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Abstract

Although proxy variables are pervasive in empirical work, the quality of proxy

variables—in terms of how closely they track underlying economic forces—is not known.

We derive novel regression specifications to infer the severity of measurement error

using a sample of 2,552 instrumental variables regressions from 323 papers published

in top economics and finance journals. We estimate that over 30% of the variation in

the average regressor is white noise. For some proxies, our estimates exceed 95%. Our

findings suggest that measurement error is a severe, pervasive, and understated source

of bias in economics and finance.
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1 Introduction

Proxy variables are ubiquitous in empirical research: Tobin’s q proxies for investment op-

portunities, R&D spending and patent counts proxy for innovation, the Herfindahl index

proxies for market power, Solow residuals proxy for productivity, years of education proxy

for human capital investment, house prices proxy for household wealth, and realized returns

proxy for expected returns, to give a few examples.

But just how accurate are these proxies? Erickson and Whited (2000, 2012) show that

Tobin’s q is wracked with measurement error: on average, around 50% of the variation in

Tobin’s q is pure noise. This much noise severely biases estimated coefficients and leads

to spurious inference. We show that this problem goes beyond q: across all disciplines in

economics and finance, we find that 39.0% of the variation in the average proxy variable is

noise.

We measure measurement error across studies by exploiting the popularity of instrumen-

tal variables in published research. While most papers use instruments to address omitted

variable bias (Angrist and Pischke, 2009), instrumental variable techniques can also purge

the measurement error from an endogenous regressor. In fact, some of the earliest known

work on instrumental variables was in the context of measurement error (Reiersøl, 1941;

Geary, 1943; Aldrich, 1993). In a standard linear setting with omitted variables, simultane-

ity, and classical measurement error, a valid instrumental variables procedure solves all three

problems. In this paper, we compare IV estimates to their OLS counterparts to gauge the

extent of measurement error in the average regression.

Note that “measurement error” refers to the noisy measurement of the economic variable

of interest. For example, many studies consider the effects of years spent in prison on

recidivism. If years spent in prison is not the economic variable of interest per se, but rather

proxies for exposure to criminality, then improving the measure of years spent in prison—

e.g., by using administrative records as opposed to self-reported surveys—will not fix the

measurement error problem; an instrument is needed. While many papers discuss the issues

of omitted variable bias in recidivism, the same attention has not been paid to whether the

measured variable is indeed a good proxy of the underlying economic variable.

To understand how we identify measurement error using pairs of OLS and IV estimates,

consider the following regressions. Stroebel and Vavra (2019) regress changes in retail prices

on changes in house prices, where changes in house prices proxy for local demand shocks, and

estimate an elasticity of 6.80%; after instrumenting for house price changes, their estimate

increases to 15.3%. Backus (2020) regresses the log of establishment-level productivity on

the log number of establishments per square mile, where the number of establishments is
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Figure 1. βIV − βOLS vs. βIV
The figure plots βIV − βOLS against βIV for our full dataset of 2,552 observations
from 323 papers. The black line is the fitted regression line estimated from
equation (3) and reported in column 1 of Table 2. The gray line is a 45-degree
line.

a proxy for competitive pressure, and estimates an elasticity of 3.50%; after instrumenting

for the number of establishments, his estimate increases to 4.68%. The IV exceeds the

OLS estimate in both cases, but the difference between the two is larger for the larger IV

coefficient. Because measurement error bias is proportional to the IV coefficient, we can use

these two examples together to infer that, on average,
(15.3%−6.80%)−(4.68%−3.50%)

15.3%−4.68% ≈ 68.9%

of the variance of these proxies is noise. This is effectively a regression on two data points;

Figure 1 extends this logic to the 2,552 observations in our sample.

The measurement error we estimate is important for three reasons. First, our findings

suggest that measurement error affects all OLS regressions. Even when authors are not

concerned with omitted variable or simultaneity bias, the possibility of measurement error

implies that their estimates are still biased. If valid instruments are not available to correct

this bias, other techniques, such as higher-order moment estimators (Erickson and Whited,

2002; Erickson, Jiang and Whited, 2014), should be applied.

Second, our estimates suggest that researchers should treat measurement error with the

same urgency as omitted variable bias. Thanks in part to the credibility revolution in
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Figure 2. Motivation for Instrument
The figure shows the potential reasons for using instrumental variables. We report
the percent of papers in our sample that appeal to each of these reasons. The area
of each circle is proportional to the sum of the numbers inside it. The numbers
do not add up to 100% because some papers do not report any motivation for
using instrumental variables.

econometrics (Angrist and Pischke, 2010), modern empirical work is acutely aware of omitted

variable bias; the same cannot be said for measurement error. Figure 2 shows the disparity

in researchers’ endogeneity concerns in our data. While 75% of papers in our data mention

omitted variable bias as the reason they instrument their variable of interest, only 27%

mention measurement error. In fact, 40% of papers mention only omitted variable bias,

compared to 5% that mention only measurement error; indeed, Erickson, Jiang and Whited

(2014) note a lack of attention to measurement error, despite the prevalence of proxy variables

in the finance literature. Moreover, as we note in section 3, the presence of measurement error

in addition to omitted variable bias makes it more likely that the observed OLS coefficient

will have the opposite sign of the true effect. Quantitative empirical work must contend with

the fact that proxies are poorly measured.

Third, classical measurement error explains why IV estimates are generally larger than

OLS estimates, even when we expect the opposite to be true. Card (2001) has observed this
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pattern in the returns to education literature, and Jiang (2017) in the finance literature;

as we show in Figure 3, this pattern emerges across disciplines in economics and finance.

We separate regressions based on the expected direction of the OLS bias; following Jiang

(2017), we say this bias is “corrective” when we expect the OLS coefficient to exceed the

IV coefficient, and “affirmative” in the reverse case. Even when theory suggests the IV

coefficient should shrink towards zero, 81% of the time it does the opposite; moreover, on

average, it is more than six times larger than the OLS coefficient.

One explanation for the evidence in Figure 3 is publication bias, by which we mean se-

lective publication of statistically significant results. Jiang (2017) shows in a simple example

how such p-hacking can generate a large IV-OLS ratio. Figure 4 suggests that p-hacking

is not an important driver of our results: restricting attention to the set of statistically

insignificant results does not alter the conclusions from Figure 3.

In addition, we estimate a selection model that incorporates both measurement error and

publication bias. We find that publication bias has virtually no effect on our estimate of

measurement error, and measurement error can account for 99.1% of the median IV-OLS

ratio; we target the median IV-OLS ratio since the mean can diverge if, for example, the IV

and OLS coefficients are normally distributed.

Using our data, we quantify a simple explanation for the observed OLS bias: classical

measurement error. Measurement error not only explains the direction of the OLS bias, it

also predicts that the OLS bias will be positively correlated with the magnitude of the IV

coefficient, a prediction with strong support in the data. Other explanations for the pre-

ponderance of IV estimates in excess of their OLS counterparts—such as weak instruments,

publication bias, or differences between average and local-average treatment effects—do not

speak to this additional evidence.

When researchers estimate an IV coefficient in excess of their OLS coefficient, they should

use the meta-OLS estimator we propose in this paper to determine whether measurement

error is driving their results. As we demonstrate with Mian and Sufi (2014), when the

OLS coefficients are unexpectedly small, it may be that the measurement error bias has

overwhelmed the expected omitted variable bias. The meta-OLS estimator can reveal the

source of this disparity.

2 Literature Review

The econometric technique that we now call two-stage least squares has been used extensively

to deal with omitted variables, simultaneity, and measurement error. The earliest use of

instrumental variables was most likely Wright (1928), who sought to identify parameters in
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Figure 3. Comparing βIV and βOLS

The white bars in the top panel plot the percentage of regressions in which |βIV| > |βOLS|
when sign (βIV) = sign (βOLS), while the gray bars plot the percentage of regressions in which
sign (βIV) 6= sign (βOLS). The white bars in the bottom panel plot the average value, across
regressions, of the IV-OLS ratio

∣∣βIV/βOLS

∣∣, while the gray bars plot the median. “Affirmative”
refers to coefficients for which theory predicts |βIV| < |βOLS|, “corrective” the reverse, and
“unclear” refers to IV-OLS pairs in which the authors noted the direction of bias was ambiguous
or declined to sign the bias.
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The figure replicates the results reported in the bottom panel of Figure 3, but
split by the statistical significance of βIV. The white bars plot the average value,
across regressions, of the IV-OLS ratio
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∣∣, while the gray bars plot the
median. “Affirmative” refers to coefficients for which theory predicts |βIV| <
|βOLS|, “corrective” the reverse, and “unclear” refers to IV-OLS pairs in which
the authors noted the direction of bias was ambiguous or declined to sign the
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a system of simultaneous equations. The earliest studies proposing to employ instrumental

variables to deal with measurement error were Reiersøl (1941) and Geary (1943), though

neither is wholly recognizable as such.1

The surveys of Bound, Brown and Mathiowetz (2001) and Hausman (2001) note the

usefulness of instrumental variables in combating measurement error. Griliches and Hausman

(1986) propose IV estimators for dealing with measurement error in panel data when the

measurement error terms are independent and identically distributed; Biørn (2000) extends

their estimator to deal with non-i.i.d. errors. DiTraglia and Garćıa-Jimeno (2020) derive

cross-equation restrictions in the presence of omitted variables, measurement error, and

instrument invalidity; they also demonstrate how to formally incorporate prior beliefs into

1See Aldrich (1993) for a history of econometric research in the 1940s as it relates to modern instrumental
variables and measurement error. Stock and Trebbi (2003) provide an overview of the history and authorship
of Appendix B in Wright (1928).

