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Abstract

Rising inflation in the wake of unprecedented debt financed stimulus packages raises

concerns about a looming return of persistent inflation, as governments may be tempted

to monetize debt. In this paper, we ask whether governments can use real (TIPS) bonds

as part of the government debt portfolio to commit not to create elevated inflation?

We thus examine optimal debt management in a setting where (i) the government can

issue long-term nominal and real bonds, (ii) the monetary authority sets short-term

interest rates according to a Taylor rule, and (iii) inflation has real costs as prices are

sticky. Nominal debt can be inflated away giving ex-ante flexibility, but real bonds

constitute a real commitment ex-post. We show that the optimal government debt

portfolio includes a substantial allocation to both real and nominal bonds, which lowers

inflation levels but increases inflation volatility in equilibrium. The associated lower

correlation between inflation risk and government expenditure is reflected in welfare

gains through real debt management. Quantitatively, our results are stronger i) the

higher the initial debt level, and ii) the longer debt maturity. Our findings suggest that

TIPS should be an important tool for debt management in the presence of looming

inflation.
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1 Introduction

Inflation has returned.1 Indeed, the annual inflation rate in the US edged up to a 13-year high

of 5.4 percent in September of 2021, with inflation expectations rising alongside. Similarly,

after a decade that was dominated by central bankers’ fear of deflation, inflation forecasts

and long term Treasury yields have been widening recently as well. These concerns reflect

not only the potential upward pressure on prices caused by supply and capacity shortages

when demand recovers in the aftermath of the pandemic, but also the surge in government

debt across the globe following fiscal stabilization programs and stimulus packages both

around the Great Recession and the Pandemic. The 1.9 trillion dollar American Rescue

Plan Act of 2021, further adds to US government debt, which is projected to reach around

200 percent of GDP in 2050, according to the CBO (as of March 2021). In situations with

such unprecedented debt levels, governments and central banks may be tempted to restore

budget balance by monetizing debt, thereby strengthening inflationary pressure.

In this paper, we ask how governments can optimally manage their debt portfolios in the

presence of inflation concerns and high debt levels. Starting from the simple observation that

real or indexed debt (TIPS) cannot be inflated away ex-post, we examine the government’s

optimal debt portfolios when it has access to both nominal and real bonds. More specifically,

we solve for the optimal Ramsey equilibrium in a setting in which the government has to

finance an exogenous stochastic expenditure stream either by levying distortionary labor

taxes or by issuing real or nominal debt. We allow for multi-horizon debt and assess the

implications of short versus long term debt for equilibrium quantities and debt portfolios.

Inflation has real costs because of nominal rigidities through sticky prices and is affected

by the monetary authority which sets the nominal short-term interest rate by responding to

inflationary pressure following a Taylor rule. Our paper therefore contributes to the literature

started in the seminal work of Lucas and Stokey (1983) on optimal fiscal and monetary policy,

and considers both long-term nominal and real debt in models with nominal rigidities such

as Siu (2004), Schmitt-Grohe and Uribe (2004), and Lustig et al. (2008).

When the government cannot issue TIPS, the Ramsey planner faces a trade-off between

responding to shocks using distortionary taxes versus inflation. On the one hand, by inflat-

1The Economist ’s issue of December 12, 2020, was titled “will inflation return?”.
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ing away the nominal liability, the government can finance additional expenditures without

increasing labor taxes. On the other hand, by raising expected inflation, the planner re-

duces the value of household savings and decreases the price of government nominal bonds.

Therefore, both current and future prices of nominal bonds are lowered. The addition of

inflation protected securities in the government debt portfolio affects this trade-off in two

ways. On the one hard, inflation protected securities constitute a real commitment ex-post

and cannot be inflated away as the planner needs to compensate real bond holders. On the

other hand, higher inflation has smaller impact on the cost of current and future borrowing

since inflation does not affect the price of real bonds.

We find that in equilibrium, the Ramsey planner uses both types of bonds and that

the optimal government portfolio prescribes a substantial role to real bonds. We derive

analytical results showing that the use of inflation allows to implement real and nominal

price differences that help to complete the markets and that the investment position in real

and nominal bonds depends on the type of shock considered. In the quantitative model

we consider an economy with exogenous government expenditure shocks and find that the

optimal policy prescribes the allocation to nominal bonds in good times and reallocation

to real bonds in bad times. By doing this the planner uses inflation to reduce the nominal

liability and at the same time issues real bonds, whose price does not decrease as much in the

presence of rising inflation expectations. Quantitatively, in our baseline calibration, inflation

is more volatile but on average lower than in the model with only nominal bonds. This

implies a welfare gain of 0.223%, which is achieved through better management of inflation

risk and bond prices.

We find that inflation response is shaped by (i) the outstanding nominal debt and (ii) the

maturity of debt. When the outstanding nominal debt is high, it becomes more tempting

to use inflation as the same inflation rate allows to alleviate a larger debt burden, while

creating the same misallocation cost due to nominal rigidities. We find that higher nominal

debt leads to high inflation, which is optimal as longs the government reallocates to real

bonds once the rising inflation begins to affect nominal bond prices. Longer debt maturity,

on the other hand, is related to lower inflation rates as a longer planning horizon allows to

spread inflation costs across multiple periods. We find that longer maturity implies inflation

that is less volatile but more responsive to expenditure shocks, which, overall, improves

household welfare.

The nonlinear nature of the equilibrium inflation response in our model requires an

accurate global solution. This is computationally challenging in our environment, as the
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complexity of solving Ramsey problems with multiple maturities increases in the length of

the largest maturity and the state space is highly multicollinear. In this paper we exploit a

machine learning algorithm based on a neural networks approach to tackle these problems,

as proposed in Villa and Valaitis (2019). The method builds on a version of a parameterized

expectations algorithm (den Haan and Marcet, 1990) and uses neural networks to project

expected value terms on the state space.

1.1 Related Literature

The paper builds on the papers studying the Ramsey problem with non-state contingent

government debt (Aiyagari et al., 2002; Angeletos, 2002; Buerra and Nicolini, 2004; Faraglia

et al., 2019; Bhandari et al., 2019). Aiyagari et al. (2002) show that when the government

can only issue real bonds of one period maturity, the Ramsey planner achieves the complete

markets outcome in the long-run by accumulating assets and using government savings to

smooth tax distortions. Angeletos (2002) shows that complete markets outcome can be

achieved if the number of maturities available is weakly greater than the number of states,

while Buerra and Nicolini (2004) argue quantitatively that this requires unrealistically large

long and short positions and rebalancing of government debt. Bhandari et al. (2019) study

optimal maturity structure in a model with Epstein-Zin preferences and show that such

extreme positions are optimal because of counterfactual asset pricing implications. With

Epstein-Zin preferences the optimal policy implies moderate portfolio positions with little

rebalancing. Faraglia et al. (2019) remove the assumption that government buys back the

whole debt in every period and, instead, consider another extreme where bonds cannot be

repurchased before the maturity. They show that under this assumption the optimal debt

positions are closer to the data and government borrows in both types of bonds. Debt in

long bonds is used to smooth taxes over states and short bonds are used to smooth taxes

over time.

The paper is most closely related to the literature studying the optimal mix of mone-

tary and fiscal policy with non-state contingent nominal debt (Chari and Kehoe, 1999; Siu,

2004; Schmitt-Grohe and Uribe, 2004; Lustig et al., 2008; Marcet et al., 2013; Leeper and

Zhou, Forthcoming). As known since Lucas and Stokey (1983), the Ramsey planner seeks to

manage government debt in order to smooth distortionary taxes over time and across states.

Chari and Kehoe (1999) show that such smoothing of tax distortions can be achieved with

inflation surprises when the Ramsey planner has control over the monetary policy. Chari and

Kehoe (1999)’s conclusion is achieved in a model without nominal rigidities, which means
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that inflation is no real cost. Siu (2004) and Schmitt-Grohe and Uribe (2004) contempora-

neously consider an optimal fiscal and monetary policy mix when planner faces a trade-off

between distortionary taxes and inflation in the presence of nominal rigidities. In such a set-

ting optimal policy prescribes a very limited role for inflation even when nominal rigidities

are small. Lustig et al. (2008) show that inflation‘s role is larger when the government can

issue bonds with long maturities. The idea is that large inflation implies a higher interest

rate on new debt and long maturity allows the government to postpone such costly increase.

Such idea is reaffirmed in Marcet et al. (2013). In addition, Leeper and Zhou (Forthcoming)

show that importance of inflation also depends on the starting level of government debt

and Siu (2004) shows that the role of inflation in optimal policy increases with the size of

government expenditure shocks. Marcet et al. (2013) show that the optimal use of inflation

depends on the independence of the monetary authority and, when it is independent, on the

values of Taylor rule coefficients. Overall, the Ramsey planner is more likely to inflate the

debt when the monetary authority is independent. Another paper closely related to ours is

Equiza-Goni et al. (2020), which studies the role of inflation-indexed debt when the planner

issues long-term debt that is nominal and short-term debt that is inflation-indexed. In this

paper we study the trade-off between nominal and real bonds with the same maturity.

Solving the Ramsey problem with multiple maturities is computationally challenging

because the number of state variables increases in the length of the largest maturity and the

state space is highly multicollinear. In this paper we exploit the neural networks approach

to tackle these problems, as proposed in Villa and Valaitis (2019). The methods builds on

uses a parameterized expectations algorithm (den Haan and Marcet, 1990) and uses neural

network to project expected value terms on the state space.2

The paper is organized as follows. Section 2 presents stylized facts and inflation and US

federal debt. Section 3 presents the model and analytical results. Section 4 shows the main

quantitative results and inspects the role of outstanding debt and maturity length. Finally,

section 5 concludes.

