year, and day-of-the-week fixed
effects; and patient characteristics (quadratic polynomial on patient’s age, and
patient’s gender, and employer’s 1-digit SIC fixed effect). Standard errors are
clustered at the clinic level. The grey area indicates the experiment period.

5.3 Placebo Checks

This subsection presents various placebo checks of our empirical strategy. Table 4
shows the results. Columns (1) and (2) change the definition of the pilot period to
July 8, 2019, to November 8, 2019 (Column 1); and April 8, 2019, to July 17, 2019
(Column 2), while dropping the pilot period from the sample. Column (3) defines
treated clinics randomly so that the share of visits in both real and fake treated clinics
is similar (46%). Specifications in Columns (4) and (5) choose the alert diagnoses are
chosen randomly as those that were treated. The model in Column (4) uses roughly
the same number of unique alert diagnoses as in the intervention (289), and Column
(5) uses roughly the same number of visits with the alert diagnoses (16 thousand).
None of the estimated coefficients is significant in the placebo models.
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Table 4: Placebo Checks

Timing Clinic Diagnoses

(1) (2) (3) (4) (5)

Treated * Post * Alert 0.008 -0.015 0.006 0.000 -0.006
(0.018) (0.014) (0.014) (0.007) (0.005)

Treated * Post -0.002 -0.003 0.004 0.000 0.002
(0.004) (0.003) (0.004) (0.006) (0.005)

N 220406 220406 263043 263043 263043
No. Clusters 82 82 82 82 82
R-Squared 0.63 0.63 0.63 0.61 0.61

Note: The table shows the results of the triple differences specification of placebo checks. All spec-
ifications include diagnosis group, time, patient characteristics, and physician fixed effects; and
month×year and day-of-the-week fixed effects. Columns (1) and (2) do not include the interven-
tion period. Standard errors clustered at the clinic level * p<0.10, ** p<0.05, *** p<0.01

6 The Effect of the Alert System on Decision Quality

The previous section showed that the alert system changed physicians’ behavior to-
wards granting less coverage when the alert appeared. However, to evaluate the
desirability of the alert system we are ultimately interested in whether the alert sys-
tem improved the quality of doctor’s decisions.

Typically, evaluating whether the decision of a decision-maker was either right
or wrong is challenging, as the “truth” is unknown to the researcher. We can get a
more approximate measure of the true outcome exploiting the fact that the physi-
cian’s decision is reviewed by an experts’ committee review. Using the data on the
outcome of the committee review, we can evaluate whether the alert system im-
proved the quality of the physician’s decision by assessing the effect of the alert on
whether the physician’s decision was reversed upon review.

Formally, we define Ỹijct to be an indicator variable for coverage by the expert
panel. We estimate a similar specification to that of equation (1), where the de-
pendent variable is Dijct = (Ỹijct 6= Yijct) where Yijct is an indicator variable for
physician coverage. That is, Dit indicates cases when the physician’s decision was
overturned in the secondary inspection. More specifically, we assess whether the
alert message changed the accuracy of the coverage decision, as measured by the
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instances in which the expert panel corrects a coverage decision and deems the case
as not eligible for coverage.12

Table 5 reports the results. We find that the probability of correction of physi-
cians’ coverage for alert diagnoses decreases as a consequence of the implementa-
tion of the alert message. The results are large: the alert reduces secondary inspec-
tion corrections by 30 percentage points (1.9 - 0.9% from a baseline of 3%).

Table 5: Correction Probability

(1) (2) (3) (4) (5)

Treated * Post * Alert -0.016*** -0.019*** -0.019*** -0.019*** -0.019***
(0.005) (0.006) (0.006) (0.006) (0.006)

Treated * Post 0.005 0.008 0.008 0.009 0.009
(0.004) (0.006) (0.006) (0.006) (0.006)

Patient X
Time F.E. Post Post Month Month Month
Clinic F.E. X X X
Physician F.E. X X

N 263043 64296 64296 64294 64294
No. Clusters 82 80 80 80 80
Mean Dep. Var. 0.04 0.03 0.03 0.03 0.03
R-Squared 0.02 0.02 0.02 0.02 0.03
Sample All Contested Contested Contested Contested

Note: The table shows the results of the diff-in-diffs and the triple differences specifica-
tion. All specifications include diagnosis group, month×year, and day-of-the-week fixed
effects; and patient characteristics (quadratic polynomial on patient’s age, and patient’s
gender and employer’s 1-digit SIC fixed effect). Standard errors clustered at the clinic
level * p<0.10, ** p<0.05, *** p<0.01

As we did in Section 5, we also show a dynamic specification for the correction
probability in a secondary inspection. We present the results in Figure 4. We observe
no difference in the coverage of alert diagnoses between treatment and control clin-
ics before the intervention. After the alert implementation, we see a decrease in the
correction probability of the coverage of alert diagnoses in treated clinics compared

12In our sample the committee overturns mainly positive coverage decisions. Cases where non-
coverage decisions by physicians are overturned by the expert panel are extremely rare (only 0.3%
of visits).
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to control ones.

