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Abstract

We study optimal auctions with expectation-based loss-averse bidders, who incur a
psychological loss in expectation when there is uncertainty in auction outcome. When
bidders are ex-ante identical, although symmetric designs are optimal for bidders with
expected-utility preferences, expected revenues are higher in an optimal mechanism
with a single buyer than in any symmetric mechanism with multiple bidders if the
degree of loss aversion is sufficiently large relative to the variation in valuations. Fur-
thermore, with certain conditions, optimal mechanisms are necessarily asymmetric.
When bidders differ in valuation distributions, in the optimal auction with certain
conditions, if the degree of loss aversion is sufficiently large relative to the variation in
valuations, one of the bidders always wins; if it is sufficiently small, it is optimal to
favor the (almost) weak bidder as prescribed in Myerson (1981) but different extents.
Greater degrees of loss aversion magnify the difference from the Myerson levels.
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1 Introduction

We study the optimal auction design when bidders have expectation-based loss averse prefer-
ences à la Kőszegi and Rabin (2006, 2007) (more precisely, we adopt the Choice Acclimating
Personal Equilibrium), and we demonstrate the optimality of asymmetric designs.

Kőszegi and Rabin (2006, 2007) assume that people form expectations about outcomes,
which in turn form their reference point, and people are loss averse relative to this expecta-
tion, i.e., more sensitive to losses than gains of equal size relative to their expectations.1 A
series of studies finds support for their framework.2

Although we are unaware of direct evidence, there are reasons to believe that not only
individuals but also firms have expectation-based loss-averse preferences in auctions. For
instance, employees who are in charge of buying a good or service through an auction may
need to be briefed within the firm before the auction on their expectations of how likely they
are to win the auction and how much they will have to pay, or their promotion or bonus may
depend on the auction outcome. In such cases, the expectations that the employees have
before an auction form a reference point, and that reference point may influence the firm’s
bidding behavior as if it were loss averse.

We first establish that when the degree of loss aversion is sufficiently large relative to the
variation in bidder valuations, expected seller revenues are higher in an optimal mechanism
with a single buyer—an extreme form of asymmetric mechanisms—than in any symmetric
optimal mechanism with multiple bidders.

There are two important implications of expectation-based loss aversion. First, loss-
averse bidders dislike risk because they suffer psychological losses, on average, when there is
uncertainty about auction outcomes. Second, because they dislike risk, bidders are unhappier
when they expect greater uncertainty in auction outcomes, even if the outcomes are the same
ex post, which is the key difference from risk aversion based on a standard concave utility.

With these bidders, sellers usually face the tension between efficiency and rent extraction.
Sellers can design auction mechanisms whose outcomes are less uncertain so that bidders do
not have to suffer psychological losses. As our result suggests, for example, a seller facing
potential bidders A,B,C can invite only bidder A so that bidders B and C do not have
to form expectations about winning or losing and suffer any psychological loss. However,
the attempt to reduce bidder uncertainty leads to reduce competition among bidders and
the seller extracts less bidder rents. The result that eliminating competition completely is
optimal holds only if the efficiency concern outweighs the rent extraction concern, i.e., when
the degree of loss aversion is sufficiently large relative to the variation in bidders’ valuations.

This finding indicates that the optimal design takes an extreme form of asymmetric
designs even when bidders are ex-ante identical and it highlights the difference from risk
aversion based on a standard concave utility. When bidders are ex-ante identical and ex-
pected utility maximizers, we can always find symmetric optimal designs whenever there are
optimal designs (Maskin and Riley, 1984).

Moreover, it indicates that it is not without loss of generality to focus on symmetric

1Kahneman and Tversky (1979) first provide the theory of reference dependence. See also, for example,
Bell (1985); Loomes and Sugden (1986) for earlier models of expectation-based reference dependence.

2This includes Abeler, Falk, Goette and Huffman (2011); Crawford and Meng (2011); Marzilli Ericson
and Fuster (2011); Gill and Prowse (2012).
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designs with expectation-based loss-averse bidders. Although there have been many re-
cent studies on auctions among expectation-based loss-averse bidders, to the best of our
knowledge, this study is the first to analyze asymmetric designs. Eisenhuth (2019) charac-
terizes optimal mechanisms within the class of symmetric mechanisms for ex-ante identical
bidders. All the other papers study standard auctions with symmetric rules. Thus, our
analysis provides new implications as to how sellers should design auctions when they face
expectation-based loss-averse bidders.

We also find that the benefit of asymmetric designs extends to standard auctions (not just
optimal mechanisms). In the first- or second-price auctions (when there is no loss aversion
in the money dimension), the seller’s expected revenue decreases in the number of bidders
if loss aversion in the good dimension is large and valuations are distributed according to
power distribution F (v) ≡ θκ, with sufficiently large κ.

For general distributions, it is obviously not optimal to eliminate competition completely.
However, the optimality of more general asymmetric mechanisms, in which bidders win with
different and positive probabilities, extends to more general distributions. We establish that
with two bidders if certain conditions (on valuation distribution and the loss-gain weight in
the good dimension) are satisfied, optimal mechanisms are necessarily asymmetric. In partic-
ular, if valuations are uniformly distributed, optimal mechanisms are necessarily asymmetric.

The key intuition is that since loss-averse bidders dislike uncertainty about auction out-
comes, the seller also benefits from reducing uncertainty, thereby saving rents required to
satisfy bidders’ participation constraints. Indeed, when a bidder wins with probability 1

2
,

it faces the greatest uncertainty and hence incurs the greatest psychological disutility as to
gain and loss. More in general, bidders incur greater loss-gain disutility as their winning
probabilities get closer to 1

2
. Thus, it may be better for the seller to favor a certain bidder

and disfavor the other bidders or even completely shut down some bidders from participating
because it reduces the expected loss-gain disutility: it increases the winning probability of
the favored bidder away from 1

2
and decreases the winning probabilities of the disfavored

bidders away from 1
2
. Thus, for example, an asymmetric mechanism under which one bidder

always wins, regardless of its type, may be uniquely optimal if bidders suffer excessively large
psychological loss.

We further establish that when bidders differ in their valuation distributions, the degree
of favoritism must be modified from the level prescribed by Myerson (1981) and the optimal
extent depends on the degree of loss aversion. When the degree of loss aversion is sufficiently
large compared to the variation in bidders’ valuations, the optimal mechanism sells the item
with probability one to one bidder. Such a way of selling is optimal because it eliminates the
uncertainty perfectly and causes no psychological loss. When the degree of loss aversion is not
so large, stochastically selecting the auction winner is optimal even though such stochastic
selection exposes bidders to uncertainty and causes loss gain. Roughly speaking, the optimal
mechanism is the Myerson mechanism modified to strengthen the degree of favoritism of the
bidder who wins more likely than the other bidder under the Myerson mechanism to reduce
the uncertainty and psychological loss caused by it.

Our work contributes to the growing literature on auctions with expectation-based loss-
averse bidders (Lange and Ratan, 2010; Eisenhuth, 2019; Rosato and Tymula, 2019; Balzer
and Rosato, 2021; von Wangenheim, 2021; Rosato, 2014; Balzer, Rosato and von Wangen-
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heim, 2021).3 All of these papers focus on symmetric designs and study standard auctions,
with the exception of Eisenhuth (2019), which studies optimal auctions. As important recent
contributions, von Wangenheim (2021); Rosato (2014); Balzer, Rosato and von Wangenheim
(2021) deal with dynamic auctions and study how expectations evolve dynamically as ref-
erence points to influence bidding behavior. Our static approach has the disadvantage that
it cannot make such dynamic arguments, but it can analyze the optimal mechanism and
provide guidance on what expectations should be formed ultimately.

Our analysis relates to research on asymmetric designs or discrimination in auctions.
Myerson (1981) and McAfee and McMillan (1989) provide a theoretical foundation for fa-
voritism, based on ex ante heterogeneity in bidder characteristics. Researchers have identified
situations in which asymmetric designs are optimal even when bidders are identical ex ante.
See, for example, Lu (2009); Celik and Yilankaya (2009); Bernhardt, Liu and Sogo (2020) for
settings in which bidders incur participation costs, and Lewis and Yildirim (2002); Iossa and
Rey (2014); Barbosa and Boyer (2021) for dynamic settings with effects such as reputation
and learning-by-doing. The key insight from the literature is that the trade-off between effi-
ciency and rent extraction makes asymmetric designs optimal. This study also deals with the
same trade-offs, but differs in that it arises from the utility loss associated with loss aversion,
and the magnitude of this utility loss is endogenously determined through expectations and
auction outcomes, which makes the analysis more demanding.

2 The Model

We follow the model environment of Rosato and Tymula (2019), except that we introduce
bidder heterogeneity and consider optimal mechanisms. A risk-neutral seller auctions off an
indivisible item to n ≥ 1 risk-neutral potential bidders. Each bidder i’s valuation θi ∈ [θi, θi]
is private information and is drawn independently from a distribution Fi(·), where the density
fi(·) is strictly positive and differentiable over its support [θi, θi]. We assume that each

bidder’s virtual valuation is increasing , i.e., ψ′i(θi) > 0 where ψi(θi) ≡ θi− 1−Fi(θi)
fi(θi)

(Myerson,

1981). The value of the object is normalized to 0 for the seller.
Bidders have expectation-based reference-dependent preferences as in Kőszegi and Rabin

(2006, 2007). To analyze the decision of whether to buy a single item, we adopt the simpli-
fication made in Heidhues and Kőszegi (2014), Eisenhuth (2019), and Rosato and Tymula
(2019). The utility of bidder i of valuation θi is given by

ui(c
g, p | Kg, Kp, θi) ≡ θic

g − p︸ ︷︷ ︸
intrinsic utility

+ θi

∫
rg
µi(c

g − rg)dKg +

∫
rp
µi(r

p − p)dKp,︸ ︷︷ ︸
gain-loss utility

where cg, rg ∈ {0, 1} signify the good dimension and rg distributes according to Kg; p, rp ≥ 0

3Research on tournaments with expectation-based loss-averse agents includes Gill and Stone (2010) and
Dato, Grunewald and Müller (2018).
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signify the money dimension and rp distributes according to Kp; and for l ∈ {g, p}

µli(x) ≡

{
ηlix if x ≥ 0

ηliλ
l
ix if x < 0.