2 Stylized Facts

We begin by presenting some stylized facts that motivate our analysis. We focus on the

evolution of inflation, government debt and real bonds.

2Other examples of the use of neural networks to solve economic models include Duarte (2018), Scheideg-

ger and Bilionis (2019), Maliar et al. (2021), Fernández-Villaverde et al. (2020) and Azinovic et al. (2021).
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Figure 1 illustrates the evolution of inflation expectations, as captured by the ten-year

break-even inflation. The break-even inflation rate stabilizes at a level of about 2.5% from

2004 through 2007. In 2008, the break-even inflation rate sharply fell. After having reached

almost a value of zero during the pandemic, inflation expectations recently spiked up sharply

to pre-crisis level but remained fairly volatile.

Figure 1: 10 year break-even inflation

Notes: Figure show the US 10-year break-even inflation rate. Break-even inflation is the difference

between 10-year nominal and inflation-indexed bond yields. Source: St. Louis Fred database.

Figure 2 depicts the evolution of government debt as measured by the debt-to-gdp ratio.

The evolution of government debt exhibits long swings, and hovered between around forty

and sixty percent of GDP before the financial crisis. In response to fiscal stimulus packages

around the financial crisis and then the pandemic, it has recently reached World War II levels

for the first time. Moreover, according to the CBO, under current policies it is projected to

reach two hundred percent of GDP by around 2050.
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Figure 2: US Debt to GDP

Notes: Figure shows US total public debt to GDP ratio. Data is quarterly and seasonally adjusted.

Source: St. Louis Fred database.

Figure 3 plots the evolution of real debt as a fraction of total US government debt. That

fraction has grown since the inception of the market for inflation-protected bonds (TIPS)

and has stabilized around a modest eight percent in the last ten years.
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Figure 3: Share of US Real Debt

Notes: Figure shows the share of US inflation-protected securities (TIPS) to US total public debt. Source:

US department of Treasury.

We now turn to a general equilibrium model that informs us about the optimal com-

position of government debt portfolios in the presence of a high fiscal burden and inflation

pressure.

3 Model

In this section, we develop a novel DSGE model of fiscal and monetary policy where a

government optimally manages debt in the presence of inflation concerns in a setting where:

(i) the government can issue long-term nominal and real (TIPS) bonds, (ii) the monetary

authority sets short-term interest rates according to a Taylor rule, and (iii) inflation has

real costs as prices are sticky. We then proceed to formulate the Ramsey problem and

characterize the optimal policy.
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3.1 Environment

Time is discrete and the horizon is infinite.

Preferences. There is a continuum of identical infinitely lived households. Each household

has preferences represented by the following expected life-time utility:

E0

[
∞∑
t=0

U(ct, lt)

]
,

where ct is its consumption, β ∈ (0, 1) is the discount factor, and γ is the inverse elasticity of

inter-temporal substitution (or risk aversion). Each household has utility for leisure lt which

is equal to 1−ht, where ht is hours worked. Households are identical. We assume the utility

function U is strictly increasing in both consumption ct and leisure lt and concave.

Technology. A continuum of perfectly competitive intermediate firms, indexed by i ∈
[0, 1], produces output through a Cobb-Douglas technology Yi,t = Ahi,t where hours worked

is the only input. Intermediate goods are sold at a price Pi,t to the final good producer.

Aggregate output is given by Yt = Aht.

Shocks. Government expenditure gt is the only source of aggregate risk. We assume gt

follows an AR(1)

log gt+1 = (1− ρ) · µ+ ρg log gt + ξt+1,

where ξt+1 is a normally distributed innovation shock with mean zero and variance σ2
g .

Timing. At the beginning of each period, gt is realized and each firm produces output

according to their specific labor input, distributes dividend and pays wages. Government re-

pays nominal maturing debt at the price of 1 and real maturing debt at the price ΠN
j=1πt−j+1.

Government levies a distortionary labor tax τt on labor income. The representative house-

hold, conjointly with government financial needs, make savings decisions in nominal and real

debt.

Markets. The representative household saves through (i) a N -period non-contingent nom-

inal debt BN
t traded at a price QN

t and (ii) a N -period non-contingent inflation-protected

debt bNt traded at a price qNt . The government issues both types of debt, collects revenues

in the current period and repays debt at maturity.

9



Income. In every period t, the representative household receives labor and investment

income according to the following budget constraint

ct +QN
t B

N
t + qNt b

N
t = (1− τt)wtAht +BN

t−N/Π
N
j=1πt−j+1 + bNt−N .

Inflation rate from period t− 1 to t is calculated as πt = Pt
Pt−1

.

Government. The government finances expenditures gt by imposing proportional labor

taxes τt on all labor income and by issuing nominal QN
t and real debt qNt .

Given the assumption that the government buys back and reissues the entire stock of

outstanding debt, the government budget constraint is given by:

QN−1
t

BN
t−1

πt
+ qN−1

t bNt−1 = τtAhtwt − gt +QN
t B

N
t + qNt b

N
t . (1)

Central Bank. We assume the central bank seeks to achieve an inflation target π by

setting one-period nominal rate it ≡ 1/Q1
t according to the following Taylor Rule:

it =

(
βEt

[
U1,t+1

U1,t

1

πt+1

])−1

=
1

β
π
(πt
π

)φπ
. (2)

3.2 Household

The representative household chooses sequences for: (i) consumption {ct}∞t=0, (ii) leisure

{lt}∞t=0, (iii) nominal bond demand {BN
t }∞t=0 and (iv) real bond demand {bNt }∞t=0 such that

its time-0 expected lifetime utility is maximized and the budget constraint is satisfied ∀t ≥ 0.

In equilibrium, the household’s dynamic demand for nominal bonds is given by

QN
t = Et

[
Mt,t+N ·

1

ΠN
j=1πt+j

]
, (3)

where Mt,t+N ≡ βN
U1,t+N

U1,t
is the stochastic discount factor. Note that nominal bonds are

subject to inflation risk. Given that bonds purchased at period t matures at time t+N the

return of the nominal bond is adjusted by the compounded inflation ΠN
j=1πt+j.

In equilibrium, the household’s dynamic demand for real bonds is given by

qNt = Et [Mt,t+N ] . (4)

Note that the price of real bonds qNt is just the discounted repayment at the par value of 1.

Real bonds are inflation-protected; therefore, inflation risk does not enter directly the real

price of bonds in equilibrium.
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The combination of equations 3 and 4 yields the following equilibrium relationship be-

tween nominal and real prices

QN
t

qNt
=

Et
[
Mt,t+N · 1

ΠNj=1πt+j

]
Et [Mt,t+N ]

= Et
[

1

ΠN
j=1πt+j

]
+

1

qNt
Covt

(
Mt,t+N ,

1

ΠN
j=1πt+j

)
,

which states that the ratio between the nominal and the real bonds price can be decomposed

in the sum of two components: (i) the expected return on nominal bonds and (ii) the

covariance between the stochastic discount factor and the return on nominal bonds. The

log-spread between the two prices is equal to the value of the insurance against inflation risk

plus an hedging term that accounts for the impact that inflation risk has on the consumption

smoothing desire of the household (in our calibrated model, the covariance in the second

addendum is typically negative).

Labor supply is standard. In equilibrium, the marginal rate of substitution between

consumption and leisure needs to be equal to the wage net of labor tax

U2,t

U1,t

= (1− τt)Awt. (5)

3.3 Firms

An intermediate firm i chooses sequences for: (i) prices {Pi,t}∞t=0 and (ii) labor demand

{hi,t}∞t=0 in order to maximize the expected time-0 net present value of dividend on behalf

of its shareholder (the representative household):

E0

∞∑
t=0

M0,t ·

Pi,tYi,t − wthi,tPt − PtACt︸ ︷︷ ︸
Dividend

 .
We assume the firm can set prices incurring the following convex quadratic reduced-form

adjustment cost

ACt =
ϕ

2
·
(

Pi,t
Pi,t−1

− π
)2

+ φ1 ·
(

Pi,t
Pi,t−1

− π
)

+ φ2.

Also, the demand for the intermediate good is given by static profit maximization of the

final good producer

Yit =

(
Pi,t
Pt

)− 1
ν

Yt.

In a symmetric equilibrium (Pi,t = Pt), the intermediate firm’s profit maximization problem

yields the new Keynesian Philips curve

1

ν
Yt(ν − 1 + wt/A)− ϕ(πt − π)πt − φ1πt + Et[Mt,t+1(ϕ(πt+1 − π)πt+1 + φ1πt+1)] = 0. (6)
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3.4 Government

The government needs to finance spending using labor income taxes and issuing nominal

and real non-contingent debts of maturity N . The government budget constraint is

QN−1
t

BN
t−1

πt
+ qN−1

t bNt−1 = τtAhtwt − gt +QN
t B

N
t + qNt b

N
t , (7)

which is 1 expressed in real terms. The resource constraint of the economy is given by

ct + gt + ACt = Aht. (8)

Combine equations 5 and 8 to define government’s surplus as:

st ≡ wtAht − (1− τt)wtAht − gt = wt(ct + gt + ACt)−
U2,t

AU1,t

(ct + gt + ACt)− gt.

Implementability constraint Combining the definition of surplus st with equations 3,

4, 5 and 7 gives an intertemporal expression for the government budget constraint

Buy-back of nominal bonds︷ ︸︸ ︷
Et

[
Mt,t+N−1 ·

1

ΠN−1
j=1 πt+j

]
BN
t−1

πt
+

Buy-back of real bonds︷ ︸︸ ︷
bNt−1Et [Mt,t+N−1] =

st +BN
t Et

[
Mt,t+N ·

1

ΠN
j=1πt+j

]
︸ ︷︷ ︸

New issuance of nominal bonds

+ bNt Et [Mt,t+N ]︸ ︷︷ ︸
New issuance of real bonds

,

which is the implementability constraint.

