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Abstract

Renewable generation creates a tradeoff between current and future en-
ergy production as generators produce energy by releasing previously stored
resources. Studying the Colombian market, we find that diversified firms
strategically substitute fossil fuels for hydropower before droughts. This sub-
stitution mitigates the surge in market prices due to the lower hydropower
capacity available during dry periods. Diversification can increase prices, in-
stead, if it results from mergers steepening a firm’s residual demand. Thus,
integrating production technologies within firms can smooth the clean-energy
transition by offsetting higher prices during scarcity periods if the unaffected
technologies help store renewables more than exercise market power.
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1 Introduction

Energy production is responsible for nearly three-quarters of global greenhouse
gas emissions, with about half of these emissions coming from electricity genera-
tion alone.1 Stimulated by worldwide policies to revert this trend (e.g., Acemoglu
et al., 2016), energy firms are transitioning from fossil fuel to clean energy pro-
duction by investing in low-carbon renewable energy resources such as dams, so-
lar, and wind. Renewables account for 35% of global energy today (IREA, 2017),
but because their volatility, intermittency, and limited storability pose severe chal-
lenges for energy markets (Fabra, 2021), fossil fuels are still critical to meet daily
energy demands and avoid high consumer prices and blackouts.2

Intermittent supply is a severe problem even for storable renewables; hydropower
generation, for instance, exposes firms’ capacities to weather changes despite using
dams to store ample water resources.3 This problem is exacerbated in the tropics,
where extreme droughts and rainfalls are frequent and hydro resources are often
closely located, making even regional droughts a threat to the stability of national
energy grids (Conway et al., 2017). A potential solution to this risk is to diversify
production technologies within firms: A firm expecting future intermittencies may
raise its supply of unaffected resources, easing the storage of renewables, while
keeping overall supply and thus prices stable without policy intervention.

In this paper, we ask: How do diversified firms – those with fossil and renew-
able generators – respond to forecasts about the future availability of renewable
energy? In turn, how does diversification affect market prices? Leveraging de-

1Source: https://www.climatewatchdata.org/ghg-emissions. For instance, WHO (2017) es-
timates that, in 2010, Polish citizens lost 45,854 years of life due to air pollution largely due to the
country’s reliance on coal power plants despite its abundant hydro resources (Vasev, 2017).

2Natural gas, being a clean but depletable resource, is an intermediate step before renewable
energy’s viability overcomes its technical challenges (Gürsan and de Gooyert, 2020). Like fossil
fuels, it can solve renewable intermittency problems (Van Foreest, 2011; Smil, 2015), as, for instance,
solar energy is only partially available during cloudy days (Gowrisankaran et al., 2016) and wind
farms require strong wind. Hydropower generation offers a solution to this intermittency through
dams controlling the storage/release decision.

3Developing countries invest heavily in hydropower. For instance, African states aim at pro-
viding energy to 60% of their citizens by 2040 by increasing hydropower capacity by 6% a year
(Conway et al., 2017). Hydropower generation is also prevalent in many South American coun-
tries, such as Argentina, Brazil, and Chile (Moreno et al., 2017). Moreover, Hydropower Europe
(2020) suggests that Eastern European countries have exploited only less than half of their econom-
ically feasible hydro potential. Hydropower is also a key resource for waterrich developed regions
like Canada, New Zeland, and Northern Europe.
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tailed data for Colombia,4 we demonstrate that a diversified firm internalizes fu-
ture droughts by decreasing its hydro supply and simultaneously raising its fossil
fuel supply. Since hydropower becomes expensive ahead of a drought, this sub-
stitution effect impacts both current and future prices: it increases current produc-
tion by currently raising the firm’s fossil fuel supply, which, in turn, saves hydro
resources for the dry period. However, we also find that diversification through
mergers steepens a firm’s demand, potentially increasing prices. Therefore, our re-
sults suggest that incentivizing diversification can benefit consumers only if it does
not substantially increase market power, underscoring the importance of correctly
integrating different resources to smooth the clean-energy transition.

Methodologically, we first empirically identify substitution patterns across pro-
duction technologies, then quantify them through a structural model. We start by
documenting that energy prices jump by more than 10 times during droughts,5 as
hydropower production becomes expensive when firms’ water stocks are lower.6

Exploiting exogenous water inflows to diversified firms, we find that they simul-
taneously raise their fossil fuel supply ahead of an adverse event, which mitigates
price hikes. Thus, we conjecture that prices depend on the share of fossil resources
owned by the firm expecting a drought; the greater the connected fossil capacity,
the lower the price increase.

We asses the impact of these substitution patterns on prices through a dy-
namic structural model, in which diversified firms compete in hourly auctions.
Hydropower generation is storable through dams, so owning a dam creates an in-
tertemporal tradeoff between current and future energy production. As firms max-
imize intertemporal profits, this tradeoff extends to the other non-hydro generators
owned by a diversified firm.7 We estimate the model on six years characterized by

4Hydropower accounts for 70% of the energy supply in Colombia and most large players pro-
duce energy through a diverse set of technologies (e.g., dams and combustion of fossil fuels).

5The price hikes caused by droughts are a key policy issue in Colombia. The main policies
to contain prices include a call option mandating firms to sell a certain amount of energy at a
strike price (Cramton and Stoft, 2007) and forward contracts (Ausubel and Cramton, 2010), which,
however, often closely mirror spot prices (de Bragança and Daglish, 2016), thus providing few
hedging opportunities. Blackouts are frequent when the market fails to clear or clears at high prices
(Zapata et al., 2018). The resulting poor electrification can distort incentives to producers (Allcott
et al., 2016), and lower both consumer welfare (Westley, 1984) and employment (Vidart, 2020).

6 The marginal cost of hydro generators is well beyond that of fossil fuels outside of droughts,
making fossil energy a marginal resource in regular periods.

7In our model, each generator is a bidder whose profits also depend on the other generators
within the same firm. Thus, we model a dynamic auction with externalities across bidders. Similar
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high price volatility due to extreme weather events such as el Niño and la Niña.
For tractability, we examine the fit of the model estimates by simulating the related
dynamic Cournot optimization problem (e.g., Reguant, 2014). The model correctly
replicates market outcomes over time. We then use it to quantify the price-effect of
technology substitution by comparing prices across several scenarios varying the
fossil energy capacity of the market-leading firm, EPMG.

Our simulations show three main results. First, increasing EPMG’s fossil fuel
capacity while holding constant the firm’s residual demand lowers market prices
one to two quarters ahead of dry spells. Second, this substitution also allows
the firm to use more hydropower during droughts. Thus, saving water before
droughts effectively curbs price hikes before and during droughts. We then per-
form a third experiment in which we merge EPMG with all fossil fuel generators
owned by other large diversified firms, thereby steepening EPMG’s residual de-
mand. Despite easier technological substitution, market prices increase substan-
tially in all seasons because the steeper residual demand increases EPMG’s market
power even more. Our counterfactuals suggest that diversification can smooth
market clearing and that policymakers should balance the objective of diversifica-
tion with that of containing market power to prevent yet higher prices.

Our first contribution is to empirically document the presence of an intertempo-
ral tradeoff in hydropower generation consistent with previous theoretical works
studying the short-run behavior of renewable energy firms in environments where
strategic players have access to storage (Bushnell, 2003; Andrés-Cerezo and Fabra,
2020).8 Our analysis differs from this literature in two main respects. First, we
study a long-run tradeoff that arises from firms’ expectations about the seasonal
availability of renewable resources, rather than the short-run tradeoff arising from
the possibility of freely reallocating low-cost renewables from peak to off-peak
hours in sequential markets. Second, our results introduce a novel tradeoff be-
tween the benefits and costs of diversification when the latter affects market con-
centration. Thus our results advocate diversification through functioning capacity
markets to incentivize firms’ capacity investments (e.g., Fabra, 2018; Fabra and Llo-
bet, 2021) rather than mergers and acquisitions. Although the Colombian market

static models include analyses of timber (Kuehn, 2019) and charity auctions (Fioretti, 2020).
8Garcia et al. (2001, 2005) study strategic behavior across energy producers in hydropower dom-

inated markets. Relatedly, some recent theoretical papers study market power in storage rather
than production and its implications for energy supply (e.g., Newbery, 1990; Schmalensee, 2019).
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extols the benefits of capacity investments in fossil fuels, our model and results
generalize to other resources with different cyclicality than the affected renewable.

A growing theoretical literature studies how to incentivize the efficient combi-
nation of fossil and renewable energy sources (e.g., Abrell et al., 2019; Ambec and
Crampes, 2019; Schmalensee, 2019) but does not empirically consider the strategic
behavior of diversified suppliers. Our analysis fills this gap by extending studies
on how different cost structures (e.g., Wolak, 2003; Reguant, 2014) and cost shocks
(e.g., Kim, 2017, 2019) affect firms’ behaviors and market outcomes (e.g., Hortaçsu
and Puller, 2008). In doing so, our paper also relates to previous empirical re-
search on static multi-unit auctions (e.g., Wolak, 2007; Hortaçsu and Puller, 2008;
McAdams, 2008; Hortaçsu and McAdams, 2010; Kastl, 2011; Hortaçsu and Kastl,
2012) and dynamic auctions (e.g., Jofre-Bonet and Pesendorfer, 2003).