If bidder i of valuation θi wins the item (cg = 1) and pays p, it receives intrinsic utility of
θi− p. Moreover, it derives gain-loss utility in both the good and money dimensions. In the
good dimension, it derives gain-loss utility from comparing its actual consumption value cgθi
to reference point rg in the good dimension. Similarly, in the money dimension, it derives
gain-loss utility from comparing its actual payment p to reference point about payment rp.
For l ∈ {g, p}, we assume ηliλ

l
i > ηli > 0 capturing loss aversion (Kahneman and Tversky,

1979; Tversky and Kahneman, 1991). To ensure that no bidder puts more weighs on gain-
loss utility than intrinsic utility in the good dimension, we assume Λg

i ≡ ηgi (λ
g
i − 1) ≤ 1 for

any bidder i (Herweg et al., 2010).
After learning their valuations, bidders submit bids to maximize their interim expected

utility. Given the distribution of the reference points K = (Kg, Kp) and the distribution of
outcomes (cg, p) L = (Lg, Lp), the interim expected utility of bidder i with valuation θi is

Ui(L | K, θi) =

∫
{cg ,p}

ui(c
g, p | K, θi)dL.

We adopt the Choice Acclimating Personal Equilibrium (CPE). That is, for any choice
set Di for bidder i, a selection K ∈ Di is CPE for bidder i of valuation θi if Ui(K | K, θi) ≥
Ui(K

′ | K ′, θi) for all K ′ ∈ Di (Kőszegi and Rabin, 2007). This is well suited for situations in
which bidders submit bids sufficiently long before actually deriving utility from an auctioned
item, so that each bidder’s bidding strategy determines not only the distribution of auction
outcomes, but also the distribution of the reference points.

Eisenhuth (2019, Proposition 1) establishes that it is without loss of generality to restrict
attention to direct mechanisms. This result extends directly to our setting, because its proof
does not depend on bidder homogeneity. Each bidder i reports a value θi ∈ Θi ≡ [θi, θi] and
a direct mechanism (Q,M) consists of a profile of allocation rules Q = (Q1, . . . , Qn) and a
profile of payment rules M = (M1, . . . ,Mn) with Mi : ×iΘi → R, where Qi : ×iΘi → [0, 1]
is the probability that bidder i obtains the item and

∑
Qi(θ) ≤ 1.

Let θ−i ≡ (θ1, . . . , θi−1, θi+1, . . . , θn) ∈ ×j 6=iΘi, f−i (θ−i) ≡ Πj 6=ifj (θj), and f (θ) ≡
Πifi (θi). When all other bidders truthfully bid, if bidder i instead reports θ′i ∈ Θi, then i’s
expected probability of winning the item is

qi(θ
′
i) ≡

∫
θ−i

Qi(θ
′
i, θ−i)f−i (θ−i) dθ−i (1)

and i’s expected payment is

mi(θ
′
i) ≡

∫
θ−i

Mi(θ
′
i, θ−i)f−i (θ−i) dθ−i. (2)

The interim expected utility of bidder i with valuation θi when reporting θ′i while all other
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bidders report truthfully is

πi (θ
′
i|θi) ≡ θiqi(θ

′
i)−mi(θ

′
i)︸ ︷︷ ︸

intrinsic utility

+ θiγ
g
i (θ′i)− γ

p
i (θ
′
i)︸ ︷︷ ︸

gain-loss utility

= θi[qi(θ
′
i) + γgi (θ′i)]− [mi(θ

′
i) + γpi (θ

′
i)], (3)

where the interim expected gain-loss utility in the money dimension γpi (θ
′
i) is given by

γpi (θ
′
i) = ηpi λ

p
i

∫
{θ−i:Mi(θ′i,θ−i)>mi(θ

′
i)}

[Mi(θ
′
i, θ−i)−mi(θ

′
i)] f−i (θ−i) dθ−i

− ηpi
∫
{θ−i:Mi(θ′i,θ−i)<mi(θ

′
i)}

[mi(θ
′
i)−Mi(θ

′
i, θ−i)] f−i (θ−i) dθ−i, (4)

and the interim expected gain-loss utility in the good dimension is θiγ
g
i (θ′i) and γgi (θ′i) is

given by

γgi (θ′i) = ηgi

∫
θ−i

Qi(θ
′
i, θ−i)(1− qi(θ′i))f−i (θ−i) dθ−i − η

g
i λ

g
i

∫
θ−i

(1−Qi(θ
′
i, θ−i)) qi(θ

′
i)f−i (θ−i) dθ−i

= −Λg
i qi(θ

′
i)(1− qi(θ′i)). (5)

Letting αgi (qi) ≡ (1− Λg
i )qi + Λg

i qi
2, we can rewrite qi(θi) + γgi (θi) as follows:

qi(θi) + γgi (θi) = qi(θi)− Λg
i qi(θi)(1− qi(θi)) = (1− Λg

i )qi(θi) + Λg
i qi(θi)

2 = αgi (qi(θi)). (6)

Observe that Λg
i > 0 makes γgi (θi) negative, and γgi (θi) is minimized at qi(θi) = 1

2
. That is,

loss aversion induces gain-loss disutility in expectation, and this expected gain-loss disutility
is maximized when a bidder expects to win with probability 1

2
, which is when the bidder

faces the greatest uncertainty as to winning and losing the auction. In standard auction
formats, Rosato and Tymula (2019) shows that loss aversion pushes bidders who expect to
win with more (resp. less) than probability 1

2
to overbid (resp. underbid). In contrast, we

analyze optimal auction mechanisms and study how loss aversion affects the optimality of
asymmetric designs.

Individual rationality requires

πi (θi) ≡ πi (θi|θi) ≥ 0, ∀θi, (7)

where πi (θi) denotes i’s equilibrium utility. Incentive compatibility requires

πi (θi) = max
θ′∈Θi

πi (θ
′
i|θi) , ∀θi. (8)

The seller’s problem is to find a direct mechanism (Q,M) that maximizes its expected
revenue Π =

∫
θ

∑
iMi(θ)f (θ) dθ such that (7) and (8).
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2.1 Optimal mechanisms

We first characterize incentive compatibility. By treating qi(θi) + γgi (θi) ≥ 0 as the interim
expected winning probability and mi(θi) + γpi (θi) as the interim expected payment in (3)
and (8), we can use the standard characterization of incentive compatibility for bidders with
expected-utility preferences (Krishna, 2002, Section 5.1.2). We obtain the following lemma
as a straightforward extension of Eisenhuth (2019) to possibly asymmetric bidders:

Lemma 1 (Eisenhuth 2019, Proposition 1). Incentive compatibility (8) holds if and only if
(i) qi(θi) is nondecreasing and (ii) the expected payment of bidder i conditional on its type
θi when all bidders report their types truthfully is given by

mi(θi) = θiα
g
i (qi(θi))−

∫ θi

θi

αgi (qi(ti))dti − πi (θi)− γ
p
i (θi). (9)

Moreover, when (8) is satisfied, the expected utility of bidder i conditional on its type θi is
given by

πi (θi) = πi (θi) +

∫ θi

θi

αgi (qi(ti))dti. (10)

and the seller’s expected revenue is given by∫
θ

∑
i

ψi(θi)α
g
i (qi(θi))f (θ) dθ −

∑
i

πi (θi)−
∫
θ

∑
i

γpi (θi)f (θ) dθ. (11)

We now characterize optimal auctions:

Lemma 2. In any optimal auction, the following are satisfied:

1. γpi (θi) = 0 for any θi and any i.

2. πi (θi) = 0 for all i.

3. The seller’s expected revenue is given by∫
θ

∑
i

ψi(θi)α
g
i (qi(θi))f(θ)dθ. (12)

4. Suppose bidders are ex-ante identical: Fi = F , Λg
i = Λg, and Λp

i = Λp. Within
symmetric mechanisms, the highest expected revenue is given by

n

∫ θ

θ̂

ψ(θi)
[
(1− Λg)F (θi)

n−1 + ΛgF (θi)
2(n−1)

]
dF (θi) , (13)

where

θ̂ =

{
θ if ψ (θ) ≥ 0
θ′ if ψ (θ) < 0 and ψ (θ′) = 0.
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First, γpi (θi) = 0 can be implemented through all-pay auctions because actual payments
do not depend on other bidders’ valuations. Eisenhuth (2019) restricts attention to sym-
metric mechanisms among ex-ante identical bidders. Within symmetric mechanisms, it is
optimal to allocate the item to a bidder who has the highest virtual valuation ψ(θi) whenever
it is above the seller’s reservation value 0, which yields the expected revenue of (13). This
can be implemented by all-pay auctions with the identical optimal reserve price. However, as
shown below, even with ex-ante identical bidders, restricting attention to symmetric mech-
anisms is not without loss of generality, i.e., asymmetric designs may yield strictly higher
expected revenues than (13).