7



their analysis.

A small number of recent papers analyze popular econometric methods and practices with

fundamental insights from econometric theory. Of these, the closest to our study is Jiang

(2017), who also analyzes the incidence and magnitude of the OLS bias and finds that IV

coefficients tend to be larger than their OLS counterparts, particularly when theory suggests

they should be smaller. Jiang (2017) considers papers published in the top three finance

journals, while we consider papers published in the top three finance journals and the top

five economics journals; her sample covers 2003 to 2014, while ours covers 2013 to 2019. We

also focus on an alternative explanation for the OLS bias than the three she considers. Lal

et al. (2021) replicate over 60 papers from top political science journals and also find that

IV coefficients are often much larger than OLS coefficients. Another study similar in spirit

to ours is Berg and Streitz (2019), who show that spillover effects in common difference-

in-difference exercises can bias estimated effects even with random treatment. Oster (2019)

shows that the standard practice of using coefficient stability to make inference about omitted

variable bias also requires examining the change in R2. Borusyak, Hull and Jaravel (2018)

derive explicit conditions under which Bartik instruments reveal causal effects.

Other papers have estimated the extent of measurement error in particular cases. Card

(2001) analyzes eleven studies that report both IV and OLS estimates of the effect of years

of schooling on wages, and finds the IV estimate usually exceeds the OLS estimate, despite

the fact that instruments were employed because the authors expected the IV estimate to

be smaller than the OLS estimate. Applying our method to the 21 unique IV-OLS pairs

in his Table II yields an average measurement error ratio of 49%, which is in line with

our benchmark estimates.2 Goolsbee (2000) estimates measurement error in cost of capital

models and finds that about 20% of the tax term’s variance is noise. Bloom and Van Reenen

(2007) and Bloom et al. (2019) use repeated surveys to gauge measurement error in their

management practices measure and find that about 50% of their survey measure’s variance

is noise. Bound and Krueger (1991) compare survey and administrative data on earnings

and find that the share of measurement error in earnings is between 8–18% in levels and

19–35% in first differences.

Several papers use higher-order moment estimators in lieu of instrumental variables to

correct for measurement error; see Erickson and Whited (2000, 2002, 2012), Whited (2001),

and Erickson, Jiang and Whited (2014). These techniques can be adapted to nonlinear set-

tings (Schennach and Hu, 2013) or environments with conditional heteroskedasticity (Hahn,

Hausman and Kim, 2020). See Schennach (2016) for a comprehensive review of techniques

2Removing two observations from Ichino and Winter-Ebmer (2004), whose values of βIV are between five
and nine times the average of the other estimates, reduces the share of measurement error to 39%.
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for dealing with measurement error.

3 Model

In this section, we start by describing the impact of endogeneity on OLS estimates. We then

propose a methodology to disentangle measurement error from omitted variable bias and

simultaneity. All proofs are in Appendix A.

Suppose we are interested in estimating the effect of x∗ on y∗ where

x∗ ≡ αyy
∗ + f(w, z∗, εx),

y∗ ≡ βxx
∗ + g(w, εy), (1)

such that (w, z∗, εx, εy) are independently-distributed and |αyβx| < 1.3 Suppose further that

we only have data on x, y, and z, where

x ≡ x∗ + ux,

y ≡ y∗ + uy,

z ≡ z∗ + uz,

such that ux, uy, and uz denote mean-zero, independently-distributed measurement errors

with variances σ2
ux , σ2

uy , and σ2
uz , respectively. Throughout this paper, we are interested in

discerning what fraction of the variation in x is due to noise,

θ ≡
σ2
ux

σ2
x

= 1− σ2
x∗

σ2
x

,

which we refer to as the measurement error ratio.

An OLS regression of y on x would fail to recover βx for three reasons. First, the

unobservable w affects both x and y, which leads to omitted variable bias. Second, the

coefficient αy propogates feedback effects, which generates simultaneity bias. Third, we

observe x instead of x∗, and this measurement error induces attenuation bias.

We can rectify all three of these issues in an instrumental variables framework, provided

z is a relevant instrument which satisfies the exclusion restriction. More concretely, given

the system of equations (1), the instrument z is relevant if z∗ is correlated with f(·), and

satisfies the exclusion restriction if z∗ is uncorrelated with g(·).
3 The latter assumption is required in order for the system of equations (1) to have a causal, structural

interpretation; if |αyβx| ≥ 1, then shocks to either εx or εy would cause both x and y to diverge to ±∞.
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Indeed, as the following proposition demonstrates, a standard two-stage least squares

regression yields a consistent estimate of βx, even if z contains measurement error.

Proposition 1. The OLS regression of y on x does not yield a consistent estimate of βx:

plim βOLS = βx

(
σ2
x∗

σ2
x

)
+

1

1− αyβx

(
σfg + αyσ

2
g

σ2
x

)
(2)

where σab denotes the covariance of a and b, and σ2
a denotes the variance of a, where a and

b may be functions of other variables.

The IV regression, by contrast, yields a consistent estimate of βx:

plim βIV = βx.

Equation (2) shows the consequences of running an OLS regression in the presence of

an omitted variable (σfg 6= 0), simultaneity (αy 6= 0), and measurement error (σ2
x∗ 6= σ2

x).

In some settings, we can use economic intuition to infer the direction of the OLS bias

(βIV − βOLS). To borrow an example from Jiang (2017), suppose that y is adulthood wages

and x is years of education. The usual omitted variable in this regression is ability, which

is unobservable and has a positive effect on both wages (σgw > 0) and years of education

(σfw > 0), hence βOLS would be biased upwards (σfg > 0). At the same time, we might

expect that individuals who anticipate higher future earnings will also have higher lifetime

wealth, and can therefore afford luxuries like education irrespective of its effect on wages;

once again, this will bias βOLS upwards (αy > 0).

Despite this intuition, it is well-known that OLS estimates of returns-to-schooling coeffi-

cients tend to be biased downwards (Card, 2001). One possibility is that there is some hith-

erto unknown effect which overwhelms the aforementioned mechanisms and forces σfg < 0

or αy < 0. Another explanation is measurement error; as equation (2) shows, measurement

error in education will bias βOLS towards zero (σ2
x∗ < σ2

x), even in the absence of omitted

variables or simultaneity.

It is also worth emphasizing that a valid instrument z is one that is uncorrelated with

the measurement error ux; indeed, if z and ux were correlated, that could create a non-

classical measurement error problem in which cov(x∗, ux) 6= 0, and the bias is not necessarily

attenuative. When analyzing the validity of an instrument, it is therefore important to

acknowledge when an instrument is solving an endogeneity problem but not a measurement-

error problem (Roberts and Whited, 2013). For example, many papers use house price

elasticities to instrument for changes in house prices. To the extent that house prices are

meant to proxy for household wealth, this instrument is valid insofar as house price elasticities
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are uncorrelated with changes in non-housing wealth.

Note that the OLS coefficient (2) is a mixture of the true effect and omitted variable

bias, where the true effect is diluted by measurement error bias. This reveals a pernicious

interaction between these biases: as measurement error bias increases, the observed OLS

coefficient will be less reflective of the true effect and more reflective of the omitted variable

bias. This is particularly concerning when the true effect and omitted variable bias have

opposite signs: if the measurement error is sufficiently severe, then the OLS coefficient will

take on the sign of the omitted variable bias instead of the true effect.

An interesting feature of Proposition 1 is that the traditional endogeneity terms are

collected in the second term on the right-hand side of equation (2); moreover, if αy = 0,

the right-hand term in equation (2) will not contain βx. Exploiting this result leads to a

simple and elegant method for estimating the average measurement error ratio, which we

demonstrate in the following proposition.

Proposition 2. Suppose that αy = 0, and the direct effect of x∗ on y∗, βx, is generated

independently of all other parameters.

Then, given a dataset containing pairs of OLS and IV regression coefficients (βOLS, βIV),

we can consistently estimate the average measurement error ratio E [θ] ≡ E
[
σ2
ux/σ

2
x

]
from

the slope of the regression

βIV − βOLS = aOLS + bOLSβIV + v. (3)

I.e.,

plim bOLS = E[θ].

In Proposition 2, we could equivalently regress βOLS on βIV and test if the estimated slope

E[1− θ] differs from unity; however, because most readers are used to testing if coefficients

differ from zero, we instead use (βIV − βOLS) as the regressand.

In cases where αy is potentially nonzero, we can instead estimate E[θ] using the following

two-step approach.

Proposition 3. Suppose that the direct effect of x∗ on y∗, βx, and the measurement error

ratio, θ, are generated independently of all other parameters.

Then, given a dataset containing triplets of regression coefficients (βOLS, βIV, βFS), where

βFS is the first-stage coefficient found by regressing x on the instrument z, we can recover the
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average measurement error ratio E [θ] from the following two-stage least squares regression:

βIV |βFS| = aFS + bFSβIV + v1 (first stage),

(βIV − βOLS) |βFS| = aIV + bIV

(
̂βIV |βFS|

)
+ v2 (second stage), (4)

where ̂βIV |βFS| is the fitted βIV |βFS| estimated from the first stage. I.e.,

plim bIV = E [θ] .