This work connects with the theoretical and empirical literature studying the
impact of horizontal mergers on equilibrium outcomes. The implications of hor-
izontal mergers depend on the tradeoff between the efficiencies from exploiting
synergies and the increased market power from internalizing the post-merger com-
petitive externalities (e.g., Williamson, 1968; Farrell and Shapiro, 1990; Nocke and
Schutz, 2018).9 In our context, the merger of two energy firms with different tech-
nologies has two opposite effects. Firms internalize future adverse events and re-
act to them with the unaffected production technologies, decreasing market prices,
but, simultaneously, their market power increases, which raises market prices.

This paper is structured as follows. Section 2 provides the institutional details
and Section 3 describes the data. Evidence of intertemporal technology substitu-
tion is in Section 4, while Section 5 presents and estimates the structural dynamic
model. Section 6 discusses the counterfactual simulations, and Section 7 concludes.

2 Institutional Background

The Colombian energy market, like most national energy markets, consists of gen-
erators, transmitters, distributors, and retailers. These agents form the wholesale
market, called Mercado de Energia Mayorista (MEM). The interconnected national
system, Sistema Interconectado Nacional, was created in 1994 after the opening of

9Asker and Nocke (2021) present a review of the theoretical and empirical literature.
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the centralized energy industry to competition through the deregulation of gen-
eration and retail activities. Transmission and distribution activities are regulated
as natural monopolies. The market is assisted by the Centro Nacional de Despacho
(CND), whose main task is to determine market prices and equilibrium quantities
through a specific body called XM. The functioning of the MEM is regulated by
the Comisiòn de Regulaciòn de Energia y Gas.

Retailers and generators trade energy through the forward and the spot mar-
kets. Bilateral contracts among pairs of agents form the forward market. This mar-
ket allows agents to decide the financial position of each of their power generating
units weeks in advance of the actual market. The purpose of these contracts is to
hedge the uncertainty in the spot market prices, which is the focus of this paper.10

Bidding in the day-ahead (spot) market. The day-ahead market, or despacho cen-
tral, sets the output of each generator and the spot market prices. This market takes
the form of an auction in which Colombian energy producers compete by submit-
ting quantity- and price-bids to produce energy the following day. Through this
bidding process, each generator submits one quantity-bid per hour and one price-
bid per day. Quantity-bids state the maximum amount (MWh) a generator is will-
ing to produce in a given hour. Price-bids indicate the minimum price (COP/MW)
a generator is willing to accept to produce at each hour of the following day.11

Participation in the spot market. Participation in the day-ahead market is manda-
tory for major generating units (i.e., net effective capacity above 20MWh). Smaller
generators with a capacity between 10 and 20 MWh can decide to opt out of the
market. A generator that posts a bid-price of zero is considered a price-taker and
will produce at any market price. Generators with a net effective capacity below 10
MWh can only submit an hourly market schedule detailing how many MWh they
are willing to sell at each hour at the prevailing market price. Firms with multiple
generators submit bids for each.

Spot market-clearing. Before bidding occurs in the day-ahead market, CND pro-
vides all generators with the estimated market demand for each hour of the fol-
lowing day. After the bidding, CND collects all bid schedules from the day-ahead

10There is a third (intra-day) market, named Control Automatico de Generacion, in which real-time
differences between demand and supply are balanced.

11Divide Colombian Pesos (COP) figures by 3,150 to obtain the U.S. Dollar (US$) equivalent
amount, which is the exchange rate at the end of the period we study.
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market and ranks them from the least to the most expensive to find the lowest price
that satisfies demand in each hour. CND then informs all generators about the auc-
tion outcomes, or despacho economico (economic dispatch). During the production
day, the actual generation can differ from the depacho economico for several rea-
sons (e.g., production constraints or transmission failures). The CND modifies the
despacho economico to accommodate these issues during the production day. The
new schedule is called despacho real (actual dispatch). The day after the production
day, XM creates another schedule called despacho ideal (ideal dispatch), based on
the realized demand and production levels.12 The spot hourly price is set at the
value of the price-bid of the marginal generator. All dispatched units are paid the
same price according to this schedule.13

Reliability payment mechanism. Designed as a mechanism to guarantee the sup-
ply of energy during dry periods like el Niño, the reliability payment mechanism,
or Cargo Por Confiabilidad, consists of financial contracts and capacity payments
named Obligaciones de Energia Firmes (OEF), or firm energy. The contracts specify
a predetermined quantity of energy that each generator must supply at a scarcity
price, or precio de escasez, whenever the spot market price exceeds this price. The
scarcity price is updated monthly and computed as a heat rate times a gas/fuel in-
dex plus other (non-fuel) variable costs (Cramton and Stoft, 2007). Scarcity prices
do not vary across generators, while scarcity quantities do. Figure 1 shows aver-
age prices and the scarcity prices over time. To sell the firm energy at lower prices,
firms receive fixed monetary transfers based on their installed capacity. Yearly auc-
tions define these capacity payments, which are constant until the following auc-
tion. Thus, these are the two main tools available to the Colombian government to
stimulate investment in generation capacity (Cramton et al., 2013).

3 Data

The data come from XM for the period 2006–2017. For all generators, we observe
all quantity- and price-bids and forward contract positions. The data also includes
the ownership and geolocalization of each generator, and detailed information on

12The ideal dispatch takes into account technical characteristics and actual availability of each
generator (e.g., technical failures). It does not consider network restrictions.

13The actual price paid to different generators may vary because CMD also pays startup costs.
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the daily water inflow and stock for hydropower generators with a dam.

Figure 1: Average prices, scarcity prices, and rainfalls
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Note: The average weekly price and the scarcity price from Section 2. The red line (right axis)
displays the minimum rainfall observed across hydro units (in mm) in each week.

Data sources. We source weather information from the Colombian Institute of Hy-
drology, Meteorology, and Environmental Studies (IDEAM). This information contains
daily measures of rainfall and temperature from 303 measurement stations. To cal-
culate the daily temperature and rainfall at each generator, we compute a weighted
average of the temperatures and rainfalls by all measurement stations within 120
kilometers, weighting each value by the inverse of the distance between that gen-
erator and the measurement stations.14 We also account for the geography of the
country – that is, the large mountain chain in Colombia – to compute the dis-
tance between generators and weather measure stations, using information from
the Agustin Codazzi Geographic Institute (IGAC).

To construct the rainfall forecasts, we use monthly summaries of the status of
el Niño, la Niña, and the Southern Oscillation, or ENSO, based on the NINO3.4 in-
dex, provided by the International Research Institute (IRI) of Columbia University.15

14The 120km radius cover 80% of Colombia’s population.
15The El Niño-Southern Oscillation (ENSO) is one of the most important and longest-studied cli-

mate phenomena. It can lead to large-scale changes in sea-level pressures, sea-surface tempera-
tures, precipitation and wind, not only in the tropics but in many other regions of the world. ENSO
describes the year-to-year variations in the ocean and atmosphere in the tropical Pacific. Sea-surface
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Table 1: Installed capacity and production volumes by technology

Installed capacity Production
Technology MWh % of total MWh % of total

Hydro 9,039 61.90 5,232 75.00
Thermal 4,639 31.80 1,348 19.30
Run-of-river 858 5.87 351 5.04
Cogeneration 54 0.37 39 0.56
Wind 18 0.13 6 0.08

Total 14,608 1 6,976 1

Note: Average installed capacity and average production volumes by technology over the period
from January 2008 through December 2016.

ENSO forecasts are published on the 19th of each month and each issue provides
ENSO’s probability forecast for the following nine months. The ENSO probabil-
ity forecasts are a main source for hydropower generators in Colombia. We have
monthly information from 2004 to 2017. Finally, we integrate these information
with daily prices of oil, gas, coal, liquid fuels, and ethanol. These commodities
take part in the production of energy through either thermal (fossil fuel) or cogen-
eration (sugar manufacturing) generators.

Production technologies. Table 1 compares the installed capacity for the five prin-
cipal production technologies currently used in Colombia: hydropower, thermal
(coal and fossil fuel), run-of-river, cogeneration (sugar manufacturing), and wind
farms.16 Hydropower generation accounts for over 60% of the total installed ca-
pacity in Colombia between January 2008 and December 2016 and can supply as
much as 9,000 MWh. When it comes to production, hydropower generation aver-
ages 75% of total energy supply, or above 5,200 MWh.17 Although thermal units
are the second-largest production technology by installed capacity (30% of total
capacity), they hardly produce at or close to capacity (less than 20% of total pro-
duction). The remaining technologies are marginal and their share of installed

temperatures in the central and eastern equatorial Pacific cycle between above- and below-average.
An el Niño state occurs when the central and eastern equatorial Pacific sea-surface temperatures
are substantially warmer than usual; la Niña occurs when those waters are cooler than usual. These
events typically persist for 9-12 months, though occasionally last up to two years.