The seller revenue in optimal auctions (12) is a simple generalization of Myerson (1981).
The only difference is αgi (qi(θi)), which reduces to the case of Myerson (1981), i.e., αgi (qi(θi)) =
qi(θi), when Λg

i = 0 for all i.
Observe that when all bidders receive zero gain-loss utility in the money dimension

(γpi (θi) = 0, ∀i), social surplus is the sum of bidders’ utility net of the sum of gain-loss
disutility in the good dimension, which is given by∫

θ

∑
i

θiα
g
i (qi(θi))f (θ) dθ. (14)

With Λg
i = 0 for all i, since αgi (qi(θi)) = qi(θi) holds, the efficient mechanism that maximizes

social surplus is to award the good to a bidder with the highest valuation θi. However, with
Λg
i > 0, since gain-loss disutility borne by bidders reduces social surplus, one needs to take

into account of the gain-loss disutility to achieve efficiency.

3 Ex-ante identical bidders

In this section, we consider ex-ante identical bidders: Fi = F , Λg
i = Λg, and Λp

i = Λp.

3.1 Ex-ante identical bidders with expected-utility preferences

As a benchmark, we first establish that it is without loss of generality to restrict to symmetric
mechanisms when we consider ex-ante identical bidders with expected-utility preferences:

Theorem 3 (Maskin and Riley 1984, Footnote 11). Suppose that bidders are ex-ante identical
and have expected-utility preferences. If there is an asymmetric optimal mechanism, then
there is also a symmetric optimal mechanism.

3.2 Ex-ante identical expectation-based loss-averse bidders

With expectation-based loss-averse bidders, even when they are ex-ante identical, we show
that asymmetric designs can yield higher expected revenues than any symmetric design.

We first consider an extreme form of asymmetric designs in which all potential bidders ex-
cept for one are completely excluded from the auction. The following proposition states that
when the variation in valuations is sufficiently small relative to the degree of loss aversion,
restricting to only one bidder is optimal.
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Proposition 4. Suppose n ≥ 2, Λg ≤ 1, and θ = θ + ε. If ε
θ
<

Λg( n−1
2n−1)

1−Λg( n−1
2n−1)

; that is, if the

variation in valuations is sufficiently small relative to the degree of loss aversion in the good
dimension, expected seller revenues are higher in the optimal mechanism with a single buyer
than in any symmetric mechanism with n ≥ 2 bidders.

The intuition is simple. In general there are two types of benefits of having more bidders
for sellers. One is greater selection: the highest valuation increases with the number of
potential bidders. The other benefit is rent extraction: competition tends to reduce bidder
surplus. These benefits increase as the variation in bidder valuations increases.

However, if bidders are loss averse, there is a benefit for the seller to lower competition
to reduce gain-loss disutility borne by bidders because the seller’s expected revenue is social
surplus minus the sum of bidder payoffs. Hence, when the degree of loss aversion is suffi-
ciently large relative to the variation in valuations, the benefit of reducing gain-loss disutility
outweighs the benefit of having more bidders, making it optimal to sell to a single buyer.

We now consider more general asymmetric mechanisms in which bidders win with differ-
ent and positive probabilities. For simplicity we consider two bidders (n = 2). The highest
revenue within symmetric designs is given by (13) and it can be achieved when bidder 1 wins
if and only if its valuation is greater than bidder 2’s valuation, i.e., θ1 > θ2 and θ1 ≥ θ̂.

On the other hand, the asymmetric mechanism that we consider is the following: Given
interval (θL, θL + ε) ⊂ (θ̂, θ), when a pair of bidder valuations (θ1, θ2) falls onto region
(θL, θL + ε) × (θL, θL + ε), bidder 1 wins; when it does not, bidder 1 wins if and only if
θ1 > θ2. The pink and blue regions in the left figure of Figure 1 indicate a pair of valuations
such that bidder 1 wins. The next proposition provides a sufficient condition under which
this asymmetric mechanism yields strictly higher expected revenue than any symmetric
mechanism for sufficiently small ε > 0.

Figure 1: A pair of valuations (θ1, θ2) for which bidder 1 wins in the two asymmetric designs
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Proposition 5. Suppose Fi = F , Λg
i = Λg, Λp

i = Λp, and n = 2. If there exits an open

interval I ⊂ (θ̂, θ) such that for any θ ∈ I

ψ(θ)f(θ)− ψ′(θ)F (θ) >
1− Λg

2Λg
ψ′(θ), (15)

then optimal mechanisms are asymmetric. In particular, if ψ(θ) ≥ 0 (i.e., θ̂ = θ) and Λg is
sufficiently large that

lim
θ↘θ

ψ(θ) >
1− Λg

2Λg
lim
θ↘θ

ψ′(θ)

f(θ)

holds, then optimal mechanisms are asymmetric.

We next show that if the density of valuations does not decrease too quickly (e.g., uniform
distributions), then optimal mechanisms are necessarily asymmetric. In doing so, we consider
the following asymmetric mechanism: bidder 1 wins if θ1 + ε > θ2 and θ1 ≥ θ̂ while bidder
2 wins if θ2 > θ1 + ε and θ2 ≥ θ̂. The pink and blue regions in the right figure of Figure 1
indicate a pair of valuations such that bidder 1 wins. The following proposition shows that
this asymmetric mechanism yields a higher expected revenue than any symmetric mechanism
if ε > 0 is sufficiently small.

Proposition 6. Suppose Fi = F , Λg
i = Λg, Λp

i = Λp, n = 2. If f ′(θ) > − 2Λgf(θ)2

(1−Λg)+2ΛgF (θ)
; that

is, if the density f(θ) does not decrease too quickly for θ ≥ θ̂, then optimal mechanisms are
asymmetric. In particular, if valuations are uniformly distributed, then optimal mechanisms
are asymmetric.

3.3 First- and second-price auctions

In the previous section we showed the optimality of asymmetric designs even when bidders
are ex-ante identical, in which optimal auctions must satisfy γpi (θi) = 0 for all bidders; that
is, actual payments do not depend on other bidders’ valuations. In practice, implementing
auctions similar to all-pay auctions may be difficult.

However, the benefit of asymmetric designs extends to standard auctions. We now es-
tablish that when the degree of loss aversion in the good dimension is large (Λg = 1), in the
first- or second-price auctions, expected revenues may decrease with the number of bidders:

Proposition 7. Suppose Λg
i = 1, Λp

i = 0, and valuations are distributed over [0, 1] according
to Fi(θ) = F (θ) = θκ, with κ > 0. If κ is sufficiently large, then expected revenues in the
first- and second-price auctions are decreasing in the number of potential bidders n.

As explained earlier, there are two types of benefits of having more bidders from the per-
spective of sellers: greater selection and rent extraction. With loss averse bidders, the seller
needs to compare these benefits of having more bidders with the demerit of increasing gain-
loss disutility borne by bidders from introducing more competition. When κ is sufficiently
large, the value of greater selection and rent extraction is so small that the demerit of having
more bidders outweighs, making it beneficial for the seller to reduce bidder participation.
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4 Heterogeneous valuation distributions

We have established the optimality of asymmetric designs even when bidders are ex-ante
identical. We now study how bidder asymmetry in valuation distributions affects the optimal
extent of favoritism. To simplify our analysis, we consider a case of n = 2 with F1 6= F2. We
further assume that θ2 is deterministic, so bidder 2’s virtual value is ψ2(θ2) = θ2.

By Lemmas 1 and 2, the expected revenue in the optimal mechanism is given by∫
θ1

ψ1(θ1)αg(q1(θ1))dF1(θ1) + ψ2(θ2)αg(q2(θ2))

where q1(θ1) is nondecreasing. We first establish that it is without loss of generality to
restrict our analysis to cutoff mechanisms.

Lemma 8. The optimal mechanism takes the cutoff form: bidder 2 wins with probability
q2 ∈ [0, 1] and there exists a threshold θ∗ ∈ [θ, θ] such that

(i) Bidder 1 with valuation θ1 wins if θ1 > θ∗ and loses if θ1 < θ∗;

(ii) The ex-ante expected losing probability of bidder 1 is no less than the winning probability
of bidder 2, i.e., F1(θ∗) ≥ q2.

To focus on the effect of loss aversion, we make the following assumption:4

Assumption A1. max{ψ1(θ), 0} < ψ2(θ2) = θ2 < ψ1(θ).

Under A1, the capacity constraint should bind, i.e., q2 = F1(θ∗) in the optimal mecha-
nism. Thus, by the lemma, the optimal auction solves

max
θ∗∈[θ,θ]

Π(θ∗) =

∫ θ

θ∗
ψ1(θ1)dF1(θ1) + θ2α

g(F1(θ∗)). (16)

Note that when Λg
2 = 0, the optimal cutoff is set so that ψ1(θ∗) = ψ2(θ2), i.e., θ∗ = ψ−1

1 (θ2).
We refer this as the Myerson level and denote by θM . Under A1, θM ∈ (θ, θ). We establish
how the optimal threshold should be modified from the Myerson level θM :

Proposition 9. Consider the optimal mechanism under A1. Suppose that the degree of
bidder 2’s loss aversion Λg

2 is sufficiently small. Then the optimal threshold θ∗(Λg
2) is unique,

satisfies θ∗(0) = θM ∈ (θ, θ), and depends on Λg
2 but not on Λg

1. Moreover, θ∗(Λg
2) is differ-

entiable and satisfies the following:

• θ∗′(Λg
2) > 0 if bidder 2 wins more often than losing in the Myerson mechanism.

• θ∗′(Λg
2) < 0 if bidder 2 loses more often than winning in the Myerson mechanism.