Intuitively, this procedure is designed to eliminate the
(
1− αyβx

)−1
term on the right-

hand side of equation (2). Based on the system of equations (1), the reduced-from equation

for x∗ is scaled by
(
1− αyβx

)−1
, which implies the first-stage coefficient βFS is proportional

to
(
1− αyβx

)−1
. We can therefore multiply equation (2) through by |βFS|, which will confine

βx to the term associated with measurement error. We use |βFS| rather than βFS, since the

latter can vary in sign across regressions—weakening the first stage of equation (4)—but the(
1− αyβx

)−1
term is always positive (see footnote 3).

In other words, Proposition 3 uses the first-stage coefficient βFS to excise terms associated

with simultaneity bias. Some of the regressions in our data are over-identified, so that there

are multiple first-stage coefficients to choose from. The following corollary establishes that

any linear combination of these coefficients will yield a consistent estimate of E [θ].

Corollary. Suppose that, in addition to z1 ≡ z, some observations use nz − 1 other instru-

ments, z2, z3, ..., znz , such that each zi satisfies the same assumptions as z. In this case,

we can implement the meta-IV procedure in equation (4) using any linear combination of

first-stage regression coefficients, provided this combination is independent of βx and θ.

Propositions 1-3 immediately extend to multivariate settings, in which case we replace x

and z with

k̃ ≡ k − E
[
c′c
]−1 E [c′k] c for k ∈ {x, z}, (5)

where c is an nc × 1 vector of controls. In this case, our estimated θ represents the variance

of the measurement error term divided by the variance of the residualized x̃, rather than x

itself.
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4 Data

We collect every instrumental-variables paper published from 2011 to 2019 from the fol-

lowing journals: the American Economic Review, Econometrica, the Journal of Political

Economy, the Quarterly Journal of Economics, the Review of Economic Studies, the Jour-

nal of Finance, the Journal of Financial Economics, and the Review of Financial Studies.

We identify instrumental-variables papers by searching for the word “instrument,” and keep

any paper which reports at least one pair of IV and OLS regressions with a single endogenous

regressor.4 The vast majority of papers that we analyze run more than one IV regression;

we include in our dataset all IV-OLS regression pairs that appear in the main text.5 This

leaves us with a dataset of 2,552 coefficient pairs from 323 papers. Where available, we

also recorded the first-stage coefficients, F -statistics, and standard deviations of relevant

variables.

Table 1 reports summary statistics for our sample. Panels A and B report the paper and

observation counts by year and journal, respectively. Among the five economics journals, the

American Economic Review dominates our sample both in terms of the number of papers

and the number of regressions. Econometrica is less represented, primarily because it rarely

reports the endogenous OLS regressions. The Quarterly Journal of Economics is a relatively

small part of the sample because it publishes fewer articles. In 2019, the Review of Economic

Studies released more issues than usual, which partly explains why it constitutes a larger

portion of our sample for that year.

Panel C of Table 1 reports summary statistics associated with the IV-OLS regression

pairs. The penultimate row covers the absolute value of the t-statistics associated with βIV.

The median |tIV | is 2.3; in fact, 37% of the βIV estimates in our sample are statistically

insignificant at the 5% level. The large fraction of insignificant results suggests that spec-

ification search or p-hacking may not be a major driver of our results; indeed, in a later

section, we show that our results are robust to alternative treatments of observations with

statistically insignificant βIV.

Note that the 2,145 reported OLS coefficients in panel C refers only to distinct OLS

regressions; it is not uncommon for the same OLS regression to apply to multiple IV re-

gressions with, for example, different instruments. Likewise, the 1,309 reported first-stage

coefficients and 935 reported F -stats in panel C refer only to distinct observations of these

4Our sample includes papers which have multiple non-instrumented regressors, i.e., control variables.
In future work, we hope to include regressions with multiple instrumented regressors, though this poses
additional challenges for data collection.

5This includes 11 papers published in the American Economic Review for which we can recover unreported
OLS coefficients using replication files from the journal’s website.
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A. Paper Count by Journal/Year

Journal 2011 2012 2013 2014 2015 2016 2017 2018 2019

American Economic Review 10 12 13 13 3 9 7 8 12
Econometrica 1 0 0 4 2 0 2 0 1
Journal of Political Economy 3 4 4 2 2 2 4 1 5
Quarterly Journal of Economics 4 3 6 2 5 2 1 4 4
Review of Economic Studies 2 5 1 5 4 2 1 3 12
Journal of Finance 2 0 5 2 3 5 5 2 2
Journal of Financial Economics 7 6 8 2 7 9 8 5 9
Review of Financial Studies 7 6 5 8 3 6 4 8 6

B. Observation Count by Journal/Year

Journal 2011 2012 2013 2014 2015 2016 2017 2018 2019

American Economic Review 134 224 203 205 11 59 64 145 121
Econometrica 4 0 0 26 6 0 9 0 3
Journal of Political Economy 10 27 17 9 11 26 24 2 36
Quarterly Journal of Economics 20 21 9 22 57 6 2 25 16
Review of Economic Studies 10 29 44 117 8 20 2 4 74
Journal of Finance 4 0 23 12 28 23 59 13 7
Journal of Financial Economics 20 26 39 7 43 36 45 20 35
Review of Financial Studies 21 15 59 36 4 35 10 35 35

C. Variable Statistics

Variable Observations Mean Std Dev. p10 p50 p90

βOLS 2,145 195 1,508 -0.52 0.03 1.3
βIV 2,552 268 2,171 -1.2 0.09 2.2
βFS 1,309 0.53 4.5 -0.7 0.05 1.1
F -statistic 935 4,276 74,349 4.5 19 702
|tIV | 2,511 28 1,116 0.59 2.3 6.1
Regressions per paper 323 7.9 14 1 4 17

Table 1. Summary Statistics
The table reports summary statistics for our sample of publish instrumental vari-
ables regressions. Panels A and B report the number of papers and regressions
in our sample by journal and year, respectively. The first five rows of panel C
report summary statistics at the regression level; some βOLS and βFS are paired
with more than one βIV, and some papers do not report first-stage results. The
last row of panel C is at the paper level.
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values. In our sample, 39% of IV regressions do not report an F -statistic, and 49% do not

report first-stage coefficients. Of course, these percentages apply only to papers that report

both OLS and IV results; we suspect that papers that fail to report OLS results are even

less likely to report F -statistics or first-stage results.

As panel C of Table 1 shows, there is substantial variation in the magnitudes of both

βIV and βOLS, and one concern with estimating equation (3) on the data directly is that

observations with very high values of βIV may be driving our results. To reduce the potential

impact of outliers on our results, we follow Jiang (2017) and winsorize the coefficient values

in our data at 1%.

Finally, the last row of panel C of Table 1 reports statistics on the number of IV-OLS

pairs per paper. Each paper reports an average of 7.9 IV-OLS pairs. For papers which report

multiple IV-OLS pairs, we further address potential p-hacking by looking at the subsample

of regressions that are reported later in each paper. If later results are comparatively less

important in determining a paper’s publication, then this sub-sample is less likely to be

affected by p-hacking.

5 Results

In this section, we report our main regression results. In section 5.1, we estimate equa-

tions (3) and (4) on our full dataset and various sub-samples for robustness. These are

estimates of the amount of measurement error in the average regressor. In section 5.2, we

estimate equation (3) separately for each x variable that appears in a paper with multiple y

variables, which yields regressor-level estimates of the measurement error for each of these

x variables.

5.1 Average Results

Table 2 reports our main results. Panel A shows our estimates of the average measurement

error ratio, E [θ], using the regression prescribed by Proposition 2. Column 1 of panel A

reports the results of our benchmark specification, where we estimate equation (3) through

ordinary least squares using all 2,552 IV-OLS pairs in our data. The resulting estimate of

E [θ] is 0.390. In the second column of Table 2, we perform our estimation using only one

IV-OLS pair per paper, similar to Jiang (2017). In particular, we use the main result for

each paper, i.e., the regression that is emphasized in the abstract and introduction to the

paper. The resulting estimate of E [θ] is similar to the result in column 1.

A major source of variation in βIV, even after winsorization, comes from the fact that the
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(1) (2) (3) (4)

Dependent Variable: βIV − βOLS

βIV 0.390 0.336 0.666 0.535
(0.042) (0.014) (0.044) (0.067)

R2 0.818 0.996 0.834 0.746

Observations 2,552 323 1,015 111
Number of papers 323 323 116 111
Normalized No No Yes Yes

Table 2. Meta-OLS Results
The reports estimates from the meta-OLS regression (3). Columns 1 and 3 include all regressions

in each paper, while Columns 2 and 4 include only one regression per paper. Columns 3–4 report

results where observations of βIV and βOLS are multiplied by σx/σy. Standard errors, clustered

at the paper level, are reported in parentheses below the coefficients.

dependent and independent variables from the 2,552 regressions in our sample have different

units. Figure 1 illustrates this in a scatterplot of the data used in the first column of Table 2.