16Appendix Figure A1 shows examples of generators by technology.
17For comparison, the District of Columbia consumes about 73MWh per capita per year. Source:

https://www.eia.gov/state/rankings/?sid=DC#series/12
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Figure 2: Installed capacity and production volumes by technology over time
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(b) Total weekly production by technology
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Note: Total installed capacity and production volumes by technology. The red line in Panel (b)
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capacity mirrors their production shares.18

The discrepancy between output and capacity is evident in Figure 2. Panel (a)
shows that each technology’s capacity share is constant over time. Hydro (blue

18Energy storing makes dams more attractive than run-of-rivers and wind farms in Colombia.
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area) and thermal (black area) have most of the available capacity in the period.
Panel (b) instead shows considerable variability in the shares of hydro and ther-
mal production. There are periods in which no thermal generator produces and
periods in which thermal production reaches 50% of the total.

This variation depends on the timing of the rainy seasons. Panel (b) also plots
a proxy for a negative shock to hydropower energy production: the rainfall at the
hydro-generator location with the lowest rainfall (red line, right axis). The plot
shows a positive relationship between the volume of hydro production (blue area)
and the minimum rainfall (red line) (Spearman correlation: 0.27, p-value ≤ 0.01),
meaning that abundant rain is correlated with more hydropower production.19 At
the same time, we observe a negative relation between the production share of
thermal units (blue area) and minimum rainfall (Spearman correlation: -0.32, p-
value: ≤ 0.01). Put together, the plot indicates that thermal production substitutes
for hydro generators in periods of adverse weather.

Market prices are directly affected by the employed technologies because differ-
ent technologies have different marginal costs. Figure 1 plots the average weekly
market price (blue line) and our simple measure of drought (red line, right axis),
suggesting that rainy seasons (abundant water resources) command lower prices
(Spearman correlation: -0.28, p-value ≤ 0.01). In the next sections, we investigate
the price-impact of intertemporally substituting production across technologies.

4 Intertemporal Substitution

We start by examining how firms respond to production shocks. In particular, we
focus on how a firm expecting a future weather shock reallocates production across
generators by varying its price- and quantity-bids in advance. We consider both
favorable shocks, such as an abundant unexpected rainfall (intense rainy season),
and adverse ones, such as a dry season. We focus on the four largest firms (ENDG,
EPMG, ESPG, and ISGG); they are diversified, have at least a dam each (15 in
total), and cover 60% of total production. We then zoom in on the implications
for market prices in Section 4.2. We use weekly data spanning the period between

19The effect is particularly visible during the el Niño event at the end of 2016 and during the dry
seasons from December to April of each year.
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January 2006 to December 2017.20

4.1 Supply Schedules and Inflow Forecasts: Empirical Strategy

We exploit exogenous changes in the water inflow of hydropower plants to assess
the extent of intertemporal substitution within a firm. We estimate the following
specification

yij,t =
4

∑
l=1

βl ̂in f lowij,t+l + Xij,t−1 α + µij + δt + εij,t, (4.1)

where the outcome variable, yij,t, refers to the average quantity- and price- bids

of firm i, generator j in week t. The variable ̂in f lowij,t+l is the forecast l quar-
ters ahead of the future inflow of water of generator j.21 Although we use weekly
data, we aggregate forecasts at the quarter level because weekly and monthly fore-
casts are highly correlated. The remaining variables include Xij,t−1, a set of lagged
firm/generator specific-controls such as generator j’s water stock and firm i’s av-
erage net forward contract sales, and market-level controls such as the demand
of electricity and the average spot price. We also include firm-generator (µij) and
month and year (δt) fixed effects.

We also investigate nonlinear responses to favorable and adverse expected wa-
ter inflows to the supply of hydropower by estimating

yij,t =
4

∑
l=1

(
βlow

l 1[̂in f lowij,t+l∈Q1
ij,t+l

] + β
high
l 1[̂in f lowij,t+l∈Q4

ij,t+l

])+ Xij,t−1 α + µij + δt + εij,t.

(4.2)

Unlike (4.1), (4.2) studies a generator’s differential response to forecasts of extreme
weather conditions. The dummy variables 1[̂in f lowij,t+l∈Q1

ij,l

] and 1[̂in f lowij,t+l∈Q4
ij,l

]
are 1 if the forecasted inflow l quarters ahead falls inside the first (Q1

ij,t+l) or fourth
(Q4

ij,t+l) quartiles of generator ij’s distribution of forecasted water inflows for quar-

20Appendix B presents robustness of the regressions in this section to varying control variables.
21To construct the forecasts, we estimate an ARMA model for each generator’s water inflow

following the Box-Jenkins selection procedure on quarterly data. The covariates include the ENSO
probability forecast for three, six and nine months ahead. For each period, we predict the future
water inflows for each future quarter using the estimated ARMA model. The qualitative results do
not change if we use moving average forecasts or focus on monthly instead of weekly data.
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ter t + l, and 0 otherwise.22 If a hydro generator expects an above-normal dry sea-
son, we would expect smaller current quantity-bids (or greater current price-bids)
in order to accumulate water to face the adverse expectation. In contrast, if a hy-
dropower generator expects an overly rainy season, it should increase its quantity-
bids (or decrease its price-bids) to reap higher profits from current production. The
coefficients {βlow

l }
4
l=1 and {βhigh

l }4
l=1 in (4.2) capture these mechanisms.

Sibling generators. We also inspect potential supply reallocations across tech-
nologies owned by the same firm by adjusting equations 4.1 and 4.2 to study the
strategy of thermal generators that are siblings of hydropower generators; that is,
thermal plants that belong to one of the four firms considered in this section. In this
case, the dependent variables become the quantity- and price-bids of each thermal
generator, while the forecasts ( ̂in f lowi,t+l) and forecast distributions (Q1

i,t+l and
Q4

i,t+l) refer to the sum of water inflows to its sibling hydropower generators.

4.1.1 Supply Schedules and Inflow Forecasts: Results

This subsection presents the results of the models introduced above. We cluster
standard errors either at the generator-quarter-year level or at the firm-quarter-
year level.

Hydropower generators. Panel (a) of Figure 3 plots the βl coefficients from (4.1) for
l = 1, 2, 3, 4 periods ahead when quantity-bids are the dependent variable. Figure
3 Panel (b) presents the results for the price-bid as dependent variable. The results
indicate that expecting a drought (rainy season) one quarter ahead decreases (in-
creases) quantity-bids by about 378.1 kWh and increases (decreases) price-bids by
2,290 COP/MWh (0.73 US$/MWh). We do not find a significant effect of changes
in the expected inflow of water two or more quarters ahead.

This effect is asymmetric: a future favorable expected shock (fourth quartile)
does not affect a plant’s current quantity- and price-bids (Appendix Figures A2b
and A3b respectively), whereas an adverse shock is statistically significant one
quarter ahead for both bid types (Appendix Figures A2a and A3a respectively).23

An adverse shock to the expected inflow of water a quarter ahead leads a hy-

22El Niño and la Niña are examples of such extreme events. They usually develop in April–June
and reach their maximum strength in October–February. Thus, around October–November, firms
usually have an accurate prediction of whether an extreme event is expected in the next dry season.

23Appendix Tables B1 and B2 report the estimates from (4.1) and (4.2), respectively.
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Figure 3: Hydropower generators’ response to own inflow forecasts
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Note: The estimated βl from equation 4.1 with quantity-bids or price-bids as dependent variables.
Appendix Table B1 reports the coefficient estimates. The red line and the bar tell the 95% and 90%
C.I.s, respectively. Standard errors are clustered at the generator-quarter-year level.

dropower generator to reduce its quantity-bid by 8MWh (1.8% of the average
quantity-bid of a hydro generator) and to increase its price-bid by 60 COP/kWh (a
25% change). We conclude that hydropower generators anticipate future adverse
shocks by stepping up their supply bids, but do not react to favorable shocks.

Sibling generators. Next, we examine how thermal generators owned by firms
with hydropower plants with dams react to inflow forecasts. We use equations
4.1 and 4.2 to regress the bids of thermal generator j of firm i on the forecasted
total inflow of water of firm i, l quarters ahead. We find the reactions of thermal
generators to future shocks are opposite to those of hydro generators.24 Panel (a)
of Figure 4 shows that thermal generators modify their quantity schedule well in
advance (between one and four quarters ahead of the shock). However, we detect
no change to thermal generators’ price-bids, on average (Panel b).25 The reaction is
asymmetric: thermal units mildly decrease their price-bids three quarters ahead of
negative shocks (Appendix Figures A4a and A5a) and substantially step up their
supply schedules (i.e., decrease their quantity-bids and increase their price-bids)
three to nine months before a positive shock (Appendix Figures A4b and A5b).

Discussion. Our results detect an asymmetry in the observed intertemporal substi-

24The estimates from (4.1) and (4.2) for sibling generators are in Appendix Tables B3 and B4.
25Moving average forecasts with monthly updated predicted inflows yield similar results.
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Figure 4: Thermal generators’ response to sibling generators’ forecasts
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Note: The estimated βl from equation 4.1 with quantity-bids or price-bids of sibling thermal gen-
erators as dependent variables. Appendix Table B3 reports the coefficient estimates. The red line
and the bar tell the 95% and 90% C.I.s, respectively. Standard errors are clustered at the generator-
quarter-year level.

tution across production technologies: firms react to adverse expected events (dry
seasons) but not to favorable ones (rainy seasons) with their hydropower genera-
tors. Instead, firms react to favorable expected events by placing high price-bids
and lower quantity-bids with their thermal units, decreasing their production.