Figure 4: Correction Probability
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Note: The figure shows the point estimates and the 95% confidence intervals
of the estimation of the dynamic DiD models (Equation (2)) for the full sample
when the dependent variable is the probability of a occurrence of a secondary
correction. The regressions include diagnosis group, month×year, and day-of-
the-week fixed effects; and patient characteristics (quadratic polynomial on pa-
tient’s age, and patient’s gender and employer’s 1-digit SIC fixed effect). Stan-
dard errors are clustered at the clinic level. The grey area indicates the interven-
tion period.

7 Why Did the Alert Affect Physicians’ Decisions?

In this section, we discuss the potential mechanisms behind the change in physi-
cian behavior induced by the alert system. Following DellaVigna and Gentzkow
(2010) we distinguish between an information-based and a preference-based model
to explain doctors’ responses to the message. Under an information-based model,
physicians derive utility from deciding correctly so that the physician only changes
behavior if the message is informative, that is, if the message changes the physi-
cian’s assessment on whether the case is indeed eligible for coverage or not.13 Al-
ternatively, under a preference-based model, compliance with the message enters

13Physicians’ utility function captures altruism towards the insurer and potential future rewards
stemming from compensation, reputation, career benefits, etc.
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directly into the physician’s utility function, as in Stigler and Becker (1977) or Becker
and Murphy (1993). In this case, a message may change a physician’s behavior even
if it does not convey useful information.

7.1 Theoretical model

Formally, we consider instances where the physician does not know with certainty
whether the case merits coverage or not. The true state of case i is a latent discrete
unobserved variable Yit that is drawn from a Bernoulli distribution, with the proba-
bility of being a work-related accident equal to pi.

The utility that physician j gets from granting coverage to case i in period t (rela-
tive to not covering the case, which we normalize to 0), depends on the physician’s
expectation about pi; the physician’s own preferences, which we capture through a
physician-specific parameter that increases the utility of coverage by λj; and an id-
iosyncratic shock νijt. The parameter λj accounts for everything that makes a given
physician more prone to provide coverage than others, such as altruism towards the
patient (for example, the doctor wants to provide coverage to make patients happy),
or other factors that could include different perceptions regarding monetary and
non-monetary costs of deviating from the truth.

We therefore write the utility of providing coverage (relative to not coverage) as

Uijt = E[pi|Ωijt(s)] + λj(s) + νijt.

The term Ωijt(s) is the information that physician i has about case i in period t. That
information depends on the number of cases the physician has seen in the insurer’s
clinics and on any feedback that she had received on decisions made in the past.
The term Ωijt(s) also includes the signal coming from the alert message s.

Consider a physician who has seen Nit cases prior to case i. Among those, the
physician has provided coverage to Ci and rejected Ri cases. Covered cases are split
into “successful” Cs

i and “unsuccessful” Cu
i cases, such that Ci = Cu

i +Cs
i . A success-

ful covered case is one such that the doctor did not receive any negative feedback
regarding the coverage decision, whereas an unsuccessful covered case is such that
the doctor did receive such negative feedback.14 Similarly, we split rejected cases as

14We interpret this feedback in a general way, that is, this feedback may include feedback from
the expert panel but also any other means in which the physician may become aware of a mistaken
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Ri = Ru
i + Rs

i . Let the prior distribution of p be beta distributed with parameters
a0 and b0, so that the mean of expected coverage (without information) is equal to
µ0 = a0

a0+b0
. Then, the mean of the posterior distribution after seeing Nj cases is

µi =
a0 + Cs

i + Ru
i

a0 + b0 + Ni

Note that as Ni increases, the prior becomes less important and µi approximates
Cs

i +Ri
u

Ni
, which is the average rate of cases that merit coverage.

Consider now the information given in the intervention. The alert message pro-
vides information about the coverage of historical cases, which includes a large sam-
ple of cases. Let the total number of cases across physicians be NT, of which, as be-
fore, Cs

T have been successfully covered and Ru
T have been unsuccessfully rejected.