Optimal policy Given an exogenous sequence {gt}∞t=0, the Ramsey planner seeks se-

quences of policies {πt, τt, BN
t , b

N
t }∞t=0 and sequences of allocations {ct, lt, wt}∞t=0 such that

the household’s time-0 expected life-time utility is maximized and such that, at every t,

(i) the implementability constraint is satisfied, (ii) the new Keynesian Phillips curve holds

(equation 6), (iii) the Taylor rule (equation 2) is satisfied and (iv) both nominal and real

bonds must lie between a lower bound BU and an upper bound BL. Call µt, λ
π
t and λTt

the time-t Lagrange multipliers associated with the implementability constraint, the Phillips

curve and the Taylor Rule, respectively. The set of sequences described by the optimal policy

further satisfies the following conditions.

The first order condition with respect to nominal bonds is

µt =
[
Et[U1,t+N/Π

N
j=1πt+j]

]−1
[
Et[µt+1U1,t+N/Π

N
j=1πt+j] +

ξU,t
βN
− ξL,t
βN

]
, (9)
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where ξU,t and ξL,t are the Lagrange multipliers on the upper and lower bounds, respectively.

The first order condition with respect to real bonds

µt = [Et [U1,t+N ]]−1

[
Et[µt+1U1,t+N ] +

ξTU,t
βN
−
ξTL,t
βN

]
, (10)

where ξTU,t and ξTL,t are the Lagrange multipliers on the upper and lower bounds, respectively.

Assuming that debt constraints do not bind at time t (i.e. all ξ are zero), equations 9 and

10 give the system µt = Et[µt+1] +
[
Et
[
U1,t+N/Π

N
j=1πt+j

]]−1 · Covt
[
U1,t+N/Π

N
j=1πt+j, µt+1

]
µt = Et[µt+1] + [Et [U1,t+N ]]−1 · Covt [U1,t+N , µt+1]

which pins down a dynamic for the Lagrange multiplier on the implementability constraint

µt similar in spirit to the one of Aiyagari et al. (2002). The Lagrange multiplier µt follows

a risk-adjusted martingale with the the additional condition that links the optimal choices

for nominal and real bonds

Et [U1,t+N ]

Et
[
U1,t+N/ΠN

j=1πt+j
] =

Covt [U1,t+N , µt+1]

Covt
[
U1,t+N/ΠN

j=1πt+j, µt+1

] . (11)

The optimality condition with respect to wage

µtU1,t +
1

Aν
λπt = 0. (12)

tights together the dynamic of the lagrange multiplier on the implementability constraint

µt and on the new Keynesian Phillips curve λπt . The remaining conditions with respect to

consumption ct and inflation πt can be found in Appendix 6.2.

Special Case We consider a special case with risk-neutral households U = ct+v(lt), single

period maturity N = 1, and no lending constraint ξTL,t = 0. In this case equation 10 becomes

µt = Et[µt+1] + Et

[
ξTU,t
βN

]
.

Since the lagrange multiplier on the borrowing limit is non-negative ξTU,t ≥ 0, then µt ≥
Et[µt+1]. We can use the submartingale convergence theorem: µt converges almost surely.

This last condition and result is equivalent to Aiyagari et al. (2002): in the long-run the gov-

ernment eventually accumulates enough assets that it never needs to tax again. Differently

from Aiyagari et al. (2002), the simultaneous presence of both nominal and real debt requires

an extra condition to be satisfied. This is given by equation 11, which under risk-neutrality

and N = 1 is

Covt(πt+1, µt+1) = 0.
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3.5 Implementing Arrow-Debreu Policies with Non-Contigent Nom-

inal and Real Debt

The Ramsey problem we lay out can be thought of as a portfolio choice problem with

incomplete markets in which the planner looks for the optimal allocation in the government

debt portfolio of two securities, namely non-contingent nominal and real bonds. To provide

some intuition about the determinants of these allocations, we now examine stylized examples

in which the objective of the planner is most transparent, namely specifications in which the

economy can be in two states only. In such an environment, the planner’s objective is choose

a portfolio of the two securities that replicates the Arrow-Debreu policies. That is, the

planner aims at implementing the complete markets allocation.

We thus ask if we can we use inflation fluctuations to replicate a portfolio of Arrow-Debreu

securities? If yes, can we characterize the portfolio of nominal and real non-contingent

debt that replicate Arrow-Debreu securities? We consider a simple example in which the

government can issue nominal and real debt with one period maturity. The answer to this

question depends on the type of shock considered. In the following example we consider a

government that faces two types of two-state (L: low, H: high) i.i.d. shocks: (i) inflationary

(e.g. increase in government expenditure) and (ii) deflationary (e.g. output or monetary

policy shock). The signs of the portfolio positions of nominal and real non-contingent debt

that reproduce Arrow-Debreu securities are summarized in table 1.

Debt Inflationary (πH > πL) Deflationary (πH < πL)

Nominal B + −
Real b

(
πH,t
πL,t

>
bCML
bCMH

)
=⇒ + +

Table 1: Signs of the portfolio allocations that reproduce AD securities

Notes: Table reports the signs of the portfolio allocations of non contingent nominal debt B and non

contigent real debt b under two different types of shocks. Both types of shocks cause the net present value

of surpluses at time 0 to fall. Since, under complete market, state contigent debt equates net present

value of debt both type of shocks lead to bCM
H < bCM

L , where bCM
H is the value of contigent debt in the

high state and bCM
L is the value of contigent debt in the low state.

Inflationary Shock Suppose that the government faces a two-state i.i.d. government

expenditure shock gt ∈ {gL, gH}. Note also that U1(cH,t) > U1(cL,t). We can use the Taylor
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Rule to back-out an expression for inflation

πt =

 πφπ−1

Et
[
U1,t+1

U1,t

1
πt+1

]
 1

φπ

,

from which it follows that πL,t < πH,t. Note that this is line with the intuition that when

the government faces a high g shock, the planner will optimal choose to increase inflation in

correspondance of a monetary expansion period. Moreover, since nominal price is given by

Q1
L,t = Et

[
β U1(ct+1)
U1(cL,t)

1
πt+1

]
and Q1

H,t = Et
[
β U1(ct+1)
U1(cH,t)

1
πt+1

]
, it also follows that Q1

L,t > Q1
H,t. In

word, nominal bonds looses value with high g shock, which also corresponds to high inflation.

Outstanding liabilities b̃t at time t are characterized by the left-hand-side of the gov-

ernment budget constraint in real term, equation 7. In particular, with maturity N = 1

outstanding liabilities can be expressed as

Bt−1(st−1)

πt(st)
+ bt−1(st−1) = b̃t(s

t),

and they are measurable with respect to st thanks to the presence of inflation π(st).

With complete markets the government insure itself against bad times, hence bCMH < bCML .

In order to reproduce Arrow-Debreu securities we need[
π−1
H,t 1

π−1
L,t 1

][
Bt−1

bt−1

]
=

[
bCMH

bCML

]
.

Note that the portfolio matrix is full-ranked as long as U1(cH,t) 6= U1(cL,t), which implies

that Q1
L,t 6= Q1

H,t and that πL,t 6= πH,t. Hence, the market can be completed.

Solving the linear system yields[
Bt−1

bt−1

]
=

1

π−1
H,t − π

−1
L,t

[
1 −1

−π−1
L,t π−1

H,t

][
bCMH

bCML

]
. (13)

Recall that π−1
L,t > π−1

H,t. Hence, 1
π−1
H,t−π

−1
L,t

< 0. This and the fact that bCMH < bCML imply

that nominal debt is positive Bt−1 > 0. If
πH,t
πL,t

>
bCML
bCMH

, then bt−1 > 0. In words, the higher

is the negative effect of the shock on the NPV of surplus the more likely TIPS are to be

positive Also, the higher will be inflation in the H shock the more likely TIPS are to be

positive.

Deflationary Shock Suppose that the government faces a two-state i.i.d. output shock

zt ∈ {zL, zH}. Note also that U1(cH,t) < U1(cL,t). Similarly to before, we can use the
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Taylor Rule to back-out an expression for inflation, from which it follows that πL,t > πH,t.

Note that this is line with the intuition that when the government faces a high z shock, the

planner will optimal choose to decrease inflation in correspondance of a monetary contraction

period. Moreover, since nominal price is given by Q1
L,t = Et

[
β U1(ct+1)
U1(cL,t)

1
πt+1

]
and Q1

H,t =

Et
[
β U1(ct+1)
U1(cH,t)

1
πt+1

]
, it also follows that Q1

L,t < Q1
H,t. In word, nominal bonds reevaluates with

high z shock, which also corresponds to low inflation.

The net present value of surpluses decline, hence bCMH < bCML . The portfolio positions

that reproduce Arrow-Debreu securities are given by equations 13.

Recall that π−1
L,t < π−1

H,t. Hence, 1
π−1
H,t−π

−1
L,t

> 0. This and the fact that bCMH < bCML

imply that nominal debt is positive Bt−1 < 0. The sign of real debt is determined by the

sign of −π−1
L,tb

CM
H + π−1

H,tb
CM
L . Since π−1

L,t < π−1
H,t and bCMH < bCML , we can conclude that

π−1
L,tb

CM
H < π−1

H,tb
CM
L . Hence, bt−1 > 0.

4 Quantitative Results

In this section we present the quantitative model results. First we describe the calibration

strategy and then present the dynamics of the baseline model comparing it to a counterfactual

without TIPS bonds. We then move on to analyze the role of outstanding nominal debt and

the length of bond maturity.