4When 0 ≥ max{θ2, ψ1(θ)}, the seller should never award the good to bidder 2; thus, bidder 1 wins if and
only if θ1 ≥ ψ−11 (0) regardless of Λg

2 ∈ [0, 1]. Moreover, when ψ1(θ) ≥ max{0, θ2}, bidder 1 should always
win regardless of Λg

2 ∈ [0, 1].

10



First, the optimal threshold depends on only Λg
2 because bidder 1 faces no uncertainty

at the interim stage. Second, the optimal threshold is the Myerson level θM when bidder 2
are not loss averse, i.e., Λg

2 = 0. Hence, θ∗(0) = θM .
Third, the optimal threshold is continuously adjusted from the Myerson level so that the

winning probability of bidder 2 moves away from 1/2 (i.e., less uncertain). Thus, the direction
of adjustment depends on whether the winning probability of bidder 2 is higher than 1/2 in
the Myerson mechanism. When Λg

2 is not too large, the seller must raise the threshold from
the Myerson level to increase bidder 2’ winning probability to reduce bidder 2’s uncertainty.
The similar logic applies for the second bullet point.

However, if Λg
2 is sufficiently large, the optimal threshold may not change as stated in

Proposition 9. The threshold may jump from below the Myerson level to above, or vice
versa. Such a jump may occur depending on F1. For example, suppose that bidder 2 loses
more often than winning at the Myerson level (i.e., F1(θM) < 1/2) and that bidder 1’s virtual
value ψ1(θ1) rapidly increases in θ1 for θ1 < θM but hardly increases for θ1 > θM . Then, we
can adjust the threshold downward from the Myerson level θM to reduce the uncertainty,
but the adjustment required for optimization becomes larger as Λg

2 rises. With this virtual
valuation, a large downward adjustment lowers virtual valuation much. On the other hand,
the loss in virtual valuation is small if the adjustment is upward so that bidder 2 wins with
probability 1 to eliminate the uncertainty. Thus, as Λg

2 rises, the threshold becomes smaller
than the Myerson level θM when Λg

2 is small, but it jumps up to θ when Λg
2 is large enough.

The following proposition explicitly computes the optimal threshold when bidder 1’s val-
uation is uniformly distributed over [θ, θ]. In this case, bidder 1’s virtual valuation increases
in θ1 at a constant rate: ψ1(θ1) = 2θ1 − θ. Thus, the above jump does not occur.

Proposition 10. Suppose A1. Suppose that θ1 is uniformly distributed over [θ, θ] and θ2 is
deterministic, so max{2θ − θ, 0} < θ2 < θ holds. In the optimal auctions,

1. When θ2 > θ and Λg
2 < θ−θ2

θ2
, bidder 1 wins if θ1 ≥ θ∗(Λg

2) and bidder 2 wins if
θ1 < θ∗(Λg

2), where

θ∗(Λg
2) =

1

2

(θ − θ)[θ + (1− Λg
2)θ2]− 2Λg

2θθ2

θ − θ − Λg
2θ2

. (17)

θ∗(Λg
2) > ψ−1

1 (θ2) = 1
2
(θ + θ2) and θ∗(Λg

2) is increasing in Λg
2, i.e., the optimal mecha-

nism favors bidder 2, but to the greater degree than the Myerson level, and greater Λg
2

makes it even greater.

2. When θ2 > θ and Λg
2 ≥ θ−θ2

θ2
, bidder 2 always wins.

3. When θ2 < θ and Λg
2 <

θ−2θ+θ2
θ2

, bidder 1 wins if θ1 ≥ θ∗(Λg
2) and bidder 2 wins if

θ1 < θ∗(Λg
2). θ∗(Λg

2) ∈ (θ, ψ−1
1 (θ2)) and θ∗(Λg

2) is decreasing in Λg
2, i.e., the optimal

mechanism favors bidder 2, but to the lesser degree than the Myerson level, and greater
Λg

2 makes it even lesser.

4. When θ2 < θ and Λg
2 ≥

θ−2θ+θ2
θ2

, bidder 1 always wins.

11



0 0.2 0.4 0.6 0.8 1.0

0

0.2

0.4

0.6

0.8

1.0

Λg

(a) θ2 = 0.9

0 0.2 0.4 0.6 0.8 1.0

0

0.2

0.4

0.6

0.8

1.0

Λg

(b) θ2 = 1.1

Figure 2: Ex-ante probabilities of bidder 2 winning as a function of Λg
2 for different bidder 2

valuations θ2 when θ1 is uniformly distributed over (1, 1.5).

To gain the intuition for items 2 and 4, let us consider when Λg
2 > θ−θ

θ2
is satisfied.

Λg
2 > θ−θ

θ2
implies that Λg

2 > θ−θ2
θ2

when θ2 > θ and Λg
2 > θ−2θ+θ2

θ2
when θ2 < θ. This

corresponds to the case where the degree of loss aversion is sufficiently large relative to the
variation in valuations. In this case, regardless of whether θ2 > θ, the benefit of reducing
gain-loss disutility borne by bidder 2 (the only bidder who faces uncertainty about winning
in our setting) is so great that the benefits of rent extraction and greater selection can be
ignored. This makes it optimal to always select one bidder as the winner, leaving us with two
candidates for the optimal mechanism: selling to bidder 2 at price θ2, or selling to bidder 1
with probability one at price θ (the highest price that satisfies incentive compatibility for
bidder 1 of any valuation). Thus it is optimal to sell to bidder 1 if and only if θ > θ2.

To illustrate this, suppose that Λg
2 > 0.5, θ1 is uniformly distributed over (1, 1.5), and

θ2 ∈ (1 − ε, 1 + ε) where ε > 0 is arbitrary small. Then, without loss aversion, bidder 1
wins if and only if θ2 < ψ1(θ1) = 2θ1 − 1.5, i.e., θ1 > 1.25 ± ε

2
, where each bidder wins

with probability almost 1
2
. However, with sufficiently large loss aversion (Λg

2 > 0.5), one of
the bidders wins with probability 1: if θ2 ∈ (1 − ε, 1], then bidder 1 always wins, and if
θ2 ∈ [1, 1 + ε), then bidder 2 always wins.

We now turn to the case of Λg
2 < θ−θ

θ2
, in which the variation in valuations may be

too large for the seller to ignore the benefit of competition: rent extraction and greater
selection. Thus, the optimal mechanism may select the winner stochastically, but such a
selection creates uncertainty and imposes psychological costs on bidder 2.

Without loss aversion, the optimal balance between rent extraction and greater selection
can be achieved by awarding the good to the bidder with highest virtual valuation. With
loss aversion, the seller must also consider mitigating the psychological costs incurred with
bidder 2, who is the only bidder that faces uncertainty as to winning in our setting.

When F1(ψ−1
1 (θ2)) = ( θ+θ2

2
− θ) 1

θ−θ <
1
2
, i.e., θ2 < θ, the probability that ψ2(θ2) > ψ1(θ1)

is less than 1
2
. In this case, without loss aversion, the expected winning probability of bidder 2

is less than 1
2
. Therefore, as in Myerson (1981), the optimal mechanism favors bidder 2, but

the degree of optimal favoritism must be reduced in order to reduce its winning probability

12



away from 1
2

and mitigate the psychological cost to the bidder. The larger Λg
2 is, the larger

the required correction from the Myerson level becomes.
On the other hand, when θ2 > θ, the expected winning probability of bidder 2 is greater

than 1
2

without loss aversion. Thus, the optimal mechanism again favors bidder 2, but the
degree of optimal favoritism is increased in order to increase its winning probability away
from 1

2
and mitigate the gain-loss disutility borne by bidder 2.

Figure 2 illustrates Proposition 10, where θ1 is uniformly distributed over (1, 1.5). When
θ2 = 0.9, F1(ψ−1

1 (θ2)) = 0.4. Thus, when there is no loss aversion (i.e., Λg
2 = 0), bidder 2 wins

with probability 0.4. As Λg
2 becomes larger, the optimal mechanism continuously reduces

the probability of bidder 2 winning to mitigate the gain-loss disutility. Once Λg
2 reaches

θ−2θ+θ2
θ2

≈ 0.444, bidder 2 always loses. In contrast, when θ2 = 1.1, bidder 2 wins with
probability 0.6 when Λg

2 = 0. As Λg
2 rises, the optimal mechanism continuously increases the

probability of bidder 2 winning. Once Λg
2 reaches θ−θ2

θ2
≈ 0.363, bidder 2 always wins.

5 Conclusion

We showed that with expectation-based loss-averse bidders, the seller trades off rent extrac-
tion with the inefficiency of forcing bidders to incur psychological disutility when choosing
the degree of competition. We first established that selling to a single buyer—an extreme
form of asymmetric designs—is optimal even when bidders are ex-ante identical if the value
of rent extraction is relatively small. We then established that optimal mechanisms are
necessarily asymmetric for more general valuation distributions. Furthermore, we found
that when bidders have different valuation distributions, the degree of favoritism must be
modified from the level prescribed by Myerson (1981) based on the degree of loss aversion.

Appendix

Proof of Lemma 1. Let q̃i(θi) ≡ qi(θi) + γgi (θi) and m̃i(θi) ≡ mi(θi) + γpi (θi). (3) is
rewritten by

πi (θ
′
i|θi) = θiq̃i(θ

′
i)− m̃i(θ

′
i).