We denote Cs
−i the number of successfully covered cases by physicians other than

i such that Cs
T = Cs

i + Cs
−i and Ru

−i the number of unsuccessfully rejected cases by
physicians other than i such that Ru

T = Ru
i + Ru

−i. The mean of the posterior distri-
bution after incorporating the information of past decisions from ACHS physicians
is equal to

µ′j =
a0 + Cs

i + Ru
i + Cs

−i + Ru
−i

a0 + b0 + Ni + N−i
.

Then, the effect of the message on the mean of the posterior distribution is the dif-
ference of the posterior with and without the message, µ′i − µi, which is equal to

µ′i − µi =
Cs
−i + Ru

−i
a0 + b0 + Ni + N−i

− N−i

a0 + b0 + Ni + N−i
×

a0 + Cs
i + Ru

i
a0 + b0 + Ni

.

Consider first a case where N−i � Ni, which can be the case of a diagnose that is
very common and a physician that has low experience in the insurer. In this case, the
alert, that provides information about a very large number of cases relative to the
physician’s cases, will add relevant information to the physician. In that scenario,
the first part of the second term in the expression above is close to 1, and then we
have

µ′i − µi|N′i�Ni
' µi −

( Rs
−i + Cu

−i
a0 + b0 + Ni + N−i

−
a0 + Cs

i + Ru
i

a0 + b0 + Ni

)
.

decision.
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Intuitively, when N′i � Ni, the alert corrects the mean of the posterior distri-
bution by the difference between the physicians’ believe pre-alert and the historical
level of coverage of ACHS’ physicians. That is, if the physician has low level of in-
formation, the alert will correct her beliefs of level of coverage towards the historical
coverage of the insurer.

Conversely, consider the case when N−i ' 0, that is, the alert provides informa-
tion about a very small number of cases. This could be the case of a diagnose that
is not common, so the physician know that the historical coverage consider a few
number of cases and doesn’t give her accurate information about the real level of
coverage. Then, µ′i − µi|N′i'0 ' 0.

The expression above formalizes that, overall, the signal should have a lower
effect on the posteriors when the doctor is more experienced.

In addition to the effect through new information, the model allows for the sig-
nal to change the physician’s preferences for coverage even if it does not change
the posterior of p. This could happen if, for instance, physicians have a preference
for complying with the message or if the message changes their assessment of the
potential cost of deviating from the true state. Formally, we could think of the sig-
nal as a cost of providing more coverage than a given threshold. Thus, the average
coverage from physician j is

ȳj = E[E[pi|Ωijt(s)] + vijt] + λj(s).

If cases are randomly allocated to doctors with different preferences, we can write

ȳj = µ + λj(s), (3)

with µ ≡ E[E[pi|Ωijt(s)] + vijt] is the average rate of cases that merit coverage in the
population.

Consider a message that generates a cost to physicians with ȳj > K. From equa-
tion (3) it is easy to see that physicians with a higher λ, those who tended to give
more coverage, will react more to the message. The message in the case will lower
the level of λ, so that the fix term in the utility for giving coverage will be lower after
receiving the message than before.

How to distinguish empirically whether the message affected behavior through
information or through preferences? On the one hand, an informative message
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should affect more physicians that are less informed ex-ante (e.g., less experienced
physicians because they have a weaker prior.) On the other hand, a message un-
der a preference-based model should change physicians’ behavior even when the
message conveys no information or even when physicians have a strong prior. In
particular, under a preference-based model, it is likely that the message affects more
those doctors with an ex-ante higher taste for coverage.

7.2 Empirical tests

We test the predictions of the model by looking at the heterogeneous effects of the
message along two dimensions: ex-ante information and ex-ante coverage prefer-
ences. To this aim, first, we proxy for the degree of physicians’ ex-ante information
with their tenure with the insurer (as measured by years since the start of her con-
tract, log visits, and log visits in each diagnosis). Note that the message depends on
historical coverage rates for each diagnosis, so the extent to which the information
was already available to the physicians should naturally vary with the physician’s
experience.

Second, we proxy for physicians’ coverage preferences with physician-specific
coverage propensities. We estimate those propensities as the physician fixed effects
in the estimation of the following regression:

Yijct = νXi + δt + µd(i) + f j + εijct, (4)

where, as in Section 4, Yijct is the coverage decision of physician j for visit i at clinic
c in week t, Xi is a vector of patient/visit characteristics (a quadratic polynomial of
age, gender, and employer’s 1-digit Standard Industrial Classification, SIC), µd(i) are
diagnosis-group fixed effects, δt are month×year and day-of-the-week fixed effects,
fi are physician fixed effects, and εijct is a random shock. The estimating sample
includes the pre-intervention period and physicians with more than 30 visits only.15