4.1 Calibration

The model is calibrated to yearly frequency and the discount factor β is set to 0.96. House-

hold preferences are additively separable in consumption and leisure: U(c, l) = u(c) + v(l),

where u(c) = c1−γ

1−γ , v(l) = B · l1−η
1−η . We set γ and η to standard values (see Table 2) and look

for B such that households allocation 2/3 of their time to leisure in the steady state. We

assume that gt follows an AR(1) process

log(gt+1) = (1− ρ) · µ+ ρ log gt + εt+1.

We estimate the parameters of ρ and σε using yearly government expenditure data from

BEA from 1947 to 2018, after extracting the cyclical component and linear trend. This

gives the estimates for ρ and σε of 0.977 and 0.0161, respectively. We then set µ so that the

unconditional mean of gt matches the average government expenditure to GDP ratio in the

postwar sample, which is 20%.

In the production sector we set the Rotemberg adjustment cost to 4.375, consistent with the
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estimate in Sbordone (2002). In addition, our specification of adjustment cost has two extra

parameters. First, we introduce parameters φ1 and φ2 to have a well defined steady state in

the deterministic version of the model.3 We set parameter ν, controlling the price elasticity

of demand, to 0.1, which is a standard value used in the literature. The Taylor rule responds

only to deviations from the steady state inflation rate. We set the steady state inflation rate

to 2%, which is the Fed target level. We then set the maturity of government debt N equal

to 5 for both nominal and real bonds. This is close to the average maturity of US federal

debt (∼5.5 years). Table 2 summarizes all parameter values.

Parameter Value Description, source

β 0.96 Discount factor

γ 2 Relative risk aversion

η 1.8 Leisure utility parameter

A 1.0 Technology level

B 4.3276 Relative weight of leisure

− 1
ν

−10 Price elasticity of demand

ϕ 4.375 Rotemberg adjustment cost, Sbordone (2002)

φπ 1.2 Taylor rule response to inflation

Π 1.02 SS inflation, Fed target

ρ, σε 0.977, 0.0161 gt persistence and std, BEA

µ(1− ρ) 0.2 Ratio of government expenditure to GDP, BEA

N 5 Maturity of government debt

ψ 0 TIPS adjustment cost

φ1, φ2 0.00001, 5.7143×10−7 Adjustment cost

Table 2: Parameter Values

4.2 Baseline Results

We begin by comparing our calibrated model to a counterfactual scenario where the govern-

ment can only issue nominal bonds. When the government cannot issue TIPS, the Ramsey

planner faces a trade-off between responding to shocks using distortionary taxes versus in-

flation. On the one hand, by inflating away nominal debt, the government can finance the

3We use the equilibrium dynamics of the deterministic model to initialize the neural network. See ap-

pendix section 6.3 for a detailed description of the solution method.
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additional expenditure without increasing labor taxes. On the other hand, by raising ex-

pected inflation, the planner reduces the value of household savings and decreases the price

of government nominal bonds. Therefore, both the current and the future price of nominal

bonds fall. In addition to that, inflation distorts firms’ production decisions as price adjust-

ment is costly. The presence of TIPS in the government debt portfolio affects this trade-off

in two ways.

First, higher inflation has less impact on the cost of current and future borrowing, since

it does not affect the price of inflation protected bonds. Second, the use of inflation becomes

more costly because the planner needs to compensate households holding real bonds.
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Figure 4: Impulse Response Functions

Notes: Figures shows impulse response functions to a government expenditure shock equal to 3% of GDP.

Solid blue line - baseline model, dashed red line - model without TIPS bonds. Panels for inflation and

taxes show percentage point difference. Panels for bonds show percentage point difference expressed as

a ratio of GDP.
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We investigate the workings of the model using impulse response functions in figure 4

where we shock the economy with a one-time government expenditure shock equal to 3% of

GDP. We find that real bonds play a substantial role in shaping the optimal policy. The

optimal policy prescribes: (i.) the accumulation of nominal liabilities and real assets in good

times, and, (ii.) inflating away nominal liabilities and financing government expenditures

using real assets in bad times. This stands in contrast to a counterfactual model without

TIPS bonds, where government accumulates nominal liabilities in bad times and decumulates

it otherwise. Because the government chooses to borrow in nominal bonds in response to

shocks, it tried to keep the current nominal bond price high and, therefore, inflation plays a

minor role in this counterfactual economy.

Reallocation to TIPS bonds in bad times is supported by moments from model simula-

tion reported in table 3. It shows that TIPS bonds are countercyclical and nominal bonds

are procyclical, while the total debt portfolio is countercyclical in both models.4 On aver-

age, the optimal policy features lower levels of tax, inflation and short rates, but a higher

responsiveness of these policy tools to government expenditure shocks.

4An increase in government expenditure indicates economic downturn. Therefore negative correlation

with gt means that a variable is procyclical.

19



No TIPS Baseline

E(πt), % 1.986 1.381

E(τt), % 23.397 21.638

E(it), % 6.232 5.477

E(bNt /GDP ) - -0.321

E(BN
t /GDP ) 0.362 0.09

σ(πt) 0.001 0.004

σ(τt) 0.07 0.098

ρ(πt, gt) 0.693 0.885

ρ(τt, gt) 0.883 0.85

ρ(BN
t , gt) 0.674 -0.703

ρ(bNt , gt) - 0.846

ρ(BN
t + bNt , gt) 0.674 0.829

ρ(σt(πt+1), gt) 0.564 -0.283

Table 3: Main moments

Notes: Table reports sample moments from simulating model equilibrium dynamics for 5000 periods.

Simulation is initialized at bN , BN = 0 and we drop the first 100 periods before calculating moments.

4.3 Example: Simulation With Prolonged Period of High Govern-

ment Expenditures

Next, we present an example from the model simulation with a prolonged period of high

government expenditure in figure 5. Top left panel shows the exogenous process for govern-

ment expenditure, which starts to increase around period 100 and remains high for around

100 periods. Other three panels show policy variables in the baseline model (solid blue line)

and the model without TIPS bonds (dashed red line). Inflation and taxes are on average

lower in the baseline model but more responsive to increases in government expenditure.

Because inflation is on average lower, nominal bond prices tend to be higher in the baseline

model. By keeping the average inflation below the steady state target of 2%, the Ramsey

planner incurs real costs but it happens that marginal benefits of having higher bond prices

outweights these costs. Likewise, the Ramsey planner internalizes that higher use of inflation

translates into more volatile nominal bond price - it drops by 2 percentage points during

the period of high expenditure but then recovers from 0.74 to 0.79. This price volatility

20



has little cost for the planner in the baseline model as it is always possible to relocate the

portfolio to TIPS bonds if nominal bonds have to sell at a high discounts. This substitution

is impossible in the one bond model and therefore, inflation responds to shows very little in

the counterfactual economy.
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Figure 5: Simulation: policy variables

Notes: Figure shows an excerpt from the simulation of model equilibrium dynamics. Solid blue line -

baseline model, dashed red line - model without TIPS bonds. Both models are simulated with the same

realization of government expenditure shocks. The same simulation was used to calculate moments in

table 3.

As shown by figure 6, higher welfare is achieved through higher consumption and less

volatile leisure. Compared to a benchmark model consumption increases by on average 0.8%

and leisure volatility falls by 6.64%. In fact, in the baseline model taxes are on average lower

and household tends to work more. At the same time, labor supply is less elastic and it does

not fluctuate as much even when the labor tax rate is more volatile in the baseline model.
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Overall, compared to a benchmark model consumption increases by on average 0.8% and

leisure volatility falls by 6.64% and this leads to a consumption equivalent welfare gain of

0.223% compared to a benchmark without TIPS bonds. The next session analyzes the role

of outstanding debt in shaping the optimal policy.
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Figure 6: Simulation: allocations

Notes: Figure shows an excerpt from the simulation of model equilibrium dynamics. Solid blue line -

baseline model, dashed red line - model without TIPS bonds. Both models are simulated with the same

realization of government expenditure shocks. The same simulation was used to calculate moments in

table 3.

4.4 Role of Initial Debt

In this section we analyze the relation between outstanding debt and the use of inflation when

TIPS bonds are available. Specifically, we ask whether more debt causes more inflation. By

using inflation, the Ramsey planner weights the benefits of inflating away nominal liabilities

against two types of costs. First, by rational expectations, higher inflation eventually gets

reflected in nominal bond prices (equation 3) and new nominal bonds need to sell at a higher

discount. Second, inflation has real costs as it distorts firms’ pricing decisions (equation 6).

The reason that we observe more volatile inflation in the baseline model is because inflations’

effect on nominal prices is not relevant for the Ramsey planner when the TIPS bonds are

available. In this section we ask if high outstanding nominal debt can lead to high inflation.

The level of outstanding nominal debt changes the trade-off between inflation of nominal

liabilities and real distortions. When the outstanding nominal debt is high, the same inflation

rate allows to achieve a greater reduction in nominal liability while incurring the same
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distortion. At the same time, the trade-off between nominal liability effect and inflations’

effect on nominal bond prices does not change. The same inflation rate allows to inflate more

liabilities but more bonds need to be reissued in the next period. This together suggests

that more nominal debt should lead to higher inflation.
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Figure 7: Role of nominal debt

Notes: Figure plots policy functions of inflation and taxes in function of nominal debt. Other state

variables are fixed at their mean values. Left - inflation, right - tax rate. Solid blue line show the baseline

model, dashed red - model without TIPS bonds.