Then, by treating q̃i(θi) and m̃i(θi) as the interim expected winning probability and payment
of bidder i of type θi, it is routine to follow the standard procedure for bidders with expected-
utility preferences (Krishna, 2002, Section 5.1.2) to show that incentive compatibility (8)
holds if and only if q̃i(θi) is nondecreasing and the interim expected payment m̃i(θi) satisfies
(9). Moreover, it follows from (6) that q̃i(θi) = αgi (qi(θi)) and αgi (qi(·)) is increasing in qi(·).
Therefore, the first part of the lemma holds.

For the latter part of the lemma, integration by parts and q̃i(θi) = αgi (qi(θi)) yield∫ θi

θi

∫ θi

θi

q̃i(ti)dtidFi (θi) =

∫ θi

θi

1− Fi(θi)
fi(θi)

αgi (qi(θi))dFi(θi). (18)

13



Then the seller’s expected revenue is written by

∑
i

∫ θi

θi

mi(θi)dFi (θi)

=
∑
i

{∫ θi

θi

θiq̃i(θi)dFi (θi)−
∫ θi

θi

∫ θi

θi

q̃i(ti)dtidFi (θi)

}

−
∑
i

πi (θi)−
∑
i

∫ θi

θi

γpi (θi)dFi (θi)

=
∑
i

∫ θi

θi

[
θi −

1− Fi(θi)
fi(θi)

]
αgi (qi(θi))dFi (θi)−

∑
i

πi (θi)−
∑
i

∫ θi

θi

γpi (θi)dFi (θi) .

The first equality follows by (9) and the second equality follows by (18). Moreover, substi-
tuting (9) into (3) yields (10).

Proof of Lemma 2. We first show that γpi (θi) ≥ 0. The interim expected loss-gain utility
in the money dimension can be written as

ηpi λ
p
i

∫
{θ−i:Mi(θ′i,θ−i)>mi(θ

′
i)}

[Mi(θ
′
i, θ−i)−mi(θ

′
i)] f−i (θ−i) dθ−i

= ηpi λ
p
i

∫
θ′′−i

∫
{θ−i:Mi(θ′i,θ−i)>Mi(θ′i,θ

′′
−i)}

[
Mi(θ

′
i, θ−i)−Mi(θ

′
i, θ
′′
−i)
]
f−i (θ−i) dθ−if−i

(
θ′′−i
)
dθ′′−i

= ηpi λ
p
i

∫
{θ′′−i:Mi(θ′i,θ−i)>Mi(θ′i,θ

′′
−i)}

∫
θ−i

[
Mi(θ

′
i, θ−i)−Mi(θ

′
i, θ
′′
−i)
]
f−i (θ−i) dθ−if−i

(
θ′′−i
)
dθ′′−i

= ηpi λ
p
i

∫
{θ′′−i:mi(θ′i)>Mi(θ′i,θ

′′
−i)}

[
mi(θ

′
i)−Mi(θ

′
i, θ
′′
−i)
]
f−i
(
θ′′−i
)
dθ′′−i,

where the first and last equalities hold by the definition of mi(θ
′
i) and the second equality

holds by interchanging the order of integration. Together with (4), it follows that

γpi (θ
′
i) = ηpi λ

p
i

∫
{θ−i:Mi(θ′i,θ−i)>mi(θ

′
i)}

[Mi(θ
′
i, θ−i)−mi(θ

′
i)] f−i (θ−i) dθ−i

− ηpi
∫
{θ−i:Mi(θ′i,θ−i)<mi(θ

′
i)}

[mi(θ
′
i)−Mi(θ

′
i, θ−i)] f−i (θ−i) dθ−i

= ηpi λ
p
i

∫
{θ′′−i:mi(θ′i)>Mi(θ′i,θ

′′
−i)}

[
mi(θ

′
i)−Mi(θ

′
i, θ
′′
−i)
]
f−i
(
θ′′−i
)
dθ′′−i

− ηpi
∫
{θ−i:Mi(θ′i,θ−i)<mi(θ

′
i)}

[mi(θ
′
i)−Mi(θ

′
i, θ−i)] f−i (θ−i) dθ−i

= Λp
i

∫
{θ−i:mi(θ′i)>Mi(θ′i,θ−i)}

[mi(θ
′
i)−Mi(θ

′
i, θ−i)] f−i (θ−i) dθ−i

≥ 0.
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The strict inequality holds if and only if M is not degenerate (Eisenhuth, 2019, Lemma 1).
By Lemma 1, the seller’s revenue is decreasing in both γpi (θi) and πi (θi). Moreover,

reducing γpi (θi) relaxes (7) but does not affect (8), yielding γpi (θi) = 0. The seller can choose
mi according to (9) and πi (θi) = 0 while satisfying (7) and (8), yielding πi (θi) = 0. Then,
(11) is written by

∫
θ

∑
i ψi(θi)α

g
i (qi(θi))f (θ) dθ. The expected revenue in optimal symmetric

mechanisms follows from Eisenhuth (2019, Proposition 4).

Proof of Theorem 3. Suppose that bidders are ex-ante symmetric (i.e., Fi = F ) and
each bidder i’s preference is represented by a Bernoulli utility function u(qi,−mi|θi), where
qi ∈ {0, 1} is the amount of its consumption of the good and mi is its payment.

We focus on a direct mechanism (Q,M), where for each report profile θ = (θ1, . . . , θn),
Qi(θ) is the probability that bidder i obtains the item (i.e., qi = 1) and

∑
Qi(θ) ≤ 1, and

Mi is a random payment rule such that bidder i pays m that is drawn from the cumulative
distribution Mi(θ). The expected payoff of bidder i with type θi from reporting θ̂i when the
other bidders report truthfully is given by

Ui(θ̂i|θi) =

∫
θ−i

∫
mi

∫
qi

u(qi,−mi|θi)dQi(θ(θ̂i; i))dMi(θ(θ̂i; i))f−i (θ−i) dθ−i

where θ(θ̂i; i) ≡ (θ1, . . . , θi−1, θ̂i, θi+1, . . . , θn).

Definition 11. A direct mechanism (Q,M) is said to be symmetric if for any two bidders i
and j (i 6= j) and any type profile θ ≡ (θ1, . . . , θn) with θi = θj,

Qi(θ) = Qj(θ̂) and Mi(θ) = Mj(θ̂)

hold, where θ̂ ≡ (θ̂1, . . . , θ̂n) is the type profile in which θi and θj are flipped: θ̂j = θi, θ̂i = θj,

and θ̂k = θk for k 6= i, j.

Lemma 12. Suppose that a direct mechanism (Q,M) is individual rational and incentive
compatible. For any permutation σ of {1, . . . , n}, let (Q′,M ′) be a permutated mechanism
defined as Q′i(θ) ≡ Qσ(i)(θσ) and M ′

i(θ) = Mσ(i)(θσ), where θσ ≡ (θσ(1), . . . , θσ(n)). If bidders
are symmetric, then (Q′,M ′) yields the same revenue as (Q,M) and is individually rational
and incentive compatible.

Proof. In the new mechanism (Q′,M ′), each bidder i plays the role of bidder σ(i) of the orig-
inal mechanism (Q,M). Since bidders are symmetric, (IR) and (IC) are satisfied, achieving
the same revenue.

Suppose that there is an asymmetric optimal mechanism. Then, by the revelation prin-
ciple, there is also a direct optimal mechanism (Q,M). We define a new direct symmetric
mechanism (QS,MS) as follows: for each θ ≡ (θ1, . . . , θn)

QS
i (θ) ≡ 1

#Sn

∑
σ∈Sn

Qσ(i)(θσ), MS
i (θ) ≡ 1

#Sn

∑
σ∈Sn

Mσ(i)(θσ),

where Sn is the set of permutations σ of the set {1, . . . , n} and #Sn = n! is the number of
all permutations σ in Sn.
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To show that (QS,MS) is optimal, we show that (i) (QS,MS) yields the same revenue
as (Q,M); (ii) (QS,MS) is feasible; (iii) (QS,MS) is individual rational and incentive com-
patible.

(i): Let Π and ΠS be the expected revenues in (Q,M) and (QS,MS), respectively. Then,

Π =

∫
θ

(∑
i

∫
mi

mi dMi(θ)

)
f (θ) dθ

=

∫
θ

(
1

#Sn

∑
σ∈Sn

∑
i

∫
mσ(i)

mσ(i) dMσ(i)(θσ)

)
f (θ) dθ

=

∫
θ

(∑
i

1

#Sn

∑
σ∈Sn

∫
mσ(i)

mσ(i) dMσ(i)(θσ)

)
f (θ) dθ

=

∫
θ

(∑
i

∫
mi

mi dM
S
i (θ)

)
f (θ) dθ

= ΠS,

where the second equality holds because
∑

iMσ(i)(θσ) =
∑

iMi(θ) for any permutation σ.
(ii): For any type profile θ,

∑
i

QS
i (θ) =

∑
i

(
1

#Sn

∑
σ∈Sn

Qσ(i)(θσ)

)
=

(
1

#Sn

∑
σ∈Sn

∑
i

Qi(θ)

)
=
∑
i

Qi(θ),

where the second equality follows because
∑

iQi(θ) =
∑

iQσ(i)(θσ) for any permutation σ.

(iii): Let US
i (θ̂i|θi) be the expected payoff of bidder i with type θi from reporting θ̂i when

the other bidders report truthfully in (QS,MS). Then,

US
i (θ̂i | θi)

=

∫
θ−i

∫
mi

∫
qi

u(qi,−mi | θi)dQS
i (θ(θ̂i; i))dM

S
i (θ(θ̂i; i))f−i(θ−i)dθ−i

=
1

#Sn

∑
σ∈Sn

∫
θ−i

∫
mi

∫
qi

u(qi,−mi | θi)dQσ(i)(θσ(θ̂i;σ(i)))dMσ(i)(θσ(θ̂i;σ(i)))f−i(θ−i)dθ−i

=
1

#Sn

∑
σ∈Sn

Uσ(i)(θ̂i | θi).