These results suggest that the intertemporal and technological substitution ef-
fect can lower market prices in dry seasons. Since hydropower has a larger share
of the total electricity produced, we should expect asymmetric effects on market
prices in dry and rainy seasons. The next subsection shows preliminary evidence
of these hypotheses and present a structural model to test them in Section 5.

4.2 Market Prices: Empirical Strategy

This section examines how moving production across technologies affects market
prices. We transform (4.2) to understand how current market prices are affected by
the thermal capacity available to firms facing adverse or favorable inflow forecasts
in the following four quarters. We focus on the following specification:
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pricet =
4

∑
l=1

(
βlow

l ∑
i

1[̂in f lowi,t+l∈Q1
i,t+l

] + β
high
l ∑

i
1[̂in f lowi,t+l∈Q4

i,t+l

]
)

+
4

∑
l=1

(
γlow

l ∑
i

(
1[̂in f lowi,t+l∈Q1

i,t+l

] Ji

∑
j=1

capTh
ijt

)
+ γ

high
l ∑

i

(
1[̂in f lowi,t+l∈Q4

i,t+l

] Ji

∑
j=1

capTh
ijt

))
+ γcap ∑

i,j
capTh

ijt + ′Xt−1 α + δt + εt, (4.3)

where the dependent variable is the average market price in week t. The indicator
functions 1[̂in f lowi,t+l∈Q1

i,t+l

] and 1[̂in f lowi,t+l∈Q4
i,t+l

] are 1 if, l quarters ahead of week

t, firm i expects its total water inflow to be in either the first or fourth quartile of
its water inflow distribution.26 Thus, βlow

l and β
high
l measure the market price re-

sponse due to firms expecting either an adverse or a favorable future expectation.
We interact these variables with the amount of thermal capacity available to firm i
in each quarter; that is, 1[̂in f lowi,t+l∈Q1

i,t+l

] ∑Ji
j=1 capTh

ijt for adverse expectations.27 We

then sum these values across all firms, so that the coefficients γlow
l and γ

high
l mea-

sure, respectively, how the capacity at sibling thermal generators affects market
prices during a negative or a positive weather event. The remaining variables in-
clude Xt−1, a set of lagged specific controls, such as the total net forward contract
sales, and lagged market-level controls, such as the average demand for electricity.
We also include year and month fixed effects (δt). Finally, Newey-West standard
errors are computed using four lags.28

4.2.1 Market Prices: Empirical Evidence

Figure 5 plots the OLS estimates for the coefficients γlow
l and γ

high
l for l = 1, ..., 4 in

(4.3), which describe the interaction of the quarterly inflow forecasts with the total
connected thermal capacity. Focusing first on Panel (b), we find that sibling ther-
mal generators do not affect prices significantly during a favorable future weather
event. Moving to Panel (a), we find a significant and negative effect of intertem-

26We aggregate plant-level expectations to the firm level; i.e., ̂in f lowi,t+l = ∑j
̂in f lowij,t+l .

27The variable capTh
ijt refers to the maximum quantity (in kWh) produced by the thermal genera-

tor j owned by firm i in a year window around week t
28The results are robust to varying the number of lags and clustering the standard errors at the

quarter-by-year level, instead.
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poral substitution across hydro and thermal technologies on current market prices
two quarters ahead. The coefficient remains negative in the third quarter, but is
not significant. Therefore, consistent with the discussion in Section 4.1.1, greater
sibling thermal capacities imply lower current prices ahead of an adverse forecast.

Figure 5: The impact of substituting production technologies on market prices
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Note: The estimated γlow
l (Panel a) and γ

high
l (Panel b) from equation 4.3. Appendix Table B5

reports the coefficient estimates. The red line and the bar provide 5% and 10% confidence intervals,
respectively. Standard errors are clustered using the Newey-West procedure.

To quantify this substitution effect on prices, we compare the price effect through
γ̂low

2 with the average market price observed in case of an adverse forecast two
months ahead, which is the sum of the average dependent variable and the price
effect described by β̂low

2 . Using the estimates in Columns 1 and 3 of Appendix Table
B5, we estimate that the substitution effect accounts for a price reduction between
33% and 35% of the average observed market price, a substantial effect.

In sum, despite their higher production costs, thermal generators have a neg-
ligible effect on market prices in expectation of a rainy period, but a negative and
significant effect in expectation of a dry season. This analysis has two main limi-
tations. First, moving from (4.2) to (4.3) implies a substantial drop in observations
(from 5,441 to 623), even though the number of variables of interest increases.
Thus, this analysis may fail to detect important firm-specific variation that is in-
stead averaged out across weekly markets. Second, large Colombian suppliers
could trade thermal generators over time to take advantage of this substitution ef-
fect. These changes in ownership may overstate the importance of the substitution
effect through this reduced-form approach. Therefore, the next section builds a
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formal model of the Colombian market to examine, through simulations, the price
effect of different ownership scenarios of thermal generators.29

5 Modeling Substitution Across Technologies

The patterns in the bidding data discussed in the previous section underscores the
importance of intertemporal substitution across different generators owned by a
firm. To examine the underlying mechanism, we model the day-ahead market as
a multi-unit auction. There are N firms and each firm i = 1, ..., N owns multiple
generators j = 1, ..., Ji of different technology τ (hydro power, thermal power, run-
of-river, wind farms, or cogeneration).

5.1 Production Capacities and Costs

Let the set of all technologies available to firm i be denoted by Ti and its subset
of hydro generators by Hi.30 In the model, we assume that marginal costs vary
across technologies and firms, but not across generators of the same technology.
A firm’s available generation technology limits the amount it can produce in each
hour of the day. Each generator has a minimum and a maximum production ca-
pacity. Capacities are fixed over time for non-hydro technologies, while the capac-
ity of a hydropower generator varies with the water stock. In particular, a firm’s
current hydro capacity depends on the water stock at the beginning of the period
(wit ∈ [wi, wi] ≡ Wi), the net water inflow at each dam (δijt ∈ R), and the energy
production according to the water balance equation (Lloyd, 1963):31

wit+1 = wit −
23

∑
h=0

∑
j∈Hi

1[bijt≤pht]
qijht + ∑

j∈Hi

δijt, (5.1)

where 1[bijt≤pht]
indicates that hydro unit j’s bid at market hour h is accepted. We

denote the transition matrix of the water stock by fi(ωit+1|Ωiht), where Ωiht is a
matrix of daily stocks of water and hourly accepted production quantities.

29Appendix D shows that technology substitution decreases prices also during adverse events.
30Ti is the partition of the set of generators {1, . . . , Ji} by production technology.
31All these variables are measured in energy metrics (e.g., kWh or MWh). Water inflows are net

of precipitation and natural outflows such as evaporation. We disregard a firm’s decision to spill
water when one of its dam is flooded for tractability (less than 5% of the observations).
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5.2 Market-clearing

The auction rules in Section 2 determine the hourly equilibrium price and quan-
tities produced. At the bidding stage, each firm i submits a vector of daily price-
bids, bit = {bi1t, ..., bi Jit}, and hourly quantity-bids, qiht = {qi1ht, ..., qi Jiht}, which
define how much each of its Ji generators is willing to produce and its minimum
acceptable price. As in Klemperer and Mayer (1989) and Wolak (2007), bidders face
uncertainty in terms of the demand in hour h of the following day, which is known
only up to a noise parameter εht with mean zero and full support. Although we as-
sume εht to be i.i.d. for simplicity, we allow for arbitrary correlations across hours
and time at the estimation stage. The market demand Dht(εht) is perfectly inelastic
and bidders take it as given. The system operator crosses the supply schedules
submitted by each firm Siht(pht) = ∑Ji

j=1 1[bijt≤pht]
qijht against Dht to determine the

lowest price-bid so that demand equals supply:

Dht(εht) =
N

∑
i=1

Siht(pht), for all h = {0, ..., 23} and t. (5.2)

The market price, pht, is the lowest price at which (5.2) holds. At this price, firm i’s
residual demand is Dht(εht)−∑N

l 6=i Slht(pht) = DR
iht(pht, εht), or just DR

iht.
32

5.3 Profit Maximization

In each day t, firm i chooses a combination of price- and quantity-bids to maximize
the following objective function:

Vi(wit) = Eε

[
23

∑
h=0

(
DR

iht pht − Ciht(qiht)− (pht − PCiht)QCiht − 1[pht>pt]
(pht − pt)qit

)
+ β

∫
W

Vi(u) fi(u|Ωiht)du

]
, (5.3)

where the first line describes the expected profits in the day-ahead market at each
of the 24 hourly auctions held on the following day. Current profits include the
operating revenues, DR

iht · pht, minus production costs Ciht(q) for each accepted

32At the equilibrium price, a firm’s supply equals its residual demand, which is the portion of
demand not satisfied by its competitors at the market price.
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unit. Colombian rules also allow for financial returns through long-term contracts
to hedge production. In the data, we observe both the average size and the price of
a firm’s net contract position: QCiht and PCiht, respectively. The difference between
PCiht and pht determines the financial profit or loss from selling QCiht units of
energy in the forward market. Firms are also subject to the Cargo Por Confiabilidad
rule, which forces them to sell a fixed amount of energy, qit, if the market price
exceeds the scarcity price, pt.