The dispersion of βIV is massive, almost entirely due to a few papers which choose units for

their x and y variables that happen to result in large coefficients; for example, Feyrer, Mansur

and Sacerdote (2017) regress county-level changes in wages per capita on the total value of

extracted oil and natural gas in millions of dollars. The estimated coefficients are on the

order of tens of thousands and can be easily seen in Figure 1.

To address the vastly different units across the many regressions in our sample, we nor-

malize each regression pair to be unitless by multiplying βIV and βOLS by σx/σy, essentially

inferring the coefficients that would have been reported had the authors of the original papers

regressed y/σy on x/σx instead of y on x. Note that, in the univariate case, βOLS × σx/σy is

just the correlation between x and y.

Perhaps surprisingly, authors do not routinely report the standard deviations of their

dependent and independent variables. Even in the subset of papers that report summary

statistics, the regressions are often run using a transformation of the reported variable,

making the summary statistics unusable for our purposes. Nevertheless, we do observe σx

and σy for 1,015 regression pairs in 116 papers. Figure 5 plots the normalized βIV × σx/σy
against (βIV − βOLS) × σx/σy, and column 3 of Table 2 reports the meta-OLS estimate of

equation (3) for the normalized sample. Because normalization shrinks our sample, we do

not view normalized estimates as being more accurate than non-normalized estimates; we

present them to illustrate that our benchmark results are not driven by variation in the

size of coefficients across papers. In fact, normalizing the data increases our benchmark
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(1) (2) (3)

Dependent Variable: βIV − βOLS

βIV 0.658 0.781 0.625
(0.045) (0.088) (0.073)

R2 0.837 0.832 0.751

Observations 829 185 27
Number of papers 86 29 4
Normalized Yes Yes Yes
Measurement Error No Yes Only

Table 3. Meta-OLS Results by Motivation
The table reports estimates from the meta-OLS regression (3). The first column includes only

papers where the authors do not mention measurement error as a reason they are instrument for

x. The second column includes papers where authors do mention measurement error, potentially

in addition to other reasons. The third column includes papers in which authors mention

only measurement error as the reason for instrumenting. All columns report results where

observations of βIV and βOLS are multiplied by σx/σy. Standard errors, clustered at the paper

level, are reported in parentheses below the coefficients.

estimate of E[θ], from 0.390 to 0.666. The final column of Table 2 reports the results of the

normalized regression with a single observation per paper; there are fewer papers than in

Column 3 because in some cases the main regression of a paper cannot be normalized. The

estimated E [θ] is still substantially larger than in Columns 1 and 2.

Papers that mention measurement error as an explicit motivation for instrumenting have

similar levels of measurement as those that do not, suggesting that measurement error is

pervasive even though many authors seem to be unaware of it. Table 3 reports the results

of estimating equation (3) on three sub-samples of the data: papers that do not mention

measurement error as the reason they instrument for x (column 1), papers that do (column 2),

and papers that only mention measurement error (column 3). The final category, as can be

seen from Figure 2, is quite small. Nevertheless all three subsamples display similar levels

of measurement error.

Table 4 reports the meta-IV estimates of E [θ]. As discussed in Section 3, if αy 6= 0, then

we need to adjust our estimation procedure to account for simultaneity bias in the underlying

regressors; Proposition 3 describes how the first-stage regression coefficients can be used to

address this issue in a two-stage least squares procedure. The top part of panel B reports

the second-stage estimates from regressing (βIV − βOLS) |βFS| on the instrumented ̂βIV |βFS|,
the middle part reports the first-stage coefficients from regressing βIV |βFS| on βIV, and, for
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Figure 5. (βIV − βOLS) σx
σy

vs. βIV
σx
σy

The figure plots (βIV − βOLS)× σx/σy against βIV × σx/σy for 1,015 observations
from 116 papers. The black line is the fitted regression line estimated from
equation (3) and reported in column 2 of Table 2. The gray line is a 45-degree
line.

the sake of completeness, the bottom part reports the OLS counterpart to the second stage.

The first three columns of Table 4 report the results of estimating equation (4). For most

of the papers in our sample, there is only a single instrument, and thus a single first-stage

coefficient to report; however, 129 observations from 40 papers report a vector of first-stage

coefficients from an over-identified model. As the corollary to Proposition 3 shows, if there

are multiple first-stage coefficients, then any linear combination of these coefficients can

be used to obtain a consistent estimate of E [θ]. We therefore estimate equation (4) using

three different combinations of the first-stage coefficients: a precision-weighted average of

all reported first-stage coefficients (column 1); only the first reported first-stage coefficient

(column 2); or just the just-identified observations (column 3). The estimates of E [θ] are

similar in all three cases.

The last three columns of Table 4 reports the results of estimating equation (4) on

normalized coefficients; that is, where we multiply βIV and βOLS by σx/σy, and |βFS| by

σz/σx. The sample is considerably smaller than in the first three columns of Table 4 since

few papers report summary statistics of x, y, and z. Nevertheless, we still have over 50
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(1) (2) (3) (4) (5) (6)

Second-Stage Dependent Variable: (βIV − βOLS) |βFS|

β̂IVβFS 0.352 0.352 0.352 0.548 0.547 0.548
(0.000) (0.000) (0.000) (0.055) (0.055) (0.058)

R2 0.911 0.911 0.91 0.391 0.392 0.377

First-Stage Dependent Variable: βIV |βFS|

βIV 2.363 2.363 2.363 0.410 0.410 0.410
(0.001) (0.001) (0.000) (0.068) (0.068) (0.071)

R2 0.955 0.955 0.955 0.231 0.23 0.221
F -Stat 4814 4796 3919 36.5 36.1 33.7

OLS Dependent Variable: (βIV − βOLS) |βFS|

βIVβFS 0.346 0.346 0.346 0.341 0.341 0.338
(0.000) (0.000) (0.000) (0.097) (0.097) (0.099)

R2 0.911 0.911 0.911 0.618 0.618 0.613

Observations 1,508 1,511 1,307 677 677 617
Number of papers 194 196 166 58 58 50
Normalized No No No Yes Yes Yes
Multiple z Weighted First None Weighted First None

Table 4. Meta-IV Results
The table reports estimates from the meta-IV regression (4). “Multiple z” refers to the way

in which we use first stage coefficients from over-identified models: “Weighted” means that

βFS is a precision-weighted average of the reported coefficients, “First” means that only the

first reported first-stage coefficient is used, and “None” means these observations are dropped.

Columns 4–6 report results where observations of βIV and βOLS are multiplied by σx/σy, and

observations of |βFS| are multiplied by σz/σx. Standard errors, clustered at the paper level, are

reported in parentheses below the coefficients.
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Dependent Variable: βIV − βOLS

(1) (2) (3)

A. Sample Restricted by |tIV |

Insignificant |tIV | ∈ |tIV | ≥ 3.1
βIV → 0 (1.96, 3.1)

βIV 0.393 0.589 0.373
(0.046) (0.236) (0.021)

R2 0.622 0.686 0.905

Observations 2,552 788 786
Number of papers 323 210 189

B. Sample Restricted by |βIV|

|βIV| < 50 |βIV| < 5 |βIV| < 1

βIV 0.547 0.615 0.505
(0.075) (0.135) (0.036)

R2 0.587 0.216 0.375

Observations 2,447 2,270 1,813
Number of papers 320 303 265

Table 5. Robustness
Both panels report robustness checks on the benchmark estimation equation (3).
The first column of panel A includes all observations, but sets βIV to 0 on both
the left- and right-hand-side whenever its t-statistic is less than 1.96. Columns
2 and 3 restrict the sample to statistically significant βIV observations with t-
statistics less than or greater than the median t-statistic of 3.1. Panel B restricts
the sample according to the magnitude of βIV, including only observations with
|βIV| less than 50, 5, and 1 in columns 1, 2, and 3, respectively.

papers in the sample, and the results are similar to Table 2 and the first three columns of

Table 4: measurement error is substantial, and the estimate is even larger when we normalize

coefficients.

Table 5 reports two sub-sample analyses as robustness checks. Panel A of Table 5 presents

results split by the absolute value of the t-statistic on βIV.6 The first column of panel A shows

that our results are not driven by imprecisely-estimated βIV: the estimated E[θ] is almost

unchanged if we set βIV = 0 for the 37% of the observations in which βIV is statistically

insignificant at the 5% level. Columns 2 and 3 instead split the sample based on the median

6Splitting the sample by the standard error of βIV would be almost identical to splitting by the magnitude
of βIV, which we do in panel B.
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|tIV | and re-estimate equation (3); while the estimate in column 2 exceeds the estimate in

column 3, both are well within the range of estimates reported in of Table 2.

Another possibility is that our estimate of E [θ] is driven by observations far in the tails

of the distribution of βIV; panel C of Table 1 shows that the standard deviation of βIV in our

sample is 2,171, while only 10% of βIV observations are greater than 2.2. It may be that the

estimated θ of 0.390 is entirely driven by a small number of papers where βIV is very large.

Panel B of Table 5 shows that this is not an issue: restricting attention to sub-samples

based on |βIV| leads to estimates that are comparable to our benchmark estimates from

Table 2. Exclusively using the 2,270 observations with |βIV| < 5 leads to an estimated

measurement error of over 75%; further restricting the sample leads to estimates of E[θ] that

are still within the range of values in Table 2.