Thus, US
i (θi|θi) = 1

#Sn

∑
σ∈Sn Uσ(i)(θi|θi) ≥ 0 holds because Uσ(i)(θi|θi) ≥ 0 by individual ra-

tionality in (Q,M). Moreover, US
i (θi|θi) = 1

#Sn

∑
σ∈Sn Uσ(i)(θi|θi) ≥ 1

#Sn

∑
σ∈Sn Uσ(i)(θ̂i|θi) =

US
i (θ̂i|θi) holds by incentive compatibility in (Q,M).

Proof of Proposition 4. First note that since 1 > Λg
(
n−1
2n−1

)
with n ≥ 2 and Λg ≤ 1, the

statement is well defined. With a single buyer, the seller can make a take-it-or-leave-it offer
and receive revenue of θ.
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In the optimal symmetric mechanism, by Lemma 2, the expected revenue is given by

n

∫ θ+ε

θ̂

ψ(θi)F (θi)
n−1[1− Λg + ΛgF (θi)

n−1]dF (θi)

= n(1− Λg)

∫ θ+ε

θ̂

ψ(θi)F (θi)
n−1dF (θi) + nΛg

∫ θ+ε

θ̂

ψ(θi)F (θi)
2n−2dF (θi)

= (1− Λg)

∫ θ+ε

θ̂

ψ(θi)f
(n)
1 (θi)dθi +

n

2n− 1
Λg

∫ θ+ε

θ̂

ψ(θi)f
(2n−1)
1 (θi)dθi

= (1− Λg)(1− F (n)
1 (θ̂))E[ψ(Y

(n)
1 ) | Y (n)

1 ≥ θ̂] +
nΛg(1− F (2n−1)

1 (θ̂))

2n− 1
E[ψ(Y

(2n−1)
1 ) | Y (2n−1)

1 ≥ θ̂]

≤ (1− Λg)ψ(θ + ε) +
nΛg

2n− 1
ψ(θ + ε),

where Y
(n)

1 is the highest order statistic of n independent draws from F , f
(n)
1 (y) ≡ nF n−1 (y) f (y)

is its density, and F
(n)
1 (y) ≡ F (y)n is its distribution. The inequality holds because ψ is in-

creasing.
Taking the difference in the expected revenues yields

θ −
{

(1− Λg)ψ(θ + ε) +
nΛg

2n− 1
ψ(θ + ε)

}
= θ −

{
(1− Λg)(θ + ε) +

nΛg

2n− 1
(θ + ε)

}
= θΛg

(
n− 1

2n− 1

)
− ε

{
1− Λg

(
n− 1

2n− 1

)}
,

which is strictly positive by our assumption in the proposition.

Proof of Proposition 5. We first prove the first part of the proposition. Consider the
asymmetric mechanism described preceding Proposition 5 such that θL ∈ I. When both θ1

and θ2 lie in (θL, θL+ε), Q1(θ1, θ2) = 1 andQ2(θ1, θ2) = 0. When they do not, Q1(θ1, θ2) = 1 if
θ1 > θ2 and Q2(θ1, θ2) = 1 if θ1 < θ2. Thus, it follows that q1(θ1) = F (θ1) and q2(θ2) = F (θ2)
if θ1, θ2 /∈ (θL, θL + ε); q1(θ1) = F (θL + ε) and q2(θ2) = F (θL) if θ1, θ2 ∈ (θL, θL + ε).

By setting payment rule (M1,M2) satisfying (9), πi(θi) = 0, and γpi (θi) = 0 for i ∈ {1, 2},
since both q1 and q2 are nondecreasing, Lemma 1 implies that this mechanism satisfies
incentive compatibility (8) and the seller’s expected revenue can be written as

Π(ε) ≡
∫ θL+ε

θL

ψ(θ1)αg(F (θL + ε))dF (θ1) +

∫ θL+ε

θL

ψ(θ2)αg(F (θL))dF (θ2)

+ 2

∫ θ

θL+ε

ψ(θi)α
g(F (θi))dF (θi) + 2

∫ θL

θ̂

ψ(θi)α
g(F (θi))dF (θi),

The first term is the expected payment from bidder 1 of valuation θ1 ∈ (θL, θL + ε); the
second term is the expected payment from bidder 2 of valuation θ2 ∈ (θL, θL + ε); and the
third and fourth terms are the expected payment from bidder i of θi /∈ (θL, θL + ε), where
coefficient 2 follows by symmetry between the bidders.

In what follows, we use Maclaurin series to conclude Π(ε) > Π(0) by showing that
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Π′(0) = Π′′(0) = 0 and Π′′′(0) > 0. It follows that

Π′(ε) = ψ(θL + ε)αg(F (θL + ε))f(θL + ε) +

∫ θL+ε

θL

ψ(θ1)αg′(F (θL + ε))f(θL + ε)dF (θ1)

+ ψ(θL + ε)αg(F (θL))f(θL + ε)− 2ψ(θL + ε)αg(F (θL + ε))f(θL + ε)

=

∫ θL+ε

θL

ψ(θ1)αg′(F (θL + ε))f(θL + ε)dF (θ1) + ψ(θL + ε)αg(F (θL))f(θL + ε)

− ψ(θL + ε)αg(F (θL + ε))f(θL + ε);

Π′′(ε) = ψ(θL + ε)αg′(F (θL + ε))f(θL + ε)2

+

∫ θL+ε

θL

ψ(θ1){αg′′(F (θL + ε))f(θL + ε)2 + αg′(F (θL + ε))f ′(θL + ε)}dF (θ1)

+ αg(F (θL)){ψ′(θL + ε)f(θL + ε) + ψ(θL + ε)f ′(θL + ε)}
− ψ′(θL + ε)αg(F (θL + ε))f(θL + ε)− ψ(θL + ε)αg′(F (θL + ε))f(θL + ε)2

− ψ(θL + ε)αg(F (θL + ε))f ′(θL + ε)

=

∫ θL+ε

θL

ψ(θ1){αg′′(F (θL + ε))f(θL + ε)2 + αg′(F (θL + ε))f ′(θL + ε)}dF (θ1)

+ {αg(F (θL))− αg(F (θL + ε))}{ψ′(θL + ε)f(θL + ε) + ψ(θL + ε)f ′(θL + ε)};

Π′′′(ε) = ψ(θL + ε){αg′′(F (θL + ε))f(θL + ε)2 + αg′(F (θL + ε))f ′(θL + ε)}f(θL + ε)

+

∫ θL+ε

θL

ψ(θ1)
d

dε
{αg′′(F (θL + ε))f(θL + ε)2 + αg′(F (θL + ε))f ′(θL + ε)}dF (θ1)

− αg′(F (θL + ε))f(θL + ε){ψ′(θL + ε)f(θL + ε) + ψ(θL + ε)f ′(θL + ε)}

+ {αg(F (θL))− αg(F (θL + ε))} d
dε
{ψ′(θL + ε)f(θL + ε) + ψ(θL + ε)f ′(θL + ε)}.

Thus, Π′(0) = Π′′(0) = 0 follows. Moreover,

Π′′′(0) = ψ(θL){αg′′(F (θL))f(θL)2 + αg′(F (θL))f ′(θL)}f(θL)

− αg′(F (θL))f(θL){ψ′(θL)f(θL)− ψ(θL)f ′(θL)}
= ψ(θL)αg′′(F (θL))f(θL)3 − ψ′(θL)αg′(F (θL))f(θL)2

= 2Λgψ(θL)f(θL)3 − ψ′(θL){(1− Λg) + 2ΛgF (θL)}f(θL)2

= {2Λg[ψ(θL)f(θL)− ψ′(θL)F (θL)]− ψ′(θL)(1− Λg)}f(θL)2

> 0,

where the third equality holds by αg′(q) = (1 − Λg) + 2Λgq and αg′′(q) = 2Λg, and the
inequality holds because θL ∈ I. This proves the first part of the proposition.

For the latter part of the proposition, if θ̂ = θ and limθ↘θ ψ(θ) > 1−Λg

2Λg
limθ↘θ

ψ′(θ)
f(θ)

hold,

then there exists ε > 0 such that (15) holds for any θ ∈ [θ, θ+ε). The proposition follows.
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Proof of Proposition 6. When bidder 1 wins if θ1 > max{θ2 − ε, θ̂} and bidder 2 wins if
θ2 > max{θ1 + ε, θ̂}, q1(θ1) = F (θ1 + ε) and q2(θ2) = F (θ2 − ε) for θ1, θ2 ≥ θ̂.

We set payment rule (M1,M2) satisfying (9), πi(θi) = 0, and γpi (θi) = 0 for i ∈ {1, 2}.
Then, since both q1 and q2 are nondecreasing, Lemma 1 implies that this mechanism satisfies
incentive compatibility (8) and the seller’s expected revenue can be written as

Π(ε) ≡
∫ θ

θ̂

ψ(θ1)αg(F (θ1 + ε))dF (θ1) +

∫ θ

θ̂

ψ(θ2)αg(F (θ2 − ε))dF (θ2)

=

∫ θ

θ̂

ψ(θ)[αg(F (θ + ε)) + αg(F (θ − ε))]dF (θ).