33

The second line of (5.3) links current and future payoffs according to (5.1),
which updates a firm’s water stock, wit+1, based on Ωit, which includes the cur-
rent hydropower production, water stock, and weather conditions. This transition
probability is described by the conditional density fi(·|Ωit). The latter variable is
zero for all firms that do not have access to hydropower technology, as they do not
face any intertemporal tradeoff related to the water cycle. These firms solve a static
optimization problem instead. β ∈ (0, 1) is the discount factor.

The model 5.3 assumes that a firm’s current water stock is the sole state vari-
able. Thus, the expectation is over the vector of residual demand shocks, εht.34

To back this assumption empirically, Appendix C extends the reduced-form ap-
proach from Section 4 to include water forecasts for a firm’s competitors. We
do not find evidence of any correlation between a firm’s price- and quantity-bids
and competitors’ expected inflows and water stocks after controlling for future
weather changes such as the season, the forecasted rain and temperatures, and
the future probabilities of el Niño.35 Consistent with these findings, today’s water

33Market participants cannot affect PC, QC, p and q in the daily wholesale markets.
34An alternative approach would assume that firms form expectations about their competitors’

supply schedules. The empirical way to recreate this uncertainty for day t consists of considering
the resampled firm’s residual demand from a sample of ”similar markets” instead of the realized
demand at t, as our formulation supposes. For instance, Reguant (2014) bases her resampling
procedure on demand similarity by resampling a firm’s residual demand for its day t moment
conditions on days with similar demand (e.g., if t is a Monday, she resamples DR

iht across the DR
iht

observed on Mondays). However, supply similarity is equally central in the Colombian wholesale
energy market, as markets are similar also if a firm’s water stock intertemporal value – that is,
its realized value function – is similar across comparable days. Since the value function is the
very object of the estimation, this operation is unfeasible. Therefore, we follow the best-response
bidding approach of Wolak (2003), in which bidders form only expectations of the random residual
demand shocks, which provides more precise estimates if its assumptions are respected. We believe
that this is the case because past bids are an excellent predictor of current bids in the Colombian
energy market (ρ > 0.96). All bids (and forward contract positions) are public knowledge with a
day lag, reducing the uncertainty with respect to competitors’ future supply functions.

35Industry experts confirmed that Colombian firms use similar statistical methods and data to
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consumption affects tomorrow’s profits directly through changes in firms’ water
stocks, but not indirectly through potential changes in future equilibrium prices
due to changes in competitors’ future water stocks. An explanation is that weather
changes might be correlated across firms, so accounting for the current market con-
ditions and a firm’s forecasted inflows is enough to control for competitors’ future
strategies. Thus, the assumption we make retains the central empirical features
discussed in Section 4 while allowing us to reduce a firm’s state space consider-
ably, thus keeping the empirical analyses tractable even when considering several
years of daily auction data.36

Optimal bidding. This section derives necessary conditions for optimal bidding in
the day-ahead market. In this framework, a marginal increase in the quantity-bid
of generator j affects firm i’s marginal cost in two possible ways. First, it affects the
supply schedule of the production technology used by generator j. Denote the set
of generators with this technology by τi ∈ Ti. Then the supply function for firm i
technology τ is Sτ

iht = ∑j∈τi
1{bijt≤pht}qijht. Second, a marginal change in qijht also

implies a change in the market outcomes through the market-clearing condition
5.2 and can thus affect also the costs sustained by technologies different than τ

through this price channel. To capture these two channels, we smooth the supply
function following the seminal contribution of Wolak (2003), which ensures that
the value function 5.3 is continuous and differentiable. Therefore, the derivative of
the cost function for a technology τ with respect to qijht is

( ∂Sτ
iht

∂qijht
+

∂Sτ
iht

∂pht

∂pht
∂qijht

) ∂Cit

∂qijht
+ ∑

κ∈Ti, κ 6=τ

∂Sκ
iht

∂pht

∂pht
∂qijht

∂Cit

∂qijht
, (5.4)

where qτ
iht indicates the overall production of firm i’s generator with technology

τ. The first term accounts for the direct effect and the second term accounts for
the indirect effect. Similarly, a change in qijht affects the value function directly

forecast future water inflows. This information further corroborates our conclusion that accounting
for weather variables is enough to control adequately for competitors’ future water stocks.

36The oblivious equilibrium (e.g., Weintraub et al., 2008) is a common modeling assumption to
reduce the dimensionality of dynamic games because it maintains that a firm’s decisions depend
only on its state variable (e.g., wit) and the long-run average firm state that will prevail in equi-
librium, while ignoring the current industry states. However, Colombian generators do not seem
to react to the average long-run industry state, as their current decisions do not correlate with the
total water stock of competitors but only to their own.
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through the transition probability, fi(u|Ωiht), and indirectly through the price, as

∂
∫ w

w Vi(u) fi(u|·)du
∂qijht

=
∫ w

w Vi(u)
∂ fi(u|·)

∂qijht
du =

(
∂SHiht
∂qijht

+
∂SHiht
∂pht

∂pht
∂qijht

) ∫ w
w Vi(u)

∂ fi(u|·)
∂qHiht

du,

with the superscriptH indicating a hydro technology. Optimal quantity-bids solve

Eε

[
pht

∂DR
iht

∂pht

∂pht

∂qijht
+ (DR

iht −QCiht)
∂pht

∂qijht
+ β

( ∂Sy
iht

∂qijht
+

∂Sy
iht

∂pht

∂pht

∂qijht

) ∫ w

w
Vi(u)

∂ fi(u|Ωiht)

∂qHiht
du

− ∑
τ∈Ti

( ∂Sτ
iht

∂qijht
+

∂Sτ
iht

∂pht

∂pht

∂qijht

) ∂Cit

∂qijht
− 1[pht>pt]

∂pht

∂qijht
qit

]
= 0, (5.5)

The first-order conditions suggest two observations in line with the reduced-form
results in Section 4. First, firms that do not have hydro units do not face any in-
tertemporal technological substitution. Their bids reflect only their marginal cost
– which, according to engineer estimates, is higher than that of hydro units – plus
a markup related to the elasticity of their residual demand. Second, the indirect
effect of changing qijht on the value function has a negative sign for both thermal
and hydro units. However, the direct effect is switched off for thermal generators

(i.e., ∂Sτ
iht

∂qijht
= 0 s.t. τi ∩Hi = ∅) but positive for hydro generators (i.e., ∂Sy

iht
∂qijht
≥ 0).37

We can examine how the direct and indirect effects impact bids through a
change in the intertemporal marginal cost; that is, the marginal cost minus the
marginal value function in (5.5). Consider the bidding problem of a hydro gen-
erator that expects a future drought. Everything else equal, producing qijht units
reduces the availability of future water, which is reflected in a drop in the probabil-
ity mass allocated to high future water stocks in fi(·|Ω). This translates to a higher
intertemporal marginal cost if the direct (positive) effect on the firm’s hydropower
supply is larger than the indirect (negative) effect.

For example, consider a firm with a hydropower generator and a thermal gen-
erator. The thermal generator internalizes the future drought only through the
indirect effect, as producing qikht thermal units reduces its intertemporal marginal
cost by taking away a portion of the residual demand curve from its sibling hydro
generator. Therefore, we expect bids of sibling hydro and thermal generators to

37McRae and Wolak (2017) and Wolak (2019) discuss the market power implications that residual
demand and q have in the Colombian market (see also de Frutos and Fabra, 2012).
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move in opposite directions. This misalignment will be stronger during or before
a drought rather than a rainy season because thermal generators are more likely to
be price-setters in the former than in the latter period, when their higher marginal
costs make them residual claimants (Figure 2b).38

Consistent with the analysis in Section 4, market prices will drop as a result
of intertemporal substitution across production technologies. Therefore, a diversi-
fied technology mix may be an effective tool to reduce price hikes due to droughts.
Surprisingly, this effect is accentuated when a small supply change affects prices
substantially due to market power, which is necessary for a stronger indirect ef-
fect.39 However, market power also affects the marginal revenue portion of (5.5),
thus the net effect is ambiguous. We address this question in the next section by
first estimating the model and then performing counterfactual exercises.

5.4 Identification

Marginal costs and the value function are identified from the first-order condi-
tions 5.5 and from variation in bids, market prices, water inflows and water stocks
across generators and time. Note that the first-order condition with respect to the
quantity-bid of generator j of firm i at time t− h can be written as

MRijht = ∑
τ∈Ti

Xτ
ijht

∂Cit

∂qijht
− β Xy

ijht

∫ w

w
Vi(u)

∂ fi(u|Ωit)

∂qy
iht

du, (5.6)

whereMRijht ≡
(

pht
∂DR

iht
∂pht

+DR
iht−QCi− 1[pht>pt]

qi
) ∂pht

∂qijht
and Xτ ≡ ∂Sτ

iht
∂qijht

+
∂Sτ

iht
∂pht

∂pht
∂qijht

are the marginal revenue and the total derivative of the supply schedule of the
generators with technology τ with respect to the quantity-bid, qijht, respectively.
Because we smoothed the supply function, all the terms in MRijht and Xτ are
known and can be computed directly from observables. The firm-level transition
density and its derivative are also nonparametrically identified for each firm from
variation in the terms included in the water balance (5.1).