5.2 Regressor-Level Results

In section 5.1, we estimated the average measurement error ratio E [θ] across all regressors

in our sample. The same methodology can be applied to estimate the measurement error

ratio θ of a single regressor x, provided we observe multiple IV-OLS pairs with the same

regressor x but different dependent variables y.

Equation (2) shows how we can identify θ. Intuitively, omitted variable and simultaneity

bias are features of x and y jointly, whereas measurement error depends only on x. Fixing

the choice of x while varying the choice of y will therefore generate variation in βOLS and βIV

while leaving θ unchanged, thereby permitting the use of meta-regressions to identify θ for

a single x. Incidentally, the intercept for each of these meta-regressions will be the average

omitted variable or simultaneity bias across the different y variables.

We identify 72 separate x variables from 49 papers, representing 677 IV-OLS regression

pairs, for which 6 or more distinct y variables are regressed on x. We are careful to exclude

cases in which the same y variable is regressed multiple times on the same x variable, for

example, with different sets of controls or instruments. We estimate equation (3) separately

for each of these x variables, yielding 48 positive estimates of θ that are statistically significant

at the 1% level; Table 6 reports summary statistics for these regressions.

The first row in panel A of Table 6 shows that the mean and median θ, at 0.540 and

0.537, are within the range of the baseline estimates reported in Table 2. The median θ and

t-statistic are both very high despite the fact that these 72 regressors include the negative

and statistically insignificant estimates of θ.

Panels B and C split the 72 estimates into the 48 that are positive and statistically

significant at the 1% level, and the 24 that are not. The θ estimates reported in panel B are
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Statistic Min p10 Mean Median p90 Max

A. All 72 Regressors

Estimated θ -1.58 -0.005 0.540 0.537 0.970 3.56
t-statistic -3.13 -0.010 55.5 7.55 44.9 1300
R2 0.000 0.050 0.667 0.905 0.998 1.00
# IV-OLS pairs 6 6 9 7 17 28

B. All 48 Significantly-Positive Regressors

Estimated θ 0.188 0.438 0.711 0.749 0.981 1.11
t-statistic 2.82 5.70 83.1 11.0 88.0 1300
R2 0.285 0.821 0.918 0.944 0.999 1.00
# IV-OLS pairs 6 6 9 8 13 28

C. All 24 Remaining Regressors

Estimated θ -1.58 -0.247 0.198 0.183 0.462 3.56
t-statistic -3.13 -1.24 0.378 0.759 1.95 2.11
R2 0.000 0.002 0.164 0.126 0.395 0.526
# IV-OLS pairs 6 6 10 6 18 26

Table 6. Regressor-Level Results
The table reports summary statistics from 72 separate estimations of equation (3),
where the sample is restricted to the same x variable but at least 6 separate y
variables. The top panel includes statistics from all regressors; panel B restricts
the sample to the 48 regressors that are statistically significantly positive at the
1% level, while panel C restricts the sample to the remaining 24 regressors. Each
row reports a distribution across all the indicated regressors; for example, the
minimum t-statistic does not necessarily correspond to the minimum estimated
θ or R2.

somewhat better-behaved than their imprecisely-estimated counterparts in panel C:7 they

range from 0.188 to 1.11 and explain quite a large variation in the OLS bias, with R2 values

ranging from 0.285 to 1.00.

Figure 6 shows how θ can be estimated precisely with so few observations; these panels

plot the relationship between βIV and the bias βIV−βOLS for 2 of the 72 regressions reported

Table 6. The top panel plots 8 IV-OLS regression pairs from Mian and Sufi (2014), where all

8 pairs use the same x variable: a function of county-level stock and bond holdings in 2006,

county-level total debt owed in 2006, and county-level median house prices, population, and

homeownership rates in 2000—projected to 2006 using a house-price index and changes in

7There are two regressions in which θ is significantly negative, with t-statistics of -3.13 and -2.39. When
running 72 separate regressions, the probability of getting a few significantly-negative t-statistics when the
true θ = 0 is reasonably high.
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population and homeownership rates from 2000 to 2006—to proxy for changes in county-level

housing net worth from 2006 to 2009. The bottom panel of Figure 6 plots the 6 regression

pairs reported in Becker and Pascali (2019), where they use the share of Protestants in

Prussian counties to proxy for anti-Semitism.

In both cases, the potential for measurement error is undeniable; using equation (3), we

can strongly reject the hypothesis that these proxies are free of noise. But we can do more

than that: we can precisely quantify the extent of this measurement error. For Mian and

Sufi (2014), our estimate suggests that 57.1% of the variation in their measure of housing net

worth is noise, with a standard error of 6.2%. For Becker and Pascali (2019), we estimate

that 52.6% of the variation in their measure of anti-Semitism is noise, with a standard error

of 2.4%.

The bias in Mian and Sufi (2014) also serves to illustrate how omitted variables interact

with measurement error and our estimator. Mian and Sufi are interested in the effects of

housing net worth on employment growth, but note that OLS estimators will likely be biased

upwards due to omitted variables:

[Growth in housing net worth] may be spuriously correlated with supply-side

industry-specific shocks that impact both employment and housing net worth.

In particular, certain industries may be harder hit during the recession, and

counties with greater exposure to these industries may naturally experience both

a larger decline in housing net worth and larger fall in employment.

In terms of equation (1), the authors are arguing that σfg > 0, which implies βIV < βOLS

in the absence of measurement error. Yet the data defy this prediction: over 60% of the

time, the IV estimates exceed their OLS counterparts. Measurement error can explain the

discrepancy. As the intercept in the top panel of Figure 6 shows, the constant term in our

meta-OLS regression is indeed negative, as expected when σfg > 0, and statistically signifi-

cant with t = −2.62. In other words, omitted variables do indeed bias their OLS estimates

upwards, but this effect is small relative to the downward bias induced by measurement error

in their proxy variable.

Another way to understand our identification of θ is to treat equation (2) as an estimating

equation. In this case, absent measurement error, a regression of βOLS on βIV would produce

a slope coefficient of 1. Consider the six IV-OLS pairs from Becker and Pascali (2019):

Becker and Pascali (2019) IV-OLS Pairs

βIV 0.0282 0.0994 0.131 0.208 0.453 0.598

βOLS 0.0383 0.0638 0.109 0.0802 0.233 0.311
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Figure 6. Within-Regressor Scatterplots
Both panels plot βIV−βOLS against βIV. The top panel plots 8 regressions reported
in Mian and Sufi (2014), where the x variable is county-level growth in housing
net worth (instrumented with the Saiz 2010 housing supply elasticity), while the
bottom panel plots six regressions from Becker and Pascali (2019), where the x
variable is the Protestant share of Prussian counties in 1882 (instrumented with
the distance to Wittenburg). The black lines are the estimated regression lines,
while the gray lines are 45-degree lines.
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Clearly, variation in βIV does not translate one-for-one into variation in βOLS: as βIV ranges

from near-zero to almost 0.6, βOLS ranges from near-zero to approximately 0.3, resulting

in an estimated θ of about 50%. Any level difference in the IV and OLS coefficients is

absorbed by the constant term, and we estimate a positive θ because the OLS coefficients

are considerably less variable than the IV coefficients. The same dynamic is apparent in

Table IV of Mian and Sufi (2014).

Thus, we identify measurement error using the co-movement of OLS and IV coefficients;

the average difference between them does not affect our estimate. This distinction is impor-

tant for understanding how our results compare to Jiang (2017), who considers explanations

for the average ratio of IV and OLS coefficients. We show below that her explanations

require additional assumptions to account for the attenuated co-movement of OLS and IV

coefficients.

6 Alternative Explanations

Using our sample of 2,552 IV-OLS regression pairs collected from 323 published papers, we

have established two facts: first, that the IV coefficient is almost always larger in absolute

value than its OLS counterpart, and second, that the OLS bias is positively related to the

magnitude of the estimated IV coefficient. Measurement error in the endogenous regressor

explains both facts simultaneously; in this section, we consider alternative hypotheses.

Jiang (2017) lists three reasons why we might observe |βIV| � |βOLS|, even when theory

predicts the opposite. First, instrumental variable estimators return a local average treat-

ment effect (LATE), while OLS returns an average treatment effect (ATE); it is possible

that, on average, the difference between “local” and “global” is more important than the

endogeneity problem itself. Second, weak instruments can exacerbate the bias associated

with a slightly-invalid instrument and make βIV explode relative to βOLS. Finally, because

papers generally require statistically significant results in order to be published, specification

search and p-hacking can result in estimates of βIV that are further from zero than βOLS.

We address each of these alternative explanations below, but before doing so, we note that

only one of these three stories (publication bias) predicts |βIV| > |βOLS| without additional

assumptions, and none of them predict that the OLS bias is increasing in the level of βIV.

6.1 Local-Average vs. Average Treatment Effects

It is well-known that an IV regression produces a local average treatment effect (LATE),

while an OLS regression—in the absence of omitted variables, simultaneity, and measurement

25



error—delivers an average treatment effect (ATE). Consider the following twist on the system

of equations (1):8

y∗ = βx (αz)x
∗ + βww + εy,

x∗ = αzz
∗ + αww + εx,

where αz ∈ {0, 1} and βx(·) are heterogeneous coefficients, and βx(·) depends on αz. In

this case, the IV estimate βIV will converge to βx (1). If αwβw = 0 and x = x∗, the OLS

estimate βOLS will converge to a weighted average of βx (1) and βx (0), where the weights are

determined by the distribution of αz; if we further assume that
∣∣βx(1)

∣∣ > ∣∣βx(0)
∣∣, then it

immediately follows that |βIV| > |βOLS|. Indeed, even if αwβw 6= 0 and x 6= x∗, it is possible

that the difference between βx(1) and βx(0) is so overwhelming that it ensures |βIV| > |βOLS|.
The situation described above is plausible for many applications of instrumental variables.