In what follows, we prove Π(ε) > Π(0) by showing that Π′(0) = 0 and Π′′(0) > 0. We have

Π′(ε) =

∫ θ

θ̂

ψ(θ)[αg′(F (θ + ε))f(θ + ε)− αg′(F (θ − ε))f(θ − ε)]dF (θ);

Π′′(ε) =

∫ θ

θ̂

ψ(θ)
d

dε
[αg′(F (θ + ε))f(θ + ε)− αg′(F (θ − ε))f(θ − ε)]dF (θ).

Thus, Π′(0) = 0. Moreover, since αg′(q) = (1−Λg) + 2Λgq and αg′′(q) = 2Λg, it follows that

d

dε
[αg′(F (θ + ε))f(θ + ε)− αg′(F (θ − ε))f(θ − ε)]

= αg′′(F (θ + ε))f(θ + ε)2 + αg′(F (θ + ε))f ′(θ + ε)

+ αg′′(F (θ − ε))f(θ − ε)2 + αg′(F (θ − ε))f ′(θ − ε)
= 2Λgf(θ + ε)2 + [(1− Λg) + 2ΛgF (θ + ε)]f ′(θ + ε)

+ 2Λgf(θ − ε)2 + [(1− Λg) + 2ΛgF (θ − ε)]f ′(θ − ε),

which becomes 4Λgf(θ)2+2[(1−Λg)+2ΛgF (θ)]f ′(θ) as ε→ 0. Since f ′(θ) > − 2Λgf(θ)2

(1−Λg)+2ΛgF (θ)
,

4Λgf(θ)2 + 2[(1− Λg) + 2ΛgF (θ)]f ′(θ) > 0 holds, yielding Π′′(0) > 0.

Proof of Proposition 7. When Λp = 0, first- and second-price auctions are revenue-
equivalent by Lange and Ratan (2010). Thus, we consider second-price auctions. By Lange
and Ratan (2010), the symmetric equilibrium bidding strategy is given by β(θ) = θ{1 −
Λg[1− 2F (θ)n−1]} = 2θF (θ)n−1. Thus, the expected revenue is written by

E[β(Y
(n)

2 )] =

∫ 1

0

2θF (θ)n−1f
(n)
2 (θ)dθ

= 2n(n− 1)κ

∫ 1

0

(θκ(2n−2) − θκ(2n−1))dθ

= 2n(n− 1)κ

(
1

κ(2n− 2) + 1
− 1

κ(2n− 1) + 1

)
=
h1(n;κ)

h2(n;κ)
,
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where Y
(n)

2 is the second-highest order statistic of n independent draws from F , f
(n)
2 (y) ≡

n(n− 1)(1−F (y))F n−2(y)f(y) is its density, h1(n;κ) ≡ 2n(n− 1)κ2, and h2(n;κ) ≡ [κ(2n−
2) + 1]× [κ(2n− 1) + 1].

Denoting h′1(n;κ) ≡ ∂
∂n
h1(n;κ) and h′2(n;κ) ≡ ∂

∂n
h2(n;κ), the log derivative of the

expected revenue with respect to n is given by

d

dn
lnE[β(Y

(n)
2 )] =

h′1(n;κ)

h1(n;κ)
− h′2(n;κ)

h2(n;κ)

=
2n− 1

n(n− 1)
− 2κ[κ(2n− 1) + 1] + 2κ[κ(2n− 2) + 1]

[κ(2n− 2) + 1][κ(2n− 1) + 1]

=
2n− 1

n(n− 1)
−

2(4n− 3) + 4
κ

[(2n− 2) + 1
κ
][(2n− 1) + 1

κ
]
.

When κ is sufficiently large, E[β(Y
(n)

2 )] decreases with n because

lim
κ→∞

d

dn
lnE[β(Y

(n)
2 )] =

2n− 1

n(n− 1)
− 2(4n− 3)

(2n− 2)(2n− 1)

=
(2n− 1)2 − n(4n− 3)

n(n− 1)(2n− 1)

=
−1

n(2n− 1)
< 0.

Proof of Lemma 8. If (i) holds, then (ii) holds by the capacity constraint. Thus, it
suffices to show (i). First, we can write allocation rules (Q1(·), Q2(·)) as a function of only
θ1 because bidder 2’s valuation is deterministic. Let q1(θ1) = Q1(θ1) and q2 = E[Q2(θ1)] be
the associated interim expected winning probabilities of type θ1 of bidder 1 and bidder 2.

Moreover, for any allocation rule Q1(·) for bidder 1 and bidder 2’s winning probability
q2 ∈ [0, 1], there is an allocation rule Q2(·) for bidder 2 that satisfies the capacity constraint
and q2 = E[Q2(θ1)] if and only if E[Q1(θ)] ≤ 1 − q2. The “only-if” part follows by the
capacity constraint Q1(θ1) + Q2(θ1) ≤ 1. For the “if” part, suppose E[Q1(θ)] ≤ 1− q2, i.e.,
1− E[Q1(θ1)] ≥ q2. Let

Q̂2(θ1; θ̂) ≡

{
1−Q1(θ1) if θ1 < θ̂

0 if θ1 ≥ θ̂.

Then, there exists a cutoff θ̂c ∈ [θ, θ] satisfying E[Q̂2(θ1; θ̂c)] = q2 because E[Q̂2(θ1; θ̂)] is
continuous in θ̂ and satisfies E[Q̂2(θ1; θ)] = 0 and E[Q̂2(θ1; θ)] = 1 − E[Q1(θ1)] ≥ q2. It
follows that Q1(θ1) + Q̂2(θ1; θ̂c) ∈ {Q1(θ1), 1}, i.e., the capacity constraint is satisfied. The
“if” part follows.

The above argument, with Lemmas 1 and 2, implies that the optimal auction solves

max
q1(·),q2

E[ψ1(θ1)αg(q1(θ1))] + ψ2(θ2)αg(q2)
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subject to the two constraints: E[q1(θ1)] ≤ 1− q2 and q1(·) is nondecreasing. Let (q∗1(·), q∗2)
be the solution. Then, q∗1(·) must be the solution to the following: for some A ∈ [0, 1− q∗2],

max
q1(·)

E[ψ1(θ1)αg(q1(θ1))] subject to E[q1(θ1)] = A and q1(·) is nondecreasing. (P)

Moreover, let qA1 (·) be the expected winning probability of type θ1 that satisfies the following:

qA1 (θ1) = 1 if θ1 > F−1
1 (1− A) while qA1 (θ1) = 0 if θ1 < F−1

1 (1− A). (♥)

Let us also define the following sub-problem (P’):

max
q1(·)

E[ψ1(θ1)q1(θ1)] subject to E[q1(θ1)] = A and q1(·) is nondecreasing. (P’)

In order to prove (i), it suffices to show that the solution to (P) satisfies (♥). To prove it,
our proof proceeds as follows: first, qA1 (·) is a solution to (P’), second, qA1 (·) is also a solution
to (P), and finally, qA1 (·) is the unique solution to (P).

For any q1(·) that satisfies the constraints of (P’), let Fq1(θ) ≡ A−1
∫ θ
θ
q1(θ1)dF1(θ1) be

a cumulative distribution and A−1q1(θ1)f1(θ1) is its density. Fq1 is indeed a cumulative
distribution over [θ, θ] because Fq1 is nondecreasing and continuous with Fq1(θ) = 0 and
Fq1(θ) = A−1A = 1. It follows that

E[ψ1(θ1)q1(θ1)] =

∫ θ

θ

ψ1(θ)q1(θ)dF1 = A

∫ θ

θ

ψ1(θ) · A−1q1(θ)dF1 = A

∫ θ

θ

ψ1(θ)dFq1 . (19)

Since

Fq1(θ1) = A−1

∫ θ1

θ

q1(s)f1(s)ds = 1− A−1

∫ θ

θ1

q1(s)f1(s)ds ≥ 1− A−1

∫ θ

θ1

1 · f1(s)ds

holds, max{1− A−1
∫ θ
θ1

1 · f1(s)ds, 0} is a lower bound of Fq1(θ1).

We show that FqA1 (θ1) coincides with this lower bound for any θ1 ∈ [θ, θ]. First observe

that 1−A−1
∫ θ
θ1

1 · f1(s)ds is increasing with θ1 and takes zero at θ1 = F−1
1 (1−A), implying

that 1 − A−1
∫ θ
θ1

1 · f1(s)ds > 0 if and only if θ1 > F−1
1 (1 − A). Then, it follows that for

θ1 ≤ F−1
1 (1− A)

FqA1 (θ1) = A−1

∫ θ1

θ

qA1 (s)︸ ︷︷ ︸
=0

f1(s)ds = 0 = max{1− A−1

∫ θ

θ1

1 · f1(s)ds, 0};
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and for θ1 > F−1
1 (1− A)

FqA1 (θ1) = A−1

∫ θ1

θ

qA1 (s)f1(s)ds

= A−1

∫ θ

θ

qA1 (s)f1(s)ds︸ ︷︷ ︸
=A

−A−1

∫ θ

θ1

qA1 (s)︸ ︷︷ ︸
=1

f1(s)ds

= 1− A−1

∫ θ

θ1

1 · f1(s)ds

= max{1− A−1

∫ θ

θ1

1 · f1(s)ds, 0}.

Since FqA1 (θ1) coincides with this lower bound for any θ1 ∈ [θ, θ], FqA1 (θ1) ≤ Fq1(θ1), i.e.,
FqA1 (θ1) first-order stochastically dominates Fq1 . This, together with monotonicity of ψ1(·)
and (19), implies that E[ψ1(θ1)qA1 (θ1)] ≥ E[ψ1(θ1)q1(θ1)]. This inequality implies that

E[ψ1(θ1)αg(qA1 (θ1))] = E[ψ1(θ1)qA1 (θ1)] ≥ E[ψ1(θ1)q1(θ1)] ≥ E[ψ1(θ1)αg(q1(θ1))], (20)

where the first equality follows by qA1 (θ1) ∈ {0, 1} and the last inequality holds by αg(q) ≤ q
for any q ∈ [0, 1]. Therefore, qA1 (·) satisfying (♥) is a solution to both (P’) and (P).