The only unknowns in (5.6) are the value function, Vi(wit), and the technology-
specific marginal cost, ∂Cit/∂qijht. Given our assumption that firms do not track the

38In these cases, the indirect effect is zero for dams but negative for thermal generators.
39Decomposing ∂pht

∂qijht
as in Wolak (2007), yields ∂pht

∂qijht
= ∂Siht

∂qijht
/
(

∂DR

∂pht
− ∂Siht

∂pht

)
≤ 0, which is highest

when both the firm’s residual demand and its total supply are inelastic.
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water stocks of their competitors beyond tracking exogenous weather forecasts,
the value function depends only on the future realization of the water stock of
firm i at day t. Therefore, we model the value function as a polynomial expansion
of the water stock β · Vi(w) = ∑R

r=1 γr · wr, where the vector {γr}R
r=1 describes a

firm’s discounted future cash-flows given the current water stock.40

Following the previous section, we assume that production costs are linear in
the equilibrium quantity supplied; that is, Ciht = ∑Ti

τ ψτSτ
iht. In principle, we could

adopt a more flexible functional form for costs. However, the linear assumption
requires a small number of parameters to be estimated, reducing the number of in-
struments in the estimation routine.41 Since Sτ

iht is smooth, costs are differentiable
both in the quantity-bids and in the market price. Rewriting (5.6) in terms of the
unknown parameters, {ψτ}|Ti|

τ , {γr}R
r=1, yields the estimating equation

MRijht = ∑
τ∈Ti

ψτ Xτ
ijht − Xy

ijht

R

∑
r=1

γr

∫ w

w
ur ∂ fi(u|Ωit)

∂qy
ilht

du + εijht, (5.7)

which is linear in the parameters of interest that are identified by the standard
full-rank condition of the matrix of regressors.

Due to the way we model costs, (5.7) is isomorphic to an environment where
each firm i owns a generator per technology, or Ti generators, and that submits
multiple bids with each generator. In that situation, Sτ

iht would be the smooth sup-
ply function that links all quantity-bids submitted by the generator τ, whereas, in
our setting, we smooth all quantity-bids across all i’s generators with a specific
technology τ. As a result, we assume that all units within a technology share the
same primitives, ψτ, and also γr for hydro.42 However, we allow for firm-specific
value function parameters and control for firm (and time fixed) effects at the esti-
mation stage, enabling these primitives to vary within technologies across firms.

40We do not estimate β separately from {γr}R
r=1 because it is not needed for simulating the model.

41Although we do not consider startup costs (e.g., Reguant, 2014), the dynamic cost savings from
keeping a started thermal generator operational would further increase the benefits from intertem-
poral substitution across technologies.

42This modeling device results from calculating the water-balance equation (5.1) at the firm rather
than at the generator level. The modest correlation observed across water inflows within firms (e.g.,
11.6% for EPMG) supports this simplifying assumption.
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5.5 Estimation

The best environment in which to estimate the primitives of the model is a pe-
riod with stable demand and supply conditions; for example, with no merger and
acquisition activity and no fuel price shocks. Therefore, a short period would be
ideal for estimating the model while avoiding peak hours. However, a short pe-
riod would not capture dynamic substitution patterns between thermal and hydro
units, which necessarily require a long horizon due to the length of the weather
cycle in a tropical country like Colombia.43 We therefore estimate the model using
six years of data from January 1, 2010 through December 31, 2015, which includes
twelve dry and rainy seasons and only a few mergers and acquisitions. The esti-
mation of the model closely follows the identification and consists of three steps.
The next subsections describe the estimation routine in detail.

5.5.1 First Step: Smoothing Supply and Demand

First, we smooth each firm’s supply function and residual demand for each hour
h and day t. Similarly, we smooth the technology-specific supply functions, which
include all the quantity- and price-bid schedules placed by the generators with
the same production technology. We exclude wind farms because their overall
capacity is negligible. Following Ryan (2021), we smooth these supply schedules
using a normal kernel with bandwidth equal to 10% of the average price.44

Using these smoothed variables, Figure 6 shows the evolution of markups, de-
fined by the inverse semi-elasticities of the residual demand. The inverse semi-
elasticity tells the COP/MWh increase in the market-clearing price that would
result from a 1% reduction of a firm’s energy supply. Figure 6 shows two main
results. First, markups are greater for the firms with more capacity and lower for
those with less capacity. Firms with no hydro generators are residual claimants
and charge the smallest markup. In particular, EPMG and ENDG (dark and light
green lines, respectively) consistently charge the top markup over the whole sam-
ple, suggesting a dominant position over competitors. Second, the Colombian dry
seasons (from July to Agust, and from December to January) are accompanied by
greater exercise of market power.

43A typical year has two rainy seasons: from the end of March to the beginning of June and from
September through November.

44Details on the smoothing approach are in Appendix E.
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Figure 6: Monthly average inverse semi-elasticities by firm
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Note: The mean inverse elasticity for the six firms with hydro units and the average across all firms
with no hydro generators (orange). The semi-elasticity is equal to the COP/MWh increase in the
market-clearing price that would result from a supplier reducing the amount of energy it sells in
the short-term market during hour h by one percent.

5.5.2 Second Step: Transition Matrix

River inflows are conventionally modeled using autoregressive integrated mov-
ing average (ARIMA) models (e.g., Montanari et al., 1997, 2000; Lei et al., 2018).
Since every moving average (MA) model can be rewritten in terms of an autore-
gressive (AR) model with more lags, we focus instead on the more flexible family
of autoregressive distributed-lag (ARDL) models (Pesaran and Shin, 1998), with p
lags of the dependent variable and q lags of the independent variables. To study
each firm i’s average weekly inflow, δit, as an ARDL(P, Q) process, we perform
the following regressions:

δit = α0 +
P

∑
p=1

γpδit−p + βxit +
Q

∑
q=1

βqxit−q + vit, ∀ i = (ENDG, EPMG, EPSG, ISGG),

which include the following controls (and their lags) in xit: the average rainfall and
temperature in the previous month and three and six months earlier, the monthly
average of the ENSO probability for the next month and the next nine months,
and year fixed effects. vit ∼ N (0, σi) is a serially uncorrelated disturbance with
zero means and constant variance-covariances. All these variables are stationary
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according to the ADF test, and do not display unit roots after differencing. For
each firm, the optimal ARDL(P, Q) is the one with the smallest Schwartz Bayesian
Criterion (BIC). We report autocorrelation tests and goodness of fit for the four
largest firms in Appendix Figures A6 and A7.

Given the water inflow, we proceed by estimating the transition matrix as
Pr(wit+1 ≤ u) = Pr(wit + δit − Sit ≤ u) = Pr(v̂ ≤ u − wit + Sit − δ̂it), where
δ̂it is the fitted value and v̂it is its residual from the ARDL(P, Q) model of firm i.
Therefore, we get that Pr(v̂ ≤ u − wit + Sit − δ̂it) = Fi(u− wit + Sit − δ̂it) where
Fi(·) is the distribution of the firm-specific error term, v̂i. Although we can esti-
mate F̂i(·) nonparametrically, we opt for a distribution from the Pearson family, as
is common in the hydrology literature (e.g., Abdullah et al., 2017; Lorenzo-Lacruz
et al., 2010). Since δit takes values on the whole real line, we adopt the Pearson
Type IV distribution, which, being asymmetric, fits well our purpose of modeling
rainy and dry seasons. We fit the distribution to the data by maxmimum likelihood
and compare the Pearson-distributed F̂(·) with other commonly used parametric
(normal and logistic) distributions and nonparameatric distributions in Appendix
Figure A8. The figure indicates a satisfactory fit of the Pearson distribution.

Finally, we exploit the polynomial approximation to the value function to com-
pute the expected value function in the next period up to the vector of primitives
{γr}R

r=1, as shown in (5.7). Given the estimated density and r, since

∫ w

w
Vi(u)

∂ fi(u− wiht + ∑h,j qy
ijht|Ωit)

∂qy
ilht

du =
R

∑
r=1

γr

∫ w

w
ur

∂ fi(u−ωit + ∑h,j qy
ijht − δ)

∂qy
ilht

du,

we first compute each of the R integrals by parts and then estimate the vector
{γr}R

r=1 in the third step of the estimation routine, which we describe next.

5.5.3 Third Step: Marginal Cost and Value Function Parameters

In the last step, we plug all the terms estimated in Sections 5.5.1 and 5.5.2 into
(5.7) and estimate the marginal cost and value function parameters for the four
largest firms – ENDG, EPMG, ESPG and ISGG.45 Since bids and market prices are
equilibrium objects the presence of unobserved variables correlated with supply
and demand will result in biased estimates. For instance, an unobserved demand

45Section 4 focuses on the same firms.
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shock due to high air conditioning usage on an especially dry day may result in
a positive correlation between the supplied schedules and the error term of (5.7).
Without properly accounting for such endogeneity, we could mistakenly relate a
firm’s more aggressive bidding to the expectation of future water availability. The
long estimation horizon (six years) needed to uncover the dynamic switch across
production technologies exacerbates this problem.