We investigate the role of nominal debt in models with and without TIPS bonds by

looking at the policy functions of inflation and taxes in figure 7, which plots optimal inflation

and taxes in function of nominal debt by keeping other state variables at their average levels.5

The left panel shows that inflation responds positively to nominal debt in both models but

the response in the baseline model is much larger. As the outstanding nominal debt increases

from 0 to 75% of the GDP, inflation rate increases from 1.4% to 2.9% holding everything

else fixed. In contrast, inflation in the one bond model moves from 1.9% to 2.05%. If

real misallocation was the main cost of the use of inflation, one would expect that optimal

inflation would respond to outstanding nominal debt similarly in both models. However, we

observe that inflation responds little to shocks or outstanding debt in a one bond model,

consistent with Siu (2004) and Marcet et al. (2013). Yet the reason for this lack of response

is that the Ramsey planner mostly cares about the effect that inflation has on nominal bond

prices. Since this concern is close to irrelevant in the model with TIPS bond, here the

Ramsey planner uses inflation more aggressively.

5Since we solve the model using parameterized expectations algorithm, we are not solving for the policy

functions explicitly. Instead, we use the model simulated data and the neural network to fit the relation

between the policy and the state variables.
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4.5 Role of Maturity

In this section we analyze the role of maturity on optimal inflation and taxes. In general,

longer maturity brings greater benefits of using inflation. As maturity increases, both in-

flation and taxes become less volatile, as shown in the left panel of figure 8. Intuitively,

longer maturity allows the planner to spread the inflation policy intervention across multiple

periods. On the one hand, optimal policy prescribes lower volatility of taxes and inflation

as maturity increases. but, on the other hand, higher responsiveness of these policy tools to

government expenditures. As shown in the right panel of figure 8, increasing the maturity

from five to eight years is associated with the consumption equivalent welfare gain of 0.13%.
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Figure 8: Role of maturity

Notes: Figure shows comparative statics when the bond maturity is exogenously increased from five

to eight years in our baseline model. Each panel describes the relative values of respective moments

relative to the counterpart in the model where maturity is five years. Left panel show the volatility of

inflation (dashed blue) and volatility of taxes (dotted red), middle panel shows the correlation of inflation

with government expenditure (dashed blue) and correlation between taxes and government expenditure

(dotted red). Right panel shows the welfare increase relative to the model where bond maturity is five

years.

5 Conclusion

Elevated levels of government debt in the wake of unprecedented stimulus packages increas-

ingly raise concerns about a looming return of inflation, as governments may be tempted to

monetize debt. In this paper, we examine optimal government debt management in the pres-

ence of inflation concerns in a setting where i) the government can issue long-term nominal
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and real (TIPS) bonds, ii) the monetary authority sets short-term interest rates according

to a Taylor rule, and iii) inflation has real costs as prices are sticky. Nominal debt can be

inflated away, but bond prices reflect elevated inflation expectations. Real bond prices are

higher, but such debt constitutes a real commitment ex post. We show that the optimal

government debt portfolio includes a substantial allocation to real assets and nominal lia-

bilities, which lowers inflation levels but increases inflation volatility in equilibrium. The

associated lower correlation between inflation risk and government expenditure is reflected

in welfare gains through real debt management. Quantitatively, our results are stronger i)

the higher the initial debt level, and ii) the longer debt maturity. Our findings suggest that

TIPS should be an important tool for debt management in the presence of looming inflation.
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6 Appendix

6.1 Two-Period Model

Households

A representative household wants to maximize its expected lifetime utility,

U(c0, l0) + βE0U(c1, l1)

where lt = 1− ht, subject to budget constraint at time 0:

P0c0 +Q0B̄0 + q0b̄0 = (1− τ0)P0w0Ah0 + B̄−1 + π0b̄−1

and time 1

P1c1 = (1− τ1)P1w1Ah1 + B̄0 + π1b̄0

where Qt and qt are prices of 1-period nominal and real bonds, B̄t and b̄t, which are monetary

values of 1-period nominal and real bonds, TIPS, at period t, and finally πt = Pt
Pt−1

is an

inflation rate from period t− 1 to t.

It can be re-written in real terms by dividing by Pt:

ct +QtBt + qtbt = (1− τt)wtAht +Bt−1/πt + bt−1

where Bt = B̄t
Pt

and bt = b̄t
Pt

denote the real-value of nominal bonds and TIPS at time t.

Solving for B0, b0, and lt give the following optimality conditions:

� Optimal nominal bonds (FOCB):

Q0 = βE0

[
U1,1

U1,0

1

π1

]
� Optimal TIPS (FOCb):

q0 = βE0

[
U1,1

U1,0

]
� Optimal labor supply (FOCh):

U2,t

U1,t

= (1− τt)Awt
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Firms

Aggregate output Yt = Aht, Intermediate outputs: Yit = Ahit

Intermediate firms problem:

max
Pi,0,Pi,1

Pi,0Yi,0 − w0hi,0P0 − P0AC0 + E0Q0,1 [Pi,1Yi,1 − w1hi,1P1 − P1AC1]

s.t.

ACt =
ϕ

2

(
Pi,t
Pi,t−1

− π
)2

+ φ1

(
Pi,t
Pi,t−1

− π
)

+ φ2

Yit =

(
Pi,t
Pt

)− 1
ν

Yt

Where

Q0,1

Q0,0

= Q0,1 = q0

Substitute in the demand function, the SDF and the adjustment cost function

max
{Pi,t}1t=0

E0

1∑
t=0

Q0,t

[(
Pi,t
Pt

) ν−1
ν

Yt −
(
Pi,t
Pt

)− 1
ν Yt
A
wt −

ϕ

2

(
Pi,t
Pi,t−1

− π
)2

− φ1

(
Pit
Pit−1

− π
)
− φ2

]

The first order condition with respect to Pi,0

v − 1

v

(
Pi,0
P0

)− 1
ν Y0

P0

+
1

ν

(
Pi,0
P0

)− 1
ν
−1

Y0

AP0

w0 − ϕ
(
Pi,0
Pi,−1

− π
)

1

Pi,−1

− φ1
1

Pi,−1

+

E0

(
Q0,1

(
ϕ

(
Pi,1
Pi,0
− π

)
Pi,1
P 2
i,0

+ φ1
Pi,1
P 2
i,0

))
= 0

Imposing the symmetric equilibrium condition Pi,0 = P0 gives the Philips curve

1

ν
Y0(ν − 1 + w0/A)− ϕ(π0 − π)π0 − φ1π0 + E0[q0(ϕ(π1 − π)π1 + φ1π1)] = 0

The first order condition with respect to Pi,1

Q0,1

[
v − 1

v

(
Pi,1
P1

)− 1
ν Y1

P1

+
1

ν

(
Pi,1
P1

)− 1
ν
−1

Y1

AP1

w1 − ϕ
(
Pi,1
Pi,0
− π

)
1

Pi,0
− φ1

1

Pi,0

]
= 0

Imposing the symmetric equilibrium condition Pi,1 = P1 gives

1

ν
Y1(ν − 1 + w1/A)− ϕ(π1 − π)π1 − φ1π1 = 0
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Central Bank

The Central bank follows this Taylor Rule:

i0 =
1

Q0

=

(
βE0

[
U1,1

U1,0

1

π1

])−1

=
1

β
π
(π0

π

)φπ
Ramsey problem

Given the assumption that the government buys back and reissue the entire stock of the

outstanding debt, the government budget constraint is given by:

B̄t−1 + πtb̄t−1 = τtAPtwtht − Ptgt +QtB̄t + qtb̄t

which can be re-written in real terms for time 0

B−1

π0

+ b−1 = τ0Ah0w0 − g0 +Q0B0 + q0b0

Note that at time 1 this becomes

B0

π1

+ b0 = τ1Ah1w1 − g1

Technology is ct + gt + ϕ
2
(πt − π)2 + φ1(πt − π) + φ2 = Aht, recalling that wt(1 − τt) =

Ul,t/(AUc,t) and lt = 1− ht we can define surplus as:

st = wt(ct + gt +
ϕ

2
(πt − π)2 + φ1(πt − π) + φ2)− U2,t

AU1,t

(ct + gt +
ϕ

2
(πt − π)2 + φ1(πt − π) + φ2)− gt

Combining all these information gives the following intertemporal expression for the

government budget constraint:

Bt−1

πt
+ bt−1 = st +BtEt

[
β
U1,t+1

U1,t

1

πt+1

]
+ btEt

[
β
U1,t+1

U1,t

]
Sequential formulation

max
{Bt,bt,ct,πt,wt}1t=0

L =U(c0, l0) + µ0

(
U1,0s0 +B0E0

[
βU1,1

1

π1

]
+ b0E0 [βU1,1]− U1,0

B−1

π0

− U1,0b−1

)
+ βE0

[
U(c1, l1) + µ1

(
s1 −

B0

π1

− b0

)]
Subject to
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� New Keynesian Phillips Curves:

1

ν
Y0(ν − 1 + w0/A)− ϕ(π0 − π)π0 − φ1π0 + E0[q0(ϕ(π1 − π)π1 + φ1π1)] = 0

1

ν
Y1(ν − 1 + w1/A)− ϕ(π1 − π)π1 − φ1π1 = 0

� Taylor Rule:

E0

[
U1,1

1

π1

]
− 1

π
U1,0

(π0

π

)−φπ
= 0

And call λπt and λTt the time-t Lagrange multipliers associated with the Phillips curve and

the Taylor Rule, respectively.