Finally, we show that qA1 (·) is the unique solution to (P). By (20), any solution to (P)
must be q1(·) ∈ {0, 1} except on a set of measure zero because αg(q) < q for any q ∈ (0, 1).
Since any solution q1(·) to (P) must be nondecreasing, it must be of the cutoff form (♥).

Proof of Proposition 9. Let Π(θ∗,Λg
2) be the expected revenue in the threshold mechanism

with threshold θ∗ and Λg
2 in (16) and let θ∗(Λg

2) be the solution. Since θ2 is deterministic, we
omit the subscript for F1 and f1. We have

Πθ∗(θ
∗,Λg

2) = −ψ1(θ∗)f(θ∗) + θ2α
g′(F (θ∗))f(θ∗)

= −ψ1(θ∗)f(θ∗) + θ2{1− Λg
2 + 2Λg

2F (θ∗)}f(θ∗),

Πθ∗θ∗(θ
∗,Λg

2) = −ψ′1(θ∗)f(θ∗)− ψ1(θ∗)f ′(θ∗) + θ2{2Λg
2f(θ∗)2 + (1− Λg + 2Λg

2F (θ∗))f ′(θ∗)},
Πθ∗Λg2

(θ∗,Λg
2) = θ2f(θ∗){2F (θ∗)− 1}, (21)

where subscripts denote partial derivatives.
First, we show that for sufficiently small Λg

2 > 0, θ∗(Λg
2) satisfies the first-order condition

Πθ∗(θ
∗(Λg

2),Λg
2) = 0. It suffices to show that θ∗(Λg

2) is not a corner solution because Π(θ∗,Λg
2)

is differentiable in θ∗. Since the Myerson level θM is a unique interior solution under A1
when Λg

2 = 0, max{Π(θ, 0),Π(θ, 0)} < Π(θM , 0) holds. Thus it follows by continuity of Π in
Λg

2 that for sufficiently small Λg
2 > 0

max{Π(θ,Λg
2),Π(θ,Λg

2)} < Π(θM ,Λ
g
2) ≤ Π(θ∗(Λg

2),Λg
2),

where the last inequality holds by the optimality of θ∗(Λg
2).
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Second, for sufficiently small Λg
2 > 0, θ∗(Λg

2) is unique and satisfies

θ∗′(Λg
2) = −

Πθ∗Λg2
(θ∗(Λg

2),Λg
2)

Πθ∗θ∗(θ∗(Λ
g
2),Λg

2)
(22)

by the implicit function theorem. Indeed, we can apply the implicit function theorem because
Πθ∗(θ

∗,Λg
2) is continuously differentiable by (21) and Πθ∗θ∗(θM , 0) 6= 0:

Πθ∗θ∗(θM , 0) = −ψ′1(θM)f(θM)− ψ1(θM)f ′(θM) + θ2f
′(θM) = −ψ′1(θM)f(θM) < 0,

where the first equality holds by (21), the second equality holds by ψ1(θM) = θ2, and the
inequality holds by ψ′1 > 0.

Third, Πθ∗θ∗(θ
∗(Λg

2),Λg
2) < 0 holds for sufficiently small Λg

2 > 0 because Πθ∗θ∗(θM , 0) < 0
and both θ∗(Λg

2) and Πθ∗θ∗(θ
∗,Λg

2) are continuous.
Finally, we have θ∗′(Λg

2) > 0 if F1(θM) > 1
2

while θ∗′(Λg
2) < 0 if F1(θM) < 1

2
because the

sign of θ∗′(Λg
2) equals that of 2F (θ∗(Λg

2))− 1 by (21), (22), and Πθ∗θ∗(θ
∗(Λg

2),Λg
2) < 0.

Proof of Proposition 10. By (16), the expected revenue is written by

Π(θ∗) =
1

θ − θ

∫ θ

θ∗
(2θ1 − θ)dθ1 + θ2α

g

(
θ∗ − θ
θ − θ

)
. (23)

Noting that dαg(q)/dq = (1− Λg) + 2Λgq, differentiation yields

Π′(θ∗) =
−1

θ − θ
(2θ∗ − θ) + θ2

[
(1− Λg) + 2Λg

(
θ∗ − θ
θ − θ

)]
1

θ − θ
.

Equating this to zero gives (2θ∗−θ)(θ−θ) = (1−Λg)(θ−θ)θ2 +2Λg(θ∗−θ)θ2, yielding (17).
Moreover,

Π′′(θ∗) =
2

θ − θ

(
−1 +

θ2Λg

θ − θ

)
,

which is negative if and only if θ2Λg < θ − θ.
When θ2Λg > θ − θ, since ∂Π

∂θ∗
is convex, the solution is either θ or θ. Then, by (23),

Π(θ∗ = θ) = θ2α
g(1) = θ2 while Π(θ∗ = θ) = 1

θ−θ

∫ θ
θ

(2θ1 − θ)dθ1 + θ2α
g(0) = θ. Thus, it is

optimal to set θ∗ = θ if θ > θ2 and θ∗ = θ if θ ≤ θ2.
In what follows, suppose θ2Λg < θ − θ. Since ∂Π

∂θ∗
is concave, it is optimal to set θ∗ as

close to θ∗(Λg) as possible within [θ, θ]. It follows that

θ∗(Λg)− θ =
1

2

(θ − θ)[θ + (1− Λg)θ2]− 2Λgθθ2

θ − θ − Λgθ2

− θ

=
(θ − θ)[θ + (1− Λg)θ2]− 2Λgθθ2 − 2(θ − θ − Λgθ2)θ

2(θ − θ − Λgθ2)

=
(θ − θ)[θ − 2θ + (1− Λg)θ2]

2(θ − θ − Λgθ2)
.
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By θ2Λg < θ − θ, it follows that θ∗(Λg) > θ if and only if θ − 2θ + (1− Λg) θ2 > 0, or

equivalently Λg < θ−2θ+θ2
θ2

. Moreover,

θ − θ∗(Λg) = θ − 1

2

(θ − θ)[θ + (1− Λg)θ2]− 2Λgθθ2

θ − θ − Λgθ2

=
2(θ − θ − Λgθ2)θ − (θ − θ)[θ + (1− Λg)θ2] + 2Λgθθ2

2(θ − θ − Λgθ2)

=
(θ − θ)(θ − (1 + Λg)θ2)

2(θ − θ − Λgθ2)
.

By θ2Λg < θ − θ, we have θ > θ∗(Λg) if and only if θ − (1 + Λg)θ2 > 0, or Λg < θ−θ2
θ2

.

Consider when θ2 > θ. In this case, θ−θ2
θ2

< θ−θ
θ2

< θ−θ+θ2−θ
θ2

= θ−2θ+θ2
θ2

holds. By Λg < θ−θ
θ2

,

this leaves us two cases: Λg < θ−θ2
θ2

and θ−θ2
θ2
≤ Λg < θ−θ

θ2
. If Λg < θ−θ2

θ2
, then θ∗(Λg) ∈ (θ, θ),

making it optimal to set θ∗ = θ∗(Λg); if θ−θ2
θ2
≤ Λg < θ−θ

θ2
, then θ∗(Λg) ≥ θ, making it optimal

to set θ∗ = θ, i.e., always sell to bidder 2.

Consider when θ2 < θ. In this case, θ−2θ+θ2
θ2

= θ−θ+θ2−θ
θ2

< θ−θ
θ2

< θ−θ2
θ2

holds. By

Λg < θ−θ
θ2

, this leaves us two cases: Λg < θ−2θ+θ2
θ2

and θ−2θ+θ2
θ2

≤ Λg < θ−θ
θ2

. If Λg < θ−2θ+θ2
θ2

,

then θ∗(Λg) ∈ (θ, θ), making it optimal to set θ∗ = θ∗(Λg); if θ−2θ+θ2
θ2

≤ Λg < θ−θ
θ2

, then
θ∗(Λg) ≤ θ, making it optimal to set θ∗ = θ, i.e., always sell to bidder 1.

We now compare θ∗(Λg) with the Myerson level ψ−1
1 (θ2) = 1

2
(θ + θ2).

θ∗(Λg)− ψ−1
1 (θ2) =

1

2

(θ − θ)[θ + (1− Λg)θ2]− 2Λgθθ2

θ − θ − Λgθ2

− 1

2
(θ + θ2)

=
(θ − θ)[θ + (1− Λg)θ2]− 2Λgθθ2 − (θ + θ2)(θ − θ − Λgθ2)

2(θ − θ − Λgθ2)

=
Λgθ2(θ2 − θ)

2(θ − θ − Λgθ2)
,

which implies that θ∗(Λg) > ψ−1
1 (θ2) if and only if θ2 > θ.

Finally, differentiating (17) yields

dθ∗(Λg)

dΛg
=

1

2

−(θ + θ)θ2(θ − θ − Λgθ2) + {(θ − θ)[θ + (1− Λg)θ2]− 2Λgθθ2}θ2

(θ − θ − Λgθ2)2

=
1

2

θ2(θ − θ)(θ2 − θ)
(θ − θ − Λgθ2)2

.

Thus, the sign of dθ∗(Λg)
dΛg

equals that of θ2 − θ.
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