To avoid this bias, we instrument Xτ
ijht with a set of instruments and add a

set of fixed effects. In particular, we include as instruments the temperature and
the linear, squared, and cubic terms of rainfall at the location of each hydropower
generator. We also include, as cost shifters, the price of coal, gas, oil, and ethanol in
levels and interacted with the lagged demand of the previous week for each hour.
As demand shifters, we include the temperature in Colombia’s seven largest cities
in levels and interacted with the hourly lagged demand of the previous week as a
proxy for each hour’s expected demand.

We consider two sets of estimations. First, we estimate the model using the
full dataset (3,704,578 observations); that is, at the day-hour level. In this case,
we include week-year, day-of-the-week, hour, and firm fixed effects. Second, we
collapse the data by week-hour and estimate (5.7) for all the week-hours of the day
and include month-year, hour, and firm fixed effects. This dataset covers 528,141
week-hour-generator observations.

Table 2 presents the parameter estimates. The first two columns report the
weekly estimates; the second two report the daily estimates. Odd columns dis-
play estimation using only linear and quadratic polynomials for the value function
(R = 2), and even columns add a cubic term (R = 3). The bottom panel reports the
F-test for all instrumented Xτ

ijht, indicating a strong first stage.
The top panel of Table 2 reports the estimated marginal costs. Across columns,

we find that hydropower generation is consistently the cheapest production tech-
nology at about 25 US$/MWh. The second-cheapest production technologies are
run-of-river and cogeneration at about 44 US$/MWh. As expected, a thermal gen-
erator’s marginal cost exceeds that of a hydro generator, costing a firm over 56
US$/MWh on average.46 Our results are in line with engineers’ cost estimates

46To compare marginal costs with market prices, the average market price in the whole sample
is 180,859 COP/MWh (s.d. 172,944 COP/MWh). The estimated thermal marginal cost of 181,321
COP/MWh shows the residual claimant role played by thermal generators.
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Table 2: Estimated primitives of the structural model

Weekly Daily
Quadratic Cubic Quadratic Cubic

Marginal costs (COP/MWh)

Cogeneration 141,101∗∗∗ 144,373∗∗∗ 152,383∗∗∗ 156,340∗∗∗

(2,244) (2,893) (1,268) (2,915)
Hydropower 106,609∗∗∗ 78,366∗∗∗ 117,054∗∗∗ 71,678∗∗∗

(4,371) (11,092) (3,720) (7,621)
Run-of-river 140,711∗∗∗ 140,132∗∗∗ 160,213∗∗∗ 165,051∗∗∗

(1,663) (2,121) (1,019) (1,563)
Thermal 181,321∗∗∗ 175,608∗∗∗ 218,839∗∗∗ 224,379∗∗∗

(3,735) (6,311) (2,492) (4,207)

Firm-specific value function parameters (COP/MWh)

ENDG: - Linear term –40,666∗∗∗ 346,354∗∗∗ –14,279∗∗∗ –258,253∗∗∗

(7,665) (62,088) (4,407) (36,012)
- Quadratic term 0.00766∗∗∗ –0.157∗∗∗ 0.00474∗∗∗ 0.107∗∗∗

(0.00125) (0.0264) (0.000792) (0.0151)
- Cubic term 1.69e-08∗∗∗ –1.01e-08∗∗∗

(2.72e-09) (1.54e-09)
EPMG: - Linear term 9,283∗∗ 167,721∗∗∗ 35,002∗∗∗ –10,837

(4,628) (28,845) (3,049) (14,865)
- Quadratic term –0.00369∗∗∗ –0.0528∗∗∗ -0.00825∗∗∗ 0.0122

(0.000924) (0.0149) (0.000641) (0.00785)
- Cubic term 3.12e-09∗ –1.94e-09∗

(1.83e-09) (1.02e-09)
EPSG: - Linear term –72,046∗∗∗ –358,862∗∗∗ 103,252∗∗∗ –560,839∗∗∗

(19,772) (108,459) (12,454) (101,224)
- Quadratic term 0.111∗∗ 1.467∗∗ –0.230∗∗∗ 3.629∗∗∗

(0.0531) (0.668) (0.0306) (0.571)
- Cubic term –1.40e-06 –5.27e-06∗∗∗

(9.98e-07) (7.97e-07)
ISGG: - Linear term 81,098∗∗∗ 406,119∗∗∗ 138,575∗∗∗ 920,211∗∗∗

(16,830) (77,491) (10,862) (67,240)
- Quadratic term –0.0610∗∗∗ –0.712∗∗∗ –0.133∗∗∗ –2.653∗∗∗

(0.0182) (0.235) (0.0125) (0.208)
- Cubic term 3.94e-07∗∗ 1.82e-06∗∗∗

(1.68e-07) (1.54e-07)

Observations 528,141 528,141 3,704,578 3,704,578

F-test cogeneration 24,855 19,903 106,106 106,106
F-test hydropower 1,954 1,451 5,991 5,991
F-test run-of-river 15,432 10,638 56,358 56,358
F-test thermal 2,512 1,979 11,765 11,765
* – p < 0.1; ** – p < 0.05; *** – p < 0.01.

Note: Two-stage least squares estimates of equation 5.7 assuming firm-specific value function pa-
rameters. We estimate the model using data at the at the week-hour and day-hour level. For the
first case, we include month-year, hour, as well as, firm fixed effects, and standard errors are clus-
tered at the firm-week level. For the second case, we include week-year, day-of-the-week, hour, as
well as, firm fixed effects and standard errors are clustered at the firm-day level. The instruments
are the temperature in Colombia’s seven largest cities interacted with the hourly lagged demand
of the previous week (demand shifters), the price of coal, gas, oil, ethanol, and sugar interacted
with the lagged-demand for each hour (cost shifters), and the rainfall for each hydro-power plant
in levels, squared and cubic terms. Columns 1 and 3 have the lowest BIC. 1 US$ is worth 3,150 COP.
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for Colombia (e.g., Camelo et al., 2018). In the second panel of Table 2 we report
the estimates of the value function parameters for each firm, γi,r. The quadratic
daily estimates are slightly larger than the weekly ones, but are consistent across
columns. Guided by the engineers’ cost estimates for Colombia, our favorite spec-
ification is the weekly regression in the first column, which we use in the simula-
tions presented in the next section.47

6 Benefits and Limitations of Diversifying Suppliers

The estimation of the dynamic model depends on the necessary conditions for
optimal behavior, but these are not sufficient to characterize a firm’s full optimal
strategy. Following the standard approach in the literature (e.g., Bushnell, 2003;
Reguant, 2014), Section 6.1 develops a tractable simulation model that validates
the fit of the structural estimates and Section 6.2 performs policy experiments to
assess the economic advantage of diversified production technologies.

6.1 The Simulation Model

We model the day-ahead market as a (dynamic) Cournot oligopoly in which a firm
chooses how much energy to sell in each hourly market to maximize its intertem-
poral profits.48 The computational model solves for a firm’s best response given
the other firms’ strategies, using a mixed-linear integer programming problem that
determines the global optimum (Reguant, 2014).49 For tractability, we focus on the
firm with the largest semi-elasticity of demand in the time period under analysis,
EPMG (see Figure 6). Since the computational solver works with discrete opti-
mization problems, these technology-specific supplies are step functions with K
steps each. On each day t, the firm chooses the K- dimensional vector of hourly

47Appendix Table B6 estimates the model assuming that the value function parameters are ho-
mogeneous across firms (i.e., γi,r = γr for all firms and r), and find that imposing symmetry in
the value function does not substantially affect the marginal cost estimates from Table 2. Appendix
Table B7 finds similar results focusing on data for markets on weekdays at 9:00 AM.

48Willems et al. (2009) compare the two approaches used in this paper, supply function equilib-
rium and Cournot oligopoly, and find that they perform similarly.

49We use the Rcplex package in R and the IBM ILOG CPLEX software to solve this mixed-
linear integer problem; these softwares are freely available for academic research at https:

//cran.r-project.org/web/packages/Rcplex/index.html, and https://www.ibm.com/it-it/

products/ilog-cplex-optimization-studio, respectively.
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s.t.

[Market-clearing:] DR
ht =

T
∑
τ=1

K

∑
k=1

qτ
ht,k, ∀ h, (6.1)

[Constraints on residual demand steps:] 0 ≤ DR
ht,z ≤

T
∑
τ

capτ
ht/Z, ∀ h, z,

[Constraints on supply steps:] 0 ≤ qτ
ht,k ≤ capτ

ht/K, ∀ h, τ, k,

[Constraints on value function steps:] 0 ≤ EVt,m ≤ capy
ht/M, ∀ h, τ, m,

where we dropped the subscript i because the focus is on EPMG. The gross rev-
enue function, GR(DR

ht), is the discretized version of the static revenues in (5.3). It
depends on DR

ht(pht) = ∑Z
z=1 1[pht,z≤pht]

DR
ht,z, a step function composed of Z steps

that describes EPMG’s residual demand at pht. The cost function is equal to the
cost of producing ∑τ,k qτ

ht,k MWh of energy using the technology-specific marginal

costs estimated in the first column of Table 2, {ψ̂τ}|T |τ . The remaining term of (6.1)
is the expected value function, which depends on the water stock at t− 1, the to-
tal MW of hydrogeneration produced at t, and the transition matrix estimated in
Section 5.5.2. We discretize this term over M steps.