For example, Chetty, Hendren and Katz (2016) study the impact on adulthood wages of

moving to a lower-poverty neighborhood when young; their instrument is an indicator for

random assignment to receiving a voucher to move to a lower-poverty neighborhood. It seems

natural that those families who would most benefit from moving away from their current

neighborhood would “comply” with the lottery and move, so that
∣∣βx(1)

∣∣ > ∣∣βx(0)
∣∣. Similar

logic applies to many papers using experimental treatments, for example Dobbie and Fryer

(2015).9 In such cases, the existence of compliers with the treatment naturally generates a

LATE that is much larger than the ATE, regardless of the endogeneity bias.

However, this explanation based on compliers is not general enough to explain the pre-

ponderance of |βIV| � |βOLS|, because it does not apply to a wide variety of cases. For

example, a common instrumental variable in the finance literature is an indicator for inclu-

sion in a stock market index, usually to instrument for institutional ownership (Fich, Harford

and Tran, 2015; Schmidt and Fahlenbrach, 2017). There is no natural explanation for why,

e.g., index inclusion would happen to pick up a larger local average treatment effect of insti-

tutional ownership on board composition. Likewise, many papers in our data use geographic

distance to instrument for trade or immigration costs (Nunn and Wantchekon, 2011; Souza-

Rodrigues, 2018; Karadja and Prawitz, 2019). Again, there is no obvious mechanism involv-

ing compliers in these settings. Thus, while in some cases we can expect
∣∣βx (1)

∣∣� ∣∣βx (0)
∣∣,

perhaps to such an extent that IV coefficients are larger than OLS when the endogeneity

problem suggests the reverse should be true, it is not as general an explanation as classical

8We thank Andrew Y. Chen for this concise formulation of the LATE vs. ATE issue.
9Unfortunately neither Chetty, Hendren and Katz (2016) nor Dobbie and Fryer (2015) are included in

our sample, because they report the reduced-form regression of y on z, rather than the endogenous OLS
regression of y on x.

26



Dependent Variable: βIV − βOLS

(1) (2) (3)

A. Sample Split by F -statistic

F -stat reported F -stat < 24.48 F -stat ≥ 24.48

βIV 0.397 0.386 0.411
(0.049) (0.001) (0.106)

R2 0.816 0.930 0.721

Observations 1,545 757 788
Number of papers 172 92 123

B. Publication Bias

|tIV | < 1.96 First 33% Last 33%

βIV 0.374 0.349 0.420
(0.000) (0.002) (0.091)

R2 0.724 0.996 0.628

Observations 937 604 729
Number of papers 172 125 125

Table 7. Alternative Explanations
This table reports estimates from equation (3) on sub-samples to explore alter-
native explanations of our results. Panel A splits the sample by F -statistic: the
first column presents results for the sub-sample of observations that report an
F -statistic, while the second and third columns split the sample according to
whether the reported F -statistic is above or below the median value of 24.48.
The first column of panel B restricts the sample to observations for which βIV
is statistically significant at the 5% level; the second and third panels restrict
the sample to regressions that appear in the first 33% or last 33% of the paper,
respectively, in papers with at least 6 regressions.

measurement error.

Second, even if on average
∣∣βx (1)

∣∣� ∣∣βx (0)
∣∣, it would not explain the central and novel

fact of our paper, which is that the average OLS bias βIV − βOLS is increasing in βIV. To

generate a positive covariance between the OLS bias and βIV, a story rooted in the difference

between LATE and ATE would require an additional assumption: that βIV is increasing

in the extent of heterogeneity βx (1) − βx (0). Thus, a LATE vs. ATE story requires two

additional assumptions to explain two facts in the data, while classical measurement error

neatly explains both.
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6.2 Weak Instruments

Jiang (2017) notes that when an instrument is slightly invalid, the IV coefficient may differ

from the true βx, which can generate |βIV| � |βOLS| if the instrument is also weak. To

address this possibility, column 1 of panel A of Table 7 estimates equation (3) on the 1,545

observations which report a first-stage F -statistic. The estimate of E[θ] is almost identical to

our benchmark estimate in column 1 of Table 2. Columns 2 and 3 then estimate equation (3)

on observations with F -statistics below and above the median value of 24.48.10 The estimated

E[θ] for the weaker instruments is almost unchanged; for the stronger instruments, our

estimate is even larger. Weak instruments are not driving our estimated measurement error

ratio.

6.3 Publication Bias

Weak instruments by themselves are not enough to explain why |βIV| � |βOLS|, and they

could just as easily predict |βIV| < |βOLS|. However, weak instruments become a stronger

explanation when combined with both the inherent selection that goes into the publica-

tion process and the fact that IV standard errors tend to be much larger than their OLS

counterparts. Jiang (2017) provides a simple example in which a bias towards publishing

statistically significant results leads to βIV that are substantially larger than βOLS, even if

the reverse is true in the population of attempted and unpublished studies.

In this section, we address the issue of publication bias in two ways. In Section 6.3.1

we present reduced-form evidence from our data that suggests that publication bias is not

the entire story behind our results. Then, in Section 6.3.2 we estimate a structural model

of publication bias, extending the model of Andrews and Kasy (2019) to incorporate both

OLS and IV estimates as well as measurement error. We find that publication bias has little

effect on our estimate of the extent of measurement error, and that measurement error by

itself can explain over 90% of the median IV-OLS ratio.

6.3.1 Reduced-Form Evidence

The high percentage of statistically insignificant βIV in our data (37%), alongside the fact

that the OLS bias is so large and of the wrong sign even for statistically insignificant βIV

(Figure 4), suggest that publication bias cannot be the whole story. Nevertheless, in this

10 24.48 is the median F -statistic by IV regression, for which we have 1,545 observations, whereas the
median F -statistic by first-stage regression (reported in Table 1) is 19, for which we have 935 observations.
The difference is due to the fact that the same first stage is often used in multiple separate IV regressions;
results in Panel A of Table 7 are similar using the alternative median F -statistic as a cutoff.
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section we perform two additional tests to determine the extent to which publication bias

drives our results. First, when estimating E[θ], we restrict our sample to estimates of βIV

that are statistically insignificant at conventional levels. Second, we split the sample based

on a regression’s location in a paper, since results reported later on are less likely to be as

important for the publication decision.

In column 1 of panel B of Table 7, we restrict the sample to observations of βIV that are

statistically insignificant at the 5% level. The estimated θ is again statistically significant,

and similar to many of the estimates in Tables 2 and 5.

A second way we control for the effect of publication bias on our results is by restricting

the sample to regressions that appear later on in papers. As shown in panel C of Table 1,

the average paper in our sample has almost eight IV-OLS regression pairs, while the median

paper has 4. If authors tend to report their most important results earlier in the paper, and

these results are more important for the publication decision than later ones, then we can

reduce the effect of publication bias on our results by focusing on later regressions.

In columns 2 and 3 of Table 7 we restrict the sample to those papers with at least 6

regressions, and include only IV-OLS pairs for which the IV regression occurs either in the

first or last 33% of the paper’s IV regressions, respectively. For example, a paper with six

regressions would have its first two results reported in column 2 and its last two results

reported in column 3, while any regression in a paper with five or fewer reported regressions

would be dropped.

If publication bias severely affected our results, then these two estimates of E[θ] should

be very different from our benchmark estimates; yet, we find that they are well within the

range of estimates reported in Tables 2 and 4. Although E[θ] is somewhat lower for results

appearing later on in papers, it is still quite large at 0.420. Thus, publication bias does not

unduly influence our estimate of the average measurement error.

6.3.2 Structural Evidence

We estimate a selection model to discern the effects of publication bias on both the average in-

sample measurement error ratio E [θ] and the median IV-OLS ratio Median
(
|βIV /βOLS|

)
.11

We assume that statistically significant results are q times as likely to be published as

statistically insignificant results. Formally, we assume that the probability p (·) that a given

11Hannah R. Rothstein (2006) and Christensen and Miguel (2016) discuss methods for uncovering publi-
cation bias. Recent applications include Andrews and Kasy (2019) and Chen and Zimmermann (2019).
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IV-OLS pair is published is given by

p (tIV ) =

p1 if |tIV | < 1.96

p2 if |tIV | ≥ 1.96,
(6)

where tIV denotes the t-statistic of the instrumental variables estimate βIV , p1 is the probabil-

ity that statistically-insignificant results are published, p2 is the probability that statistically-

significant results are published, and q = p2/p1. If q > 1, for example, then statistically

significant results are more likely to be published than statistically insignificant results. We

estimate q alongside the joint distribution of the OLS and IV coefficients and standard errors

using the simulated method of moments; see Appendix B for details on our distributional

assumptions, moment conditions, and parameter estimates. To ensure that all coefficients

and standard errors are comparable, we restrict attention to the 1, 015 observations that we

can normalize by σx/σy.