Table 6 presents evidence in favor of the preference-based mechanism and against
the information-based mechanism. The table shows the effect of the intervention on
alert diagnoses interacted with demeaned physicians’ characteristics. Columns (1)–
(3) present the test of the information-based mechanism. The columns show the

15Figure A2 in the Appendix shows the estimated fixed effects and a binned scatter plot of those
fixed effects against physician tenure.
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Table 6: Heterogeneous effects by Physician Characteristics on Physician Coverage

(1) (2) (3) (4) (5)

Treated * Post 0.013 0.013 0.010 0.012 0.013
(0.019) (0.019) (0.019) (0.018) (0.018)

Treated * Post * Alert -0.040** -0.019 -0.043** -0.030 -0.029
(0.018) (0.022) (0.019) (0.019) (0.019)

Treated * Post * Alert * Tenure -0.016*** -0.012**
(0.005) (0.006)

Treated * Post * Alert * ln(Visits) -0.033**
(0.016)

Treated * Post * Alert * ln(Visits-Diag) -0.009
(0.010)

Treated * Post * Alert * Coverage -0.042*** -0.039***
(0.009) (0.008)

N 62315 62315 62315 62245 62245
No. Clusters 79 79 79
R-Squared 0.24 0.24 0.24 0.24 0.24

Note: The table shows the results main specification where the DiD coefficients are interacted with
physician characteristics. The variable Coverage represents physician coverage propensity calculated
as described in the text. The sample includes only physicians with more than 30 visits in the pre-
intervention period. All specifications include diagnosis group, time, patient characteristics, and
physician fixed effects; and month×year and day-of-the-week fixed effects. Bootstrapped standard
errors in Columns (4) and (5). Standard errors clustered at the clinic level * p<0.10, ** p<0.05, ***
p<0.01

results of interaction effects with physicians’ tenure at ACHS (measured by years
working for ACHS, number of visits, and number of visits by diagnosis, respec-
tively). Contrary to what would be implied by the information-based mechanism,
we find that doctors who reacted the most are those with higher experience.

Column (4) shows the test of the preference-based mechanism. The column
presents results that include the interaction of the intervention on alert diagnoses
with the physician coverage propensity. The interaction with physician propensity
is significant, which indicates that physicians who had a higher reduction in cover-
age with the alert message were those who had a larger propensity to give coverage
in the baseline period. Column (5) shows that these results are robust to including
both an interaction with tenure.
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8 Conclusions

This paper examines the effect of an alert recommendation system implemented in
a large network of clinics that delivers health care for work-related accidents. The
alert provides information to primary-care physicians, who have to decide whether
the case is work-related and coverage-eligible or not. We find a reduction in the level
of coverage given by primary care physicians for the alert diagnoses. The effect
comes mainly from diagnoses with intermediate historical coverage levels, where
there should be more uncertainty regarding the coverage decision. Importantly,
we also find that the alert lowered correction rates of physicians’ decisions by the
clinic’s management. We interpret our results in light of the persuasion literature
and find evidence for a preference/persuasive effect in play.

One issue we were not able to address in the paper is the optimal alert design
(as in, e.g., Vatter, 2021). For example, the alert was binary in the sense it provided
physicians with coverage/no coverage information. In principle, a better design
could tell physicians the exact probability of coverage by their peers, although this
may produce information overload. We leave these issues for future work.
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Appendix

A1 Additional Institutional Details

Firms’ premiums are risk-rated at the firm level, starting with a flat fee of 0.93 per-
cent of the payroll plus an additional 0-6.8 percentage points based on the risk level
and the accident history of each company.

Workers’ compensation insurance covers medical expenses, and provides a sub-
sidy that replaces the worker salary during the time the worker is not able to work,
a compensation if the employees ability to work is reduced by 15 to 40 percent
16, a pension benefit for those who reduced their ability to work by 40 percent or
more, that covers the worker’s average remuneration until the retirement age, and
a survival pension to the wife and children of the worker or pensioned in case of
death1718. On top of financial coverage, these institutions have the obligation to
work in prevention measures to help them reduce accident rates and improve work-
place safety.19

A1.1 Accidents Committee

In order to ensure the consistency of the coverage decision among doctors there
is an accident management meeting (Reunión de gestión de Accidentados - RGA).
The RGA is a meeting that takes place at 12:00 am everyday, in every clinic of the
network. The goal of the RGA is to review all the cases from the previews day and
validate the coverage decision. Three roles take part in the meeting, with various
responsibilities:

• Chief doctor: reviews the event description of the patient and compares what
was said to the admission executive when the patient first arrived and to the