1. FOCB0

µ0E0[U1,1/π1] = E0[µ1/π1]

2. FOCb0

µ0E0 [U1,1] = E0[µ1]

3. FOCct

dU(c0, l0)

dc0

+ µ0

(
dU1,0

dc0

(
s0 −

B−1

π0

− b−1

)
+
ds0

dc0

U1,0

)
+ λπ0

(
ν − 1 + w0/A

ν
− dU1,0

dc0

1

U2
1,0

βE0

[
U1,1ϕ(π1 − π)π1 + φ1π1)

])
− λT0

1

π

(π0

π

)−φπ dU1,0

dc0

= 0

dU(c1, l1)

dc1

+ µ1

(
dU1,1

dc1

s1 +
ds1

dc1

U1,1

)
+ λπ1

(
ν − 1 + w1/A

ν

)
= 0

4. FOCπt

At time t = 0

dU(c0, l0)

dπ0

+ µ0U1,0
ds0

dπ0

− µ0U1,0
B−1

π2
0

+ λπ0

(
v − 1 + w0/A

v
[ϕ(π0 − π) + φ1]− ϕ(2π0 − π)− φ1

)
+

+ λT0 φπU1,0

(
π0

π

)−φπ−1
1

π2
= 0
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At time t = 1

dU(c1, l1)

dπ1

+ µ1
ds1

dπ1

− µ1
B0

π2
1

+ λπ1

(
v − 1 + w1/A

v
[ϕ(π1 − π) + φ1]− ϕ(2π1 − π)− φ1

)
+ λπ0β

−1β
U1,1

U1,0

(ϕ(2π1 − π) + φ1)− λT0
1

β

U1,1

π2
1

= 0

5. FOCwt

µtU1,t +
1

Aν
λπt = 0

Solution

Consider the case φ1 = 0 and U(c, l) = c− h2

2
, with h = 1− l.

Household optimality conditions imply

Q0 = βE0

[
1

π1

]
q0 = β

ht = (1− τt)Awt

Firms optimality conditions imply

Ah0

ν
(ν − 1 + w0/A)− ϕ(π0 − π)π0 + βE0[ϕ(π1 − π)π1] = 0

Ah1

ν
(ν − 1 + w1/A)− ϕ(π1 − π)π1 = 0

The Taylor rule becomes

1 = π
(π0

π

)φπ
E0

[
1

π1

]
The optimal policy requires to find {h0, h1, τ0, τ1, B0, b0, c0, c1, π0, π1, w0, w1, µ0, µ1, λ

T
0 , λ

π
0 , λ

π
1}
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such that

ct + gt +
ϕ

2
(πt − π)2 = Aht

ht = (1− τt)Awt
µ0E0[1/π1] = E0[µ1/π1]

µ0 = E0[µ1]

1 + µ0

(
w0 −

h0

A

)
+ λπ0

(
ν − 1 + w0/A

ν

)
= 0

1 + µ1

(
w1 −

h1

A

)
+ λπ1

(
ν − 1 + w1/A

ν

)
= 0

h0
ϕ

A
(π0 − π) + µ0

ds0

dπ0

− µ0
B−1

π2
0

+ λπ0

(
v − 1 + w0/A

v
ϕ(π0 − π)− ϕ(2π0 − π)

)
+ λT0 φπ

(
π0

π

)−φπ−1
1

π2
= 0

h1
ϕ

A
(π1 − π) + µ1

ds1

dπ1

− µ1
B0

π2
1

+ λπ1

(
v − 1 + w1/A

v
ϕ(π1 − π)− ϕ(2π1 − π)

)
+ λπ0ϕ(2π1 − π)− λT0

1

β

1

π2
1

= 0

µt +
1

Aν
λπt = 0

B−1

π0

+ b−1 = τ0Ah0w0 − g0 +Q0B0 + q0b0

B0

π1

+ b0 = τ1Ah1w1 − g1

1 = π
(π0

π

)φπ
E0

[
1

π1

]
Ah0

ν
(ν − 1 + w0/A)− ϕ(π0 − π)π0 + βE0[ϕ(π1 − π)π1] = 0

Ah1

ν
(ν − 1 + w1/A)− ϕ(π1 − π)π1 = 0
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Solution with exogenous inflation

ct + gt +
ϕ

2
(πt − π)2 = Atht

ht = (1− τt)Atwt
µ0E0[1/π1] = E0[µ1/π1]

µ0 = E0[µ1]

1 + µ0

(
w0 −

h0

A0

)
+ λπ0

(
ν − 1 + w0/A0

ν

)
= 0

1 + µ1

(
w1 −

h1

A1

)
+ λπ1

(
ν − 1 + w1/A1

ν

)
= 0

µt +
1

Atν
λπt = 0

B−1

π0

+ b−1 = τ0A0h0w0 − g0 +Q0B0 + q0b0

B0

π1

+ b0 = τ1A1h1w1 − g1

A0h0

ν
(ν − 1 + w0/A0)− ϕ(π0 − π)π0 + βE0[ϕ(π1 − π)π1] = 0

A1h1

ν
(ν − 1 + w1/A1)− ϕ(π1 − π)π1 = 0

At time 1. From the NKPC

h1 =
νϕ(π1 − π)π1

A1(ν − 1 + w1/A1)

From the budget constraint

B0

π1

+ b0 = h1(A1w1 − h1)− g1(
B0

π1

+ b0 + g1

)
(A1ν − A1 + w1)2 = (νϕ(π1 − π)π1)(A1w1 (A1ν − A1 + w1)− νϕ(π1 − π)π1)

Which can be re-arranged as(
B0

π1

+ b0 + g1

)
A2

1(ν − 1)2 +

(
B0

π1

+ b0 + g1

)
w2

1 +

(
B0

π1

+ b0 + g1

)
2w1A1(ν − 1) =

νϕ(π1 − π)π1A
2
1w1 (ν − 1) + νϕ(π1 − π)π1A1w

2
1 − (νϕ(π1 − π)π1)2
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Call B1 = B0

π1
+ b0 + g1 and K1 = νϕ(π1 − π)π1, this further becomes

(B1 −K1A1)w2
1 + (2B1 −K1A1)A1(ν − 1)w1 + BA2

1(ν − 1)2 +K2 = 0

If ν = 1. At time 1

w1(B0, b0, g1) =
K1√

K1A1 − B1

h1(B0, b0, g1) =
√
K1A1 − B1

τ1(B0, b0, g1) =
B1

K1A1

c1(B0, b0, g1) = A1

√
K1A1 − B1 − g1 −

ϕ

2
(π1 − π)2

µ1(B0, b0, g1) =
A1√

K1A1 − B1

λπ1 (B0, b0, g1) = − A2
1√

K1A1 − B1

At time 0, you need find B0, b0, µ0, h0, w0 such that

µ0E0

[
1

π1

]
= E0

[
A1

π1

√
K1A1 − B1

]
µ0 = E0

[
A1√

K1A1 − B1

]
h0w0 − ϕ(π0 − π)π0 + βE0[ϕ(π1 − π)π1] = 0

B−1

π0

+ b−1 = A0h0w0 − h2
0 − g0 +Q0B0 + q0b0

µ0h0 = A0

The budget constraint becomes

B−1

π0

+ b−1 = A0K0 − A0βE0[K1]− A2
0

µ2
0

− g0 +Q0B0 + q0b0

We want to seek portfolio B0 and b0 such that

B0 = A0K0 − A0βE0[K1]− A2
0(

E0

[
A1√

K1A1−B1

])2 +Q0B0 + q0b0

Cov0

(
1

π1

,
A1√

K1A1 − B1

)
= 0

Note that the second expression can be rewritten as

Cov0

(
1

π1

,
A1

h1

)
= 0

34



Or

Cov0

(
1

π1

,
1

(1− τ1)w1

)
= 0

Define

f ≡ A0K0 − A0βE0[K1]− A2
0(

E0

[
A1√

K1A1−B1

])2 +Q0B0 + q0b0 − B0 = 0

Then

dB0

db0

= −
∂f
∂b0
∂f
∂B0

= −
q0 + 2

A2
0

µ30

∂µ0
∂b0

Q0 + 2
A2

0

µ30

∂µ0
∂B0

< 0

To take derivative wrt to an exogenous parameters define

f(B0, b0, p) ≡ A0K0 − A0βE0[K1]− A2
0(

E0

[
A1√

K1A1−B1

])2 +Q0B0 + q0b0 − B0 = 0

m(B0, b0, p) ≡ E0

[
µ1

π1

]
− E0 [µ1]E0

[
1

π1

]
= 0

dB0

dp
=
f2m3 −m2f3

f1m2 − f2m1

db0

dp
=
m1f3 − f1m3

f1m2 − f2m1

f1 = Q0 +
A2

0

µ3
0

∂µ0

∂B0

> 0

f2 = q0 +
A2

0

µ3
0

∂µ0

∂b0

> 0

m1 = E0

[
∂µ1
∂B0

π1

]
− E0

[
∂µ1

∂B0

]
E0

[
1

π1

]
= Cov0

(
∂µ1

∂B0

,
1

π1

)

m2 = E0

[
∂µ1
∂b0

π1

]
− E0

[
∂µ1

∂b0

]
E0

[
1

π1

]
= Cov0

(
∂µ1

∂b0

,
1

π1

)

∂µ1

∂B0

=
1

2

A1

(K1A1 − B1)
3
2

1

π1

> 0

∂µ1

∂b0

=
1

2

A1

(K1A1 − B1)
3
2

=
1

2A2
1

µ3
1 > 0
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Let’s start with p = g0

f3 = −1 < 0

m3 = 0

dB0

dp
=

m2

f1m2 − f2m1

db0

dp
= − m1

f1m2 − f2m1

Consider that f1 < f2. If m1 > m2 then f1m2 − f2m1 < 0.