After accounting for publication bias, we estimate that the average measurement ratio

E [θ] is 0.459 with a bootstrapped standard error of 0.030. For comparison, the in-sample

meta-OLS estimate is 0.666 with a standard error of 0.044, which corresponds to the results

reported in column 2 of Table 2. This suggests that publication bias has only a minor effect

on our estimate of E [θ], although we do find evidence of publication bias: our point estimate

for q is 1.294, implying that statistically significant estimates are almost 30% more likely to

be published than insignificant results.

Figure 7 decomposes the effects of publication bias and measurement error on the median

IV-OLS ratio Median
(
|βIV /βOLS|

)
. For these 1,015 observations, the median ratio is 2.091.

As Jiang (2017) suggests, publication bias does indeed play a role in magnifying this ratio:

absent publication bias, IV coefficients would only be 1.637 times as large as OLS coefficients.

However, measurement error plays a larger role: if there were no measurement error, IV

coefficients would be 1.037 times the size of OLS coefficients. Absent both publication

bias and measurement error, IV coefficients would be 1.027 the size of OLS coefficients.

Put differently, publication bias can explain (2.089− 1.637)/(2.089− 1.027) ≈ 42.6% of this

magnification, while measurement error can explain (2.089−1.037)/(2.089−1.027) ≈ 99.1%.

If we restrict attention to a single regression per paper, as in column 4 of Table 2, we

find that significant results are 53% more likely to be published; however, this bias has no

statistically-significant effect on our estimate of E[θ]. In this sample, publication bias can

explain 35.6% of the IV-OLS ratio, while measurement error can explain over 99.0%.
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Figure 7. Median IV-OLS Ratio

This figure plots various estimates of the median IV-OLS ratio

Median
(
|β̂IV /β̂OLS|

)
. “Empirical” is the in-sample median coefficient ra-

tio. In the remaining four columns, we use the parameters estimated by the
simulated method of moments: “Simulated” is the simulated in-sample median
coefficient ratio; “No Publication Bias” shows what this ratio would be in the
absence of publication bias; “No Measurement Error” shows what this ratio
would be in the absence of measurement error; and “Neither Publication Bias
nor Measurement Error” shows what this ratio would be in the absence of both
publication bias and measurement error. Bootstrapped standard errors are in
parentheses.

7 How to Use the Meta-OLS Estimator to Estimate

the Average Omitted Variable Bias

In over 80% of regressions for which researchers expect to find an IV coefficient smaller than

the OLS coefficient, they in fact find the opposite (Figure 3). Using the meta-OLS estimator,

a researcher can discern whether this indicates a flaw in their story, or if their regressor is
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simply subject to measurement error.12 A researcher who wishes to estimate the average

omitted variable bias can run a meta-OLS regression as follows:

1. Collect N distinct triplets {xi, yi, zi}Ni=1 where each xi is an endogenous regressor, yi

an outcome variable, zi an instrument or vector of instruments, and i indexes variable

triplets as opposed to individual observations of those variables.13

2. For each i, estimate an OLS regression of yi on xi and the controls. Collect these N

coefficients {βiOLS}Ni=1.

3. For each i, estimate a 2SLS regression of yi on xi and the controls, using instrument(s)

zi. Collect these N coefficients
{
βiIV
}N
i=1

.

4. Estimate an OLS regression of βiOLS on βiIV and a constant; this is a single meta-OLS

regression with N observations. The estimated slope coefficient is equal to 1 minus the

average measurement error ratio (i.e., 1 − E [θ]). The estimated constant term is the

average omitted variable bias E [OVBi] across all N regressions.14

In cases where βiOLS is systematically less than βiIV, but the researcher anticipated the op-

posite, the meta-OLS estimator will reveal if this discrepancy is due to measurement error

as opposed to a flaw in either the instrument or the researcher’s intuition for the omitted

variable bias. The fact that so many of the estimates reported in Mian and Sufi (2014) have

βiIV > βiOLS might lead a reader to discount the paper, when in fact the results are consistent

with their intuition regarding the direction of the omitted variable bias. As we show in

Section 5.2, the discrepancy between their intuition and their finding of βiIV > βiOLS is purely

due to measurement error.

If a researcher uses the same xi = x variable while only varying yi, then they will obtain

an estimate of the measurement error for that single regressor x; i.e., they will obtain an

estimate of θ as opposed to E [θ]. This will allow them to estimate the individual omitted

variable bias OVBi for each regression i, where OVBi = βOLS
i − (1− θ) βIV

i . It may therefore

be worthwhile for authors to seek out distinct y variables for no other reason than to estimate

the degree of measurement error and omitted variable bias.

12This section applies to cases in which a researcher is concerned with omitted variable bias. If the
researcher is also concerned with simultaneity, they would also need multiple instruments z in order to
conduct a meta-IV regression.

13These triplets need to be distinct from each other, but a given xi can appear multiple times. Indeed, in
our regressor-level estimates in Section 5.2, we use the same xi = x and zi = z while only varying yi.

14This is different from the analysis in the rest of the paper, where we regress βi
IV − βi

OLS on βi
IV. That

yields a slope estimate of E [θ], as opposed to 1− E [θ], but an intercept estimate of −E [OVBi], as opposed
to E [OVBi].
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8 Conclusion

Proxy variables are noisy and pervasive. Using a sample of 2,552 pairs of IV and OLS

coefficients from 323 papers published in top economics and finance journals, we estimate

that over 30% of the variation in the average regressor is pure noise. While over 82% of

the papers in our sample are explicitly concerned with omitted variables or simultaneity, the

reality is that most estimates are suffering from attenuation bias regardless of the supposed

endogeneity problem (Jiang, 2017). Indeed, even when researchers expect omitted variables

or simultaneity to inflate their estimates, the opposite occurs 81% of the time; this incessant

attenuation bias, that respects neither sign nor story, is a hallmark of measurement error.

Instrumental variables can extirpate this error, provided the instrument addresses mea-

surement error and not just omitted variables or simultaneity (Roberts and Whited, 2013).

With such an instrument, our meta-OLS estimator can be used to separate attenuation bias

from the average omitted variable bias; we recommend this estimator to authors who find

that their IV coefficients are larger than their OLS coefficients, as it can uncover a sizeable

amount of measurement error in the proxy variable. Measurement error matters, and this

noise demands attention.
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A Proofs

Proof of Proposition 1

We only require that equation (1) holds in expectation:

E
[
x∗|y∗

]
≡ αyy

∗ + E
[
f(w, z∗, εx)|y∗

]
,

E
[
y∗|x∗

]
≡ βxx

∗ + E
[
g(w, εy)|x∗

]
.

The OLS regression yields

plim βOLS =
cov(y, x)

var(x)

=
cov(βxx

∗ + g, x∗ + ux)

var(x)

=
βxvar(x∗) + cov(g, x∗)

var(x)

=
βxvar(x∗) + (1− αyβx)−1cov(g, f + αyg)

var(x)

=
βxvar(x∗) + (1− αyβx)−1(cov(g, f) + αyvar(g))

var(x)

≡ βx

(
σ2
x∗

σ2
x

)
+

1

1− αyβx

(
σfg + αyσ

2
g

σ2
x

)
.

The IV regression yields

plim βIV =
cov(y, z)

cov(x, z)

=
cov(βxx

∗ + g, z)

cov(x, z)

=
βxcov(x∗, z)

cov(x, z)

= βx.
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Proof of Proposition 2

The assumption that βx is generated independently of all other parameters that generate

the data is sufficient, but not necessary; in fact, we only require that βx satisfies

E
[
βx
σfg
σ2
x

]
= E [βx]E

[
σfg
σ2
x

]
,

E [βxθ] = E [βx]E [θ] ,

E
[
β2
xθ
]

= E
[
β2
x

]
E [θ] .

The meta-OLS regression yields

plim bOLS =
cov (βIV − βOLS, βIV)

var(βIV)

=
cov
(
σ−2x

[
βxσ

2
ux − σfg

]
, βx

)
var(βx)

=
cov (βxθ, βx)

var(βx)

= E [θ] .