16The compensation is given for one time and is equivalent to 1.5 to 15 times the worker salary
17The pension for the widow is 42 percent of the regular salary if she or he does not have children

with the employee, and 35 percent if she or he is the mother or father of the employee’s children. The
mother or father of non-marital filiation receives between 21 and 25,2 percent of the death worker’s
salary (30 to 36 percent of the pension). Each children receives 14 percent of the regular salary (20
percent of the pension)

18For more information about monetary benefits: https://www.suseso.cl/613/w3-propertyvalue-
63795.html [April 18th, 2021]

19Paradoxically, this puts direct pressure on the mutuals earning potential, reducing income as
they are successful reducing accident rates.
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doctor (to identify if there are inconsistencies). Additionally the chief doctor
analyzes the clinical information of the patient and reevaluates the coverage
decision made by the doctor ”tratante”

• ”Jefe de Gestión Comercial y Servicios Preventivos - JGCySP”: makes sure that
the event (siniestro) belongs to that clinic and identifies anomalies related to
the accident (e.g. the patient indicates that he was moving a 100kg box and
the JGCySP identifies that there are boxes of that size/weight in the workers
company). When these inconsistencies are identified the committee requests
a report to the workplace safety consultant/expert, that goes to the company
site and validates the event description provided by the patient. This report is
used to define the final coverage status of the accident

• ”Rol Calificador”: The person responsible for defining administrative cover-
age based on what has been discussed in the RGA. In order to revoke cover-
age because of administrative issues it is mandatory that the ”Rol Calificador”
provides the report done by the workplace safety consultant. Because of this
requirement the change in coverage for administrative reasons is done by the
”Rol Calificador” after the RGA

A2 Alert Screenshot

Figure A1 shows the physician’s computer interface and the pop-up alert.
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Figure A1: Alert Screenshot
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A3 Additional Tables and Figures

Table A1: Correction Probability. Heterogeneous effects by Physician
Characteristics

(1) (2) (3) (4) (5)

Treated * Post 0.011* 0.012** 0.011* 0.012* 0.012*
0.006 0.006 0.006 0.007 0.007

Treated * Post * Alert -0.020*** -0.016** -0.022*** -0.017*** -0.017***
0.006 0.007 0.006 0.006 0.006

Treated * Post * Alert * Tenure -0.003* -0.002
0.001 0.003

Treated * Post * Alert * ln(Visits) -0.006
0.004

Treated * Post * Alert * ln(Visits-Diag) -0.007**
0.003

Treated * Post * Alert * Generosity -0.013*** -0.013***
0.002 0.003

Treated * Post * Alert * Generosity * Tenure 0.001
0.001

N 62315 62315 62315 62245 62245
No. Clusters 79 79 79 79 79
79
R-Squared 0.03 0.03 0.03 0.03 0.03

Note: The table shows the results main specification where the DiD coefficients are interacted with
physician characteristics. Contested sample. Only physicians with more than 30 visits in pre-period.
All specifications include diagnosis group, time, patient characteristics, and physician fixed effects;
and month×year and day-of-the-week fixed effects. Bootstrapped standard errors in Columns (4)-
(5). Standard errors clustered at the clinic level * p<0.10, ** p<0.05, *** p<0.01
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Figure A2: Physician Coverage Propensity
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Note: Panel (a) shows the distribution of physicians coverage propensity, where
coverage propensities are the physician fixed effects of physicians’ coverage de-
cisions after controlling for diagnosis group, month×year, and day-of-the-week
fixed effects; and patient characteristics (quadratic polynomial on patient’s age,
and patient’s gender and employer’s 1-digit SIC fixed effect). Panel (b) shows
the correlation between coverage propensities and physician tenure.
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A4 Balanced Sample Tests

Table A2: Logit Regressions

Dep. Var.: Treatment Clinic

Weekly Mean Weekly Median

(1) (2) (3) (4) (5) (6) (7) (8)

Coverage -0.136 -0.227 -0.093 -0.125
(0.181) (0.345) (0.122) (0.223)

∆ Coverage 0.144 0.074
(0.175) (0.113)

Correction 0.359 0.653 0.121 -0.056
(0.231) (0.514) (0.265) (0.573)

∆ Correction -0.432 -0.112
(0.265) (0.303)

N 11344 9716 11344 9716 11344 9716 11344 9716
No. Physicians 218 213 218 213 218 213 218 213
Pseudo R-Sq. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Note: The table shows the results of logit regressions where the dependent variable is the selection
into treatment specification. All specifications include time (month×year) fixed effects. An observa-
tion is a physician-week unit. Standard errors clustered at the physician level.
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