6.2 Model

Households

A representative household wants to maximize its expected lifetime utility,

E0

[
∞∑
t=0

U(ct, lt)

]
where lt = 1− ht, subject to budget constraint

Ptct +QN
t B̄

N
t + qNt b̄

N
t = (1− τt)PtwtAht + B̄N

t−N + ΠN
j=1πt−j+1b̄

N
t−N

where QN
t and qNt are prices of N-period nominal and real bonds, B̄N

t and b̄Nt , which are

monetary values of N-period nominal and real bonds, TIPS, at period t, and finally πt = Pt
Pt−1

is an inflation rate from period t− 1 to t.

It can be re-written in real terms by dividing by Pt

ct +QN
t B

N
t + qNt b

N
t = (1− τt)wtAht +BN

t−N/Π
N
j=1πt−j+1 + bNt−N

where BN
t =

B̄Nt
Pt

and bNt =
b̄Nt
Pt

denote the real-value of nominal bonds and TIPS at time t.

Also we add liquidity adjustment cost for trading real bonds

ct +QN
t B

N
t + qNt b

N
t +

ψ

2
(bNt − bNt−N)2 = (1− τt)wtAht +BN

t−N/Π
N
j=1πt−j+1 + bNt−N

Solving for BN
t , bNt , and lt give the following optimality conditions:

� Optimal nominal bonds (FOCBN ):

QN
t = βNEt

[
U1,t+N

U1,t

1

ΠN
j=1πt+j

]
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� Optimal TIPS (FOCbN ):

qNt = βNEt
[
U1,t+N

U1,t

]
− ψ

{
(bNt − bNt−N)− βNEt

[
U1,t+N(bNt+N − bNt )

U1,t

]}
� Optimal labor supply (FOCh):

U2,t

U1,t

= (1− τt)Awt

Firms

Aggregate output Yt = Aht, Intermediate outputs: Yit = Ahit

Intermediate firms problem:

max
{Pi,t}∞t=0

Et
∞∑
t=0

Q0,t [Pi,tYi,t − wthi,tPt − PtACt]

s.t.

ACt =
ϕ

2

(
Pi,t
Pi,t−1

− π
)2

+ φ1

(
Pi,t
Pi,t−1

− π
)

+ φ2

Yi,t =

(
Pi,t
Pt

)− 1
ν

Yt

Q0,t+1

Q0,t

= q1
t

Substitute in the demand function, the SDF and the adjustment cost function

max
{Pi,t}∞t=0

E0

∞∑
t=0

Q0,t

[(
Pi,t
Pt

) ν−1
ν

Yt −
(
Pi,t
Pt

)− 1
ν Yt
A
wt −

ϕ

2

( Pi,t
Pi,t−1

− π
)2 − φ1(

Pit
Pit−1

− π)− φ2

]

The first order condition for Pi,t

E0

(
Q0,t

[
v − 1

v

(
Pi,t
Pt

)− 1
ν Yt
Pt

+
1

ν

(
Pi,t
Pt

)− 1
ν
−1

Yt
APt

wt − ϕ
(

Pi,t
Pi,t−1

− π
)

1

Pi,t−1

− φ1
1

Pi,t−1

])
+

E0

(
Q0,t+1

(
ϕ

(
Pi,t+1

Pi,t
− π

)
Pi,t+1

P 2
i,t

+ φ1
Pi,t+1

P 2
i,t

))
= 0

Imposing symmetric equilibrium Pi,t = Pt gives the Philips curve

1

ν
Yt(ν − 1 + wt/A)− ϕ(πt − π)πt − φ1πt + Et[q1

t (ϕ(πt+1 − π)πt+1 + φ1πt+1)] = 0
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Central Bank

The Central bank follows this Taylor Rule:

it =
1

Q1
t

=

(
βEt

[
U1,t+1

U1,t

1

πt+1

])−1

=
1

β
π
(πt
π

)φπ
Ramsey problem with N-Period TIPS and non TIPS bonds

Given the assumption that the government buys back and reissue the entire stock of the

outstanding debt, the government budget constraint is given by:

QN−1
t BN

t−1 + πtq
N−1
t bNt−1 = τtAPtwtht − Ptgt +QN

t B
N
t + qNt b

N
t

which can be re-written in real terms:

QN−1
t

BN
t−1

πt
+ qN−1

t bNt−1 = τtAhtwt − gt +QN
t B

N
t + qNt b

N
t

Technology is: ct + gt + ϕ
2
(πt − π)2 + φ1(πt − π) + φ2 = Aht, recalling that wt(1− τt) =

Ul,t/(AUc,t) and lt = 1− ht we can define surplus as:

st = wt(ct + gt +
ϕ

2
(πt − π)2 + φ1(πt − π) + φ2)− U2,t

AU1,t

(ct + gt +
ϕ

2
(πt − π)2 + φ1(πt − π) + φ2)− gt

Combining all these information gives the following intertemporal expression for the

government budget constraint:

Et

[
βN−1U1,t+N−1

U1,t

1

ΠN−1
j=1 πt+j

]
BN
t−1

πt
+ bNt−1Et

[
βN−1U1,t+N−1

U1,t

]
− ψbNt−1

{
(bNt − bNt−N+1)− Et

[
βN−1U1,t+N−1(bNt+N−1 − bNt )

U1,t

]}
= st +BN

t Et
[
βN

U1,t+N

U1,t

1

ΠN
j=1πt+j

]
+ bNt Et

[
βN

U1,t+N

U1,t

]
− ψbNt

{
(bNt − bNt−N)− Et

[
βN

U1,t+N(bNt+N − bNt )

U1,t

]}
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Sequential formulation

max
{BNt ,bNt ,ct,πt,wt}∞t=0

L =
∞∑
t=0

Etβt
{
U(ct, lt) + µt

(
U1,tst +BN

t Et
[
βNU1,t+N

1

ΠN
j=1πt+j

]
+ bNt Et

[
βNU1,t+N

]
− ψbNt

{
U1,t(b

N
t − bNt−N)− Et

[
βNU1,t+N(bNt+N − bNt )

] }
− Et

[
βN−1U1,t+N−1

1

ΠN−1
j=1 πt+j

]
BN
t−1

πt

− Et
[
βN−1U1,t+N−1

]
bNt−1 + ψbNt−1

{
U1,t(b

N
t − bNt−N+1)− Et

[
βN−1U1,t+N−1(bNt+N−1 − bNt )

] })
+ ξU,t(B

U −BN
t ) + ξL,t(B

N
t −BL) + ξTU,t(B

U − bNt ) + ξTL,t(b
N
t −BL)

}

Subject to

� New Keynesian Phillips Curve:

1

ν
(ct + gt +

ϕ

2
(πt − π)2 + φ1(πt − π) + φ2)(ν − 1 + wt/A)− ϕ(πt − π)πt − φ1πt+

Et
[{
ϕ(πt+1 − π)πt+1 + φ1πt+1

}{
β
U1,t+1

U1,t

[
1 + ψ(bNt+1 − bNt )

]
− ψ(bNt − bNt−1)

}]
= 0

� Taylor Rule:

Et
[
U1,t+1

1

πt+1

]
− 1

π
U1,t

(πt
π

)−φπ
= 0

And call λπt and λTt the time-t Lagrange multipliers associated with the Phillips curve and

the Taylor Rule, respectively.

1. FOCBNt

µt =
[
Et[U1,t+N/Π

N
j=1πt+j]

]−1
[
Et[µt+1U1,t+N/Π

N
j=1πt+j] +

ξU,t
βN
− ξL,t
βN

]
2. FOCbNt

µtEt
[
βNU1,t+N

]
+ ψµtA = Et[βNµt+1U1,t+N ] + ξTU,t − ξTL,t − ψB + C
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where

A = −U1,t(b
N
t − bNt−N) + Et[βNU1,t+N(bNt+N − bNt )]−

bNt U1,t − bNt Et[βNU1,t+N ] + bNt−1U1,t + bNt−1Et[βN−1U1,t+N−1]

B = Et[µt+NbNt+NβNU1,t+N ] + µt−Nb
N
t−NU1,t+

Et[µt+1U1,t+1β(bNt+1 − bNt−N+2)− µt+1β
NU1,t+N(bNt+N − bNt+1)]−

Et[βN−1µt+N−1b
N
t+N−2U1,t+N−1]− µt−N+1b

N
t−NU1,t

C = λπt ψEt
[(
β
U1,t+1

U1,t

+ 1

)
(ϕ(πt+1 − π)πt+1 + φ1πt+1)

]
− λπt−1ψ

U1,t

U1,t−1

{ϕ(πt − π)πt + φ1πt)}]

− ψEt
[
λπt+1β{ϕ(πt+2 − π)πt+2 + φ1πt+2)}]

3. FOCct

dU(ct, lt)

dct
+ µt

(
dU1,t

dct
st +

dst
dct

U1,t

)
+

BN
t−N

ΠN
j=1πt−j+1

dU1,t

dct
(µt−N − µt−N+1) + bNt−N

dU1,t

dct
(µt−N − µt−N+1)

+ λπt

(
ν − 1 + wt/A

ν
− dU1,t

dct

1

U2
1,t

βEt
[
U1,t+1ϕ(πt+1 − π)πt+1 + φ1πt+1)

]{
1 + ψ(bNt+1 − bNt )

})
+ λπt−1

dU1,t

dct

1

U1,t−1

(
ϕ(πt − π)πt + φ1πt

)(
1 + ψ(bNt − bNt−1)

)
− λTt

1

π

(πt
π

)−φπ dU1,t

dct
+ λTt−1

dU1,t

dct

1

βπt

+ ψ
dU1,t

dct

[
− µtbNt (bNt − bNt−N) + µtb

N
t−1(bNt − bNt−N+1) + bNt−Nµt−N(bNt − bNt−N)

− bNt−N+1µt−N+1(bNt − bNt−N+1)
]