Proof of Proposition 3

The assumption that βx and θ are generated independently of all other parameters is suffi-

cient, but not necessary; in fact, we only require that they satisfy

E
[
βx
σfz
σ2
z

(1− θ) ζ
]

= E [βx]E
[
σfz
σ2
z

(1− θ) ζ
]
,

E
[
βx
(
1− αyβx

)−1 σfz
σ2
z

θ

]
= E

[
βx
(
1− αyβx

)−1 σfz
σ2
z

]
E [θ] ,

E
[
β2
x

(
1− αyβx

)−1 σfz
σ2
z

θ

]
= E

[
β2
x

(
1− αyβx

)−1 σfz
σ2
z

]
E [θ] ,

where

ζ ≡
σfg + αyσ

2
g

σ2
f + 2αyσfg + α2

yσ
2
g

.
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The meta-IV regression yields

plim bIV =
cov
(
(βIV − βOLS) |βFS| , βIV

)
cov
(
βIV |βFS| , βIV

)

=

cov

(βIV − σ−2x (
βxσ

2
x∗ +

(
1− αyβx

)−1 (
σfg + αyσ

2
g

)))
|βFS| , βIV


cov
(
βIV |βFS| , βIV

)

=

cov

(βIV − (1− θ)
(
βx + σ−2x∗

(
1− αyβx

)−1 (
σfg + αyσ

2
g

)))
|βFS| , βIV


cov
(
βIV |βFS| , βIV

)

=

cov

((
θβIV − (1− θ)

(
σ2
f + 2αyσfg + α2

yσ
2
g

)−1 (
1− αyβx

) (
σfg + αyσ

2
g

))
|βFS| , βIV

)
cov
(
βIV |βFS| , βIV

)
=

cov

((
θβIV − (1− θ)

(
1− αyβx

)
ζ
)
|βFS| , βIV

)
cov
(
βIV |βFS| , βIV

)
=

cov

((
θβIV − (1− θ)

(
1− αyβx

)
ζ
) (

1− αyβx
)−1

σ−2z
∣∣σfz∣∣ , βIV)

cov
(
βIV

(
1− αyβx

)−1
σ−2z

∣∣σfz∣∣ , βIV )
=

cov
(
θβIV

(
1− αyβx

)−1
σ−2z σfz − (1− θ)σ−2z

∣∣σfz∣∣ ζ, βIV )
cov
(
βIV

(
1− αyβx

)−1
σ−2z

∣∣σfz∣∣ , βIV )
=

cov
(
θβIV

(
1− αyβx

)−1
σ−2z

∣∣σfz∣∣ , βIV )
cov
(
βIV

(
1− αyβx

)−1
σ−2z

∣∣σfz∣∣ , βIV )
= E [θ] .

Proof of Corollary

Let βFS,j denote an arbitrary first-stage coefficient obtained by instrumenting x with any

subset of the vector [z1, z2, ..., znz ]
′. If we use

∑
j ωj

∣∣βFS,j∣∣ in lieu of |βFS|, the meta-IV will
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yield

plim bIV =
cov
(

(βIV − βOLS)
∑

j ωj
∣∣βFS,j∣∣ , βIV )

cov
(
βIV

∑
j ωj

∣∣βFS,j∣∣ , βIV )
=

cov
(∑

j ωjβIV
(
1− αyβx

)−1
σ−2zj

∣∣σfzj ∣∣ θ −∑j ωj (1− θ)σ−2zj
∣∣σfzj ∣∣ ζ, βIV )

cov
(∑

ωjβIV
(
1− αyβx

)−1
σ−2zj

∣∣σfzj ∣∣ , βIV )
=

cov
(
βIV

(
1− αyβx

)−1∑
j ωjσ

−2
zj

∣∣σfzj ∣∣ θ, βIV )
cov
(
βIV

(
1− αyβx

)−1∑
j ωjσ

−2
zj

∣∣σfzj ∣∣ , βIV )
= E [θ] .

B Estimating Publication Bias

For each IV-OLS regression pair in our dataset, we observe the estimated OLS coefficient

βOLS with standard error ςOLS and the estimated IV coefficient βIV with standard error ςIV .

Since we only observe published results, our dataset consists draws from the conditional dis-

tribution FβOLS ,ςOLS ,βIV ,ςIV |δ
(
bOLS, sOLS, bIV , sIV |1

)
, where δ is an indicator variable equal to

one if the results (bOLS, sOLS, bIV , sIV ) are published. We want to estimate the publication

bias parameter q = p2/p1 from equation (6) alongside the parameters governing the un-

conditional joint distribution FβOLS ,ςOLS ,βIV ,ςIV (bOLS, sOLS, bIV , sIV ) ; this unconditional joint

distribution is the publication-bias-free joint distribution. We assume that

θ ∼ Beta (aθ, bθ) ,

γ ∼ N
(
µγ, σγ

)
,

β∗IV ∼ N
(
µβIV , σβIV

)
,(

log (ςOLS) , log (ςIV )
)
∼ N (µς̃ ,Σς̃) ,

where β∗OLS ≡ β∗IV (1−θ)+γ per equation (2), and
(
βj − β∗j

)
∼ N

(
0, ςj

)
for j ∈ {OLS, IV }.

In other words, β∗j denotes the asymptotic regression coefficient, and the estimate βj obeys

the law of large numbers. We must therefore estimate the following parameter vector:

ψ ≡ [aθ, bθ, µγ, σγ, µβIV , σβIV , µς̃OLS
, σς̃OLS

, µς̃IV , σς̃IV , ρς̃ , q],
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where ρς̃ denotes the correlation between log (ςOLS) and log (ςIV ).

We employ the simulated method of moments and match the empirical moments in panel

A of Table 8. While most of these moments are intuitive, there are two points worth noting.

First, recall that we want to study the effects of publication bias on the average measurement

error ratio E [θ] and the median IV-OLS ratio Median
(
|βIV /βOLS|

)
; we therefore seek to

match the meta-OLS estimate alongside the in-sample median IV-OLS ratio. Second, to pin

down the degree of publication bias q, we use the U-statistic

E

p (tIV )−1 p
(
t′IV
)−1

 1
(
|βIV | < 1.96ςIV

)
−

1

(∣∣∣∣β′IV + η
√
ς2IV −

(
ς ′IV
)2∣∣∣∣ < 1.96ςIV

) 
∣∣∣∣∣∣∣∣ ςIV > ς ′IV

 , (7)

η ∼ N (0, 1) ,

from Andrews and Kasy (2019).15 This particular moment is a pairwise difference estimator

(Honoré and Powell, 1994) that uses the
(
1,015
2

)
= 514,605 pairs of observations{

(βOLS, ςOLS, βIV , ςIV ) ,
(
β′OLS, ς

′
OLS, β

′
IV , ς

′
IV

)}
for which ςIV > ς ′IV . Instead of equating the actual and simulated U-statistics, this moment

identifies parameters by setting (7) equal to 0.

For the other eleven moments, we equate each empirical moment with the corresponding

simulated moment based on an average of ten simulations. More concretely, we compute the

empirical moment gi (X) for i = 1, 2, ..., 11, where X denotes the matrix of empirical data.

For each i, we also compute the corresponding simulated moment gi
(
Ys (ψ)

)
for s = 1, ..., 10,

where Ys (ψ) denotes the sth matrix of simulated data with parameters ψ. Our vector of

twelve moments is therefore

G
(
X, Y1 (ψ) , ..., Y10 (ψ) , q

)
≡



g1 (X)− 1
10

∑10
s=1 g1

(
Ys (ψ)

)
g2 (X)− 1

10

∑10
s=1 g2

(
Ys (ψ)

)
...

g11 (X)− 1
10

∑10
s=1 g11

(
Ys (ψ)

)
U (X, q)


,

where U (X, q) is the U-statistic (7). Note that the U-statistic is a function of the empir-

15Andrews and Kasy (2019) utilize maximum likelihood estimation for their main results, but include a
moment-based estimation as a robustness check in their online appendix.
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A. Moments
Empirical Moment Simulated Moment

Mean of βOLS 0.169 0.161
Variance of βOLS 0.101 0.124
Mean of ςOLS 0.070 0.061
Variance of ςOLS 0.017 0.004
Mean of βIV 0.373 0.377
Variance of βIV 0.511 0.511
Mean of ςIV 0.248 0.249
Variance of ςIV 0.151 0.134
Correlation between ςOLS and ςIV 0.312 0.312
Meta-OLS estimate 0.666 0.688
Median IV-OLS ratio 2.091 2.089
U-statistic N.A. -0.001

B. Parameter Estimates

aθ bθ µγ σγ µβIV σβIV µς̃OLS
σς̃OLS

µς̃IV σς̃IV ρς̃ q

1.163 1.378 −0.040 0.023 0.351 0.528 −3.175 −1.881 0.891 1.056 0.425 1.294
(--) (--) (0.024) (0.014) (0.031) (0.037) (0.222) (0.103) (0.239) (0.044) (0.094) (0.325)

Table 8. Simulated Method of Moments Results
Panel A presents the empirical moments that we seek to match using the sim-
ulated method of moments. The simulated moments are those implied by the
parameter estimates from panel B. To ensure that the coefficients have a com-
parable scale, we restrict our estimation to the 1, 015 observations that we can
normalize by σx/σy. In panel B, bootstrapped standard errors are in parentheses;
we compute these standard errors using 1, 000 bootstrapped samples. For a small
number of bootstrap sub-samples, the shape parameters of the beta distribution
do not converge in a reasonable amount of time, leading to implausible standard
errors for aθ and bθ; this has no effect on the other standard errors.
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ical data X and the parameter q; while the U-statistic does not explicitly use simulated

data, we regard it as a simulated moment because q is estimated jointly alongside the other

parameters. Our moment condition is G (·) = 0, and we estimate parameters by solving

ψ̂
(
X, Y1 (·) , ..., Y10 (·)

)
= arg min

ψ
G (·)′G (·) .

We compute bootstrapped standard errors by re-sampling the empirical and simulated

data one-thousand times each, and utilize the first-order approximation

var
(
ψ̂
(
X, Y1 (·) , ..., Y10 (·)

))
≈ var

(
ψ̂
(
Xn, Y1 (·) , ..., Y10 (·)

))
+ var

(
ψ̂
(
X, Y1,n (·) , ..., Y10,n (·)

))
,

where n = 1, 2, ..., 1, 000 denotes the nth bootstrap sample. Panel B of Table 8 reports our

parameter estimates; we discuss the relevant implications in Section 6.3.2.
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