= 0

4. FOCπt
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dU(ct, lt)

dπt
+ µtU1,t

dst
dπt

+
1

πt

N∑
k=1

Bt−kβ
N−kEt

[
U1,t+N−k

(
ΠN−1
j=0 πt−k+j+1

)−1
](
µt−k+1 − µt−k

)
+ λπt

(
v − 1 + wt/A

v
[ϕ(πt − π) + φ1]− ϕ(2πt − π)− φ1

)
+ λπt−1β

−1

({
β
U1,t

U1,t−1

[
1 + ψ(bNt − bNt−1)

]
− ψ(bNt−1 − bNt−2)

}{
ϕ(2πt − π) + φ1

})
+ λTt φπU1,t

(
πt
π

)−φπ−1
1

π2
− λTt−1

1

β

U1,t

π2
t

= 0

5. FOCwt

µtU1,t +
1

Aν
λπt = 0
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6.3 Solution Algorithm

At every instant t the information set is It = {gt, {BN
t−k}N−1

k=0 , {bNt−k}
N−1
k=0 , {µt−k}Nk=1}. Con-

sider projections of the forward looking terms in the model onto It. We model these rela-

tionships using one single-layer artificial neural network ANN (It) with the characteristics

described in Table 4. In particular, if the maturity is N > 2, then the terms to approximate

are the following:

ANN 1 = Et
[ U1,t+N

ΠN
j=1πt+j

]
ANN 2 = Et

[µt+1U1,t+N

ΠN
j=1πt+j

]
ANN 3 = Et[U1,t+N ]

ANN 4 = Et[U1,t+N−1]

ANN 5 = Et[U1,t+Nb
N
t+N ]

ANN 6 = Et[µt+1U1,t+N ]

ANN 7 = Et[µt+1U1,t+1b
N
t+1]

ANN 8 = Et[µt+1U1,t+Nb
N
t+1]

ANN 9 = Et[µt+1U1,t+Nb
N
t+N ]

ANN 10 = Et[µt+NU1,t+Nb
N
t+N ]

ANN 11 = Et[µt+N−1U1,t+N−1b
N
t+N−2]

ANN 12 = Et[U1,t+1{ϕ(πt+1 − π)πt+1 + φ1πt+1}]

ANN 13 = Et[ϕ(πt+1 − π)πt+1 + φ1πt+1]

ANN 14 = Et[λπt+1{ϕ(πt+2 − π)πt+2 + φ1πt+2}]

ANN 15 = Et[U1,t+1{ϕ(πt+1 − π)πt+1 + φ1πt+1}]

ANN k
16 = Et

[
U1,t+N−k

(
ΠN−1
j=1 πt−k+j+1

)−1]
, for k ∈ {1, 2, . . . , N − 1}

ANN 17 = Et
[
U1,t+1

1

πt+1

]
ANN 18 = Et[{ϕ(πt+1 − π)πt+1 + φ1πt+1}bNt+1]

The solution procedure is summarized by the following algorithm.

Given starting values µt−1 = 0 and initial weights for ANN , simulate a sequence of the set

of endogenous variables {ct, µt, BN
t , b

N
t , πt, λ

T
t , λ

π
t , wt} as follows.6

6The network can be initially trained imposing {bt} = 0.
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1. Impose the Maliar moving bounds, see Maliar and Maliar (2003), on debt (these bounds

are particularly important and need to be tight and open slowly since the ANN at the

beginning can only make accurate predictions around zero debt - that is our initializa-

tion point). Proper penalty functions are used instead of the ξ terms to avoid out of

bound solutions, see Faraglia et al. (2014) for more details. Using forward-states on

the optimality conditions, solve for ct, µt, B
N
t , b

N
t , πt, λ

T
t , λ

π
t , and wt.

7

µt = ANN 1(It)−1

[
ANN 2(It) +

ξU,t
β
− ξL,t

β

]
µtβANN 3(It) + ψµtA

(
ANN 4(It),ANN 5(It)

)
= βNANN 6(It) + ξU,t − ξL,t − ψB

(
ANN 7(It), . . . ,ANN 11(It)

)
+ C

(
ANN 12(It),ANN 13(It),ANN 14(It)

)
. . .

ANN 17(It) =
1

π
U1,t

(πt
π

)−φπ
1

ν
(ct + gt +

ϕ

2
(πt − π)2 + φ1(πt − π) + φ2)(ν − 1 + wt/A)− ϕ(πt − π)πt − φ1πt+

βψ

U1,t

ANN 18(It) +
β(1− bNt )

U1,t

ANN 12(It)− ψ(bNt − bNt−1)ANN 13(It) = 0

Note that µt is now over identified. We tackle this problem by using the Forward-

States approach as described in Faraglia et al. (2014). This involves approximating

the expected value terms with the state variables that are relevant at period t+ 1 and

invoking the law of iterated expectations.8

7We also find that including ξ terms explicitly in the training set improves prediction accuracy.
8For a detailed description of the procedure using polynomial regressions see Faraglia et al. (2019) or

Faraglia et al. (2014). Here we follow the same logic using the neural network.
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The equations to solve are:

µt = [EtANN 1(It+1)]−1

[
EtANN 2(It+1) +

ξU,t
β
− ξL,t

β

]
µtβEtANN 3(It+1) + ψµtEtA

(
ANN 4(It+1),ANN 5(It+1)

)
= βNEtANN 6(It+1) + ξU,t − ξL,t − ψEtB

(
ANN 7(It+1), . . . ,ANN 11(It+1)

)
+ EtC

(
ANN 12(It+1),ANN 13(It+1),ANN 14(It+1)

)
. . .

ANN 17(It+1) =
1

π
U1,t

(πt
π

)−φπ
1

ν
(ct + gt +

ϕ

2
(πt − π)2 + φ1(πt − π) + φ2)(ν − 1 + wt/A)− ϕ(πt − π)πt − φ1πt+

βψ

U1,t

ANN 18(It+1) +
β(1− bNt )

U1,t

ANN 12(It+1)− ψ(bNt − bNt−1)ANN 13(It+1) = 0

2. If the solution error is large, or a reliable solution could not be found, the algorithm

automatically restores the previous period ANN and tries to proceed with a reduced

Maliar bound.9

3. If the solution calculated shrinking the bound at iteration i − 1 is not satisfactory,

the algorithm does not go back another iteration but uses the same ANN and tries to

lower the Boundi−1 again towards Boundi−2. Once a reliable solution is found, the

algorithm proceeds to calculate the solution for iteration i again, but with Boundi =

Boundi−1 + (Boundi−1−Boundi−2). In this way, if an error is detected multiple times

we guarantee that both Boundi and Boundi−1 keep shrinking toward Boundi−2 and

there must exist a point close enough to Boundi−2 such that the system can be reliably

solved with both Boundi−1 and Boundi.

4. If the solution found at iteration i is satisfactory, the ANN enters the learning phase

supervised by the implied model dynamics, the Maliar bounds are increased and a new

iteration starts again.

Keep repeating until the ANN prediction errors converge below a certain small threshold

and the simulated sequences of ct, µt, B
N
t , b

N
t , πt, λ

T
t , λ

π
t , and wt do not change.

9If the unreliable solution has been detected in iteration i the algorithm restore the i − 1 environment

and tries to proceed with Boundi−1 = αBoundi−1 + (1− α)Boundi−2.
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Parameter Value

Hidden layers 1

Neurons 10

Activation function Hyperbolic tangent sigmoid

Training algorithm Levenberg-Marquardt backpropagation

Blending Factor (µ) 0.01

µ Decrease factor 0.01

µ Increase factor 10

Max num. epochs 1000

Table 4: ANN structure and parameters

Notes: Table reports specification of the neural network.

6.4 Robustness

6.4.1 Changing the Seed

To see how our results depend on the specific realization of the gt process we solve the

model with 20 different seeds using the same staring point as in the main body of the paper.

Overall, the main result is robust. Correlation between real and nominal bonds is on average

-0.7904 and is negative for all realizations of gt. Correlation between the difference of BN

and bN is also negative on average and is only positive in two realizations. We also find

that government issues nominal debt and holds real assets most of the time. The mean

difference between BN and bN is 34.01% of GDP and has been on average negative for only

one realizations. The results are summarized in table 5.

ρ(bNt , B
N
t ) ρ(BN

t − bNt , gt) E(bNt /Yt) E(BN
t /Yt) E((BN

t − bNt )/Yt)

Mean -0.7904 -0.3733 -0.1465 0.1936 0.3401

Minimum -0.9698 -0.8164 -0.3433 -0.2153 -0.0667

Maximum -0.1315 0.5964 -0.0275 0.6289 0.697

Table 5: Average moments across multiple realizations of gt

Notes: Table shows the mean, minimum and maximum of selected moments when the model is solved

with using different realizations of gt.
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6.4.2 Variance of gt Process

In this subsection we analyze how the results depend on the variance of government expen-

diture. Specifically, we solve the model with the same seed but changing the variance of the

shock process. We mainly find that the main result of accumulating nominal debt and real

assets in good times is stronger when the government expenditure is more volatile. As shown

in figure 9, the correlation between nominal bonds and gt and the correlation between real

bonds and gt increases in absolute value as gt becomes more volatile. Also, the government

debt position becomes more levaraged as shown in the right panel.
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Figure 9: Role of variance of gt

Notes: Figure shows correlation of real and nominal bonds of gt and average values of real and nominal

bonds in function of the variance of gt.

In addition to above, we find that 1. volatility of inflation is invariant and volatility of

taxes increases in variance of gt. 2. Correlation of total portfolio and gt and the correlation

between nominal and real bonds are stable. 3. Average inflation increases.
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