The first optimization constraint requires the hourly equilibrium price to be
such that EPMG’s supply (increasing) equals the residual demand (decreasing).
We also constrain each step function to be nonnegative, and include upper bounds
for each step, so that all steps have equal size; we denote as capτ

ht/Y the total hourly
MW available of technology τ divided by the number of steps Y.50 To simulate the
model, we set the parameters to Z = 20, K = 5, M = 5. Changing these parameters
does not qualitatively affect the results presented below.

Because the main focus of this paper is on intertemporal allocation of supply
over seasons, we do not attempt to simulate each daily market over the six-year
period under consideration. We instead average the state space – hourly demand,

50For all three variables, we also include constraints to ensure that the algorithm fully exhausts
the quantity available in step x− 1 before allocating units to step x.
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hourly competitor’s supplies, and hourly net contract position – across weeks and
solve for EPMG’s best response using (6.1) for each hour-week pair. This approach
reduces computation time substantially without sacrificing precision.

Model fit. We assess the fit of the model by computing the market price in each
period given the estimated marginal costs and value function parameters, the reli-
ability payment mechanism, the observed net forward position, the observed wa-
ter stock, and the observed strategy of EPMG’s competitors at time t. Figure 7
compares the observed average weekly prices (red line) with the simulated ones
(blue line).51 The model correctly reproduces price hikes, which are the focus of
the counterfactual analyses in the next section.52 Moreover, the simulation exer-
cise well replicates the volatility of prices and quantities across hours, as reported
in Table 3, which summarizes the average hourly difference (and its standard er-
ror) between simulated and observed hourly prices and quantities. The simulated
hourly prices are within 5% of the actual price for all hours and the average daily
price. Average hourly quantity produced show a similarly satisfactory fit.

Figure 7: Simulated and actual average weekly prices
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Note: The actual average weekly price (red line) and the simulated average daily price (blue line).

51We compare the average simulated price across the 24 hourly markets (blue line) with the
corresponding average weekly price (red line). Prices are in Colombian pesos per MWh.

52Appendix Figure A10 replicates the analysis by approximating the value function with 20 steps
instead of five and finds similar results.
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Table 3: Change in observed and simulated equilibrium prices and quantities

∆ Market price ∆ EPMG’s quantity-bid

Avg. diff. Avg. diff. St. err. of diff. Avg. diff. Avg. diff. St. err. of diff.
Hour (COP/MWh) (%) (COP/MWh) (MWh) (%) (MWh)

1:00 AM -5,744.21 5.21 2,453.39 -114.44 5.68 77.31
5:00 AM -7,900.62 3.00 2,428.64 -106.53 5.07 76.12
9:00 AM 569.51 1.37 4,903.08 59.72 6.48 60.44
1:00 PM 13,357.65 5.98 5,653.45 -24.70 3.88 61.44
5:00 PM 12,373.29 5.88 6,501.49 38.32 6.00 61.16
9:00 PM 13,822.49 8.55 5,761.78 4.76 3.64 55.73

All 4,413.02 5.00 2,004.24 -23.81 5.13 26.91

Note: Average difference between simulated and observed market prices and EPMG’s accepted
quantity-bids for different market hours.

6.2 Counterfactual Simulations

Our main hypothesis is that a diversified product mix can limit price hikes before
a dry season, but plays no role in a normal or rainy season. To test this hypothesis,
we artificially modify EPMG’s thermal capacity and examine the resulting change
in the simulated prices.

EPMG is one of the most diversified producers in Colombia, with hydropower,
thermal, cogeneration, run-of-river generators, and wind farms. Panel (a) of Ap-
pendix Figure A9 reports the evolution of the firm’s installed capacity by tech-
nology over time. Compared to the total industry (Figure 2a), a greater share of
EPMG’s production comes from hydropower generation and this share has in-
creased over time. Panel (b) shows that, until the second half of 2010, EPMG’s
hydropower capacity was 80% of the sum of the two largest production technolo-
gies it employs, hydropower and thermal. Since then, the share of hydropower
has increased further to about 85% as of the end of 2015.

Policy scenarios. In the simulations below, we modify the share of thermal capac-
ity between 0%, 25%, and 50% of the sum of thermal and hydro capacity to examine
how prices would react if (a) EPMG had divested from its thermal plans, (b) EPMG
had invested in thermal instead of hydropower, or (c) EPMG had brought thermal
and hydropower to equal footing. To isolate the role of production synergies from
market power, these policy exercises do not reallocate the capacity removed from
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EPMG to other firms, nor do they move energy capacity from other firms to EPMG.
Lastly, Section 6.2.3 allows for changes in market power by merging EPMG with
the thermal powerplants owned by its competitors.

Policy exercises. We perform two main sets of exercises. First, Section 6.2.1 focuses
on anticipation responses and simulate the computational model conditional on
EPMG’s observed water stock. This allows us to detect the time of the price impact
in isolation from the reallocation of resources across technology and time. Then,
Section 6.2.2 extends this analysis to take into account the dynamic implications of
saving water before dry periods. These simulations identify the full extent of the
price benefit of intertemporal substitution.

6.2.1 Simulations without Reservoir Updates

Figure 8 examines the impact of reallocating energy capacity across thermal and
hydro generation. Each black dot shows the difference between the simulated
price under standard market condition minus the simulated price when we bring
EPMG’s thermal capacity to x ∈ {0%, 25%, 50%} of the sum of its thermal and hy-
dro capacity. Therefore, dots above (below) 0 indicate that the reallocation exercise
led to lower (higher) prices. The red error bars are the 95% confidence interval for
the realized price difference in week t. The plots also provide information on dry
periods through light and dark gray vertical bars, indicating periods of exceptional
heat and rainfall, respectively, at EPMG’s hydro locations.53

Comparing the three panels leads to two main results. First, greater thermal
capacity results in lower market prices, on average. In particular, removing ther-
mal capacity increases prices (Panel a), whereas adding it substantially decreases
prices (Panel c). Second, consistent with our empirical analysis (cf. Figure 5), the
impact is particularly visible three to six months before an especially dry period
(gray bars), with no consequences in rainy or normal periods.

Next, we turn to the magnitude of the impact. Panel (a) removes EPMG’s ther-
mal energy. Out of the 312 weeks under study, we find that reallocation has a
significant price impact at the 10% (5%) level for 129 (96) weeks. Prices would in-
crease on average by 1.69% (1.97%) in these weeks, with peaks of 25.4%. Increasing

53Dark (light) gray bars mark periods with at least one hydro unit owned by EPMG records
rainfalls (temperatures) 1 standard deviation below (above) its long-run average.
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Figure 8: Counterfactual prices: Changing EPMG’s thermal capacity to

(a) 0% of its combined hydro and thermal capacity

(b) 25% of its combined hydro and thermal capacity

(c) 50% of its combined hydro and thermal capacity

Note: Comparison of weekly average prices simulated with simulated prices from three scenarios.
In each scenario, EPMG’s water stock in week t is that observed in the data. Dark (light) gray
bars mark periods with at least one hydro unit owned by EPMG records rainfall (temperature) 1
standard deviation below (above) its long-run average. 95% C.I. in red.
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thermal production to 25% of the the sum of hydro and thermal capacities (Panel
b) has a signficant price effect at the 10% (5%) level in 109 (79) weeks. The average
price decreases by 1.56% (1.59%) in these weeks, with peaks of 22.4%. Panel (c)
shows even larger estimates, with average price drops of 4.5%. Thus, these simu-
lations support the conclusions drawn from the reduced-form exercises in Section
4.2 and show a sizable impact of synergies on market prices, even though only the
policy change affects only one firm. Although this analysis offer some insights,
it does not reveal the full price implication of diversification because it does not
allow for the feedback in a firm’s water stock due to a different intensity of hy-
dropower usage in previous weeks. We extend our analysis to account for this
dynamics in the next subsection.

6.2.2 Simulations with Reservoir Updates

This section amends the computational model 6.1 by allowing EPMG’s production
decision in week t to affect the size of the reservoir in week t + 1. We perform
the same counterfactual exercise by varying EPMG’s thermal capacity between
x ∈ {0%, 25%, 50%} of EPMG’s combined installed thermal and hydro capacity in
each period. Figure 9 reports the output of the simulation in a format similar to
that of Figure 8; across panels, increasing thermal capacity decreases prices. Un-
like Figure 8, the price changes are not limited to the months before a dry period,
but persist during negative shocks. This is especially evident after 2012.54 Forc-
ing EPMG to dispose of its thermal generators would significantly affect prices at
the 10% (5%) level in 292 (282) weeks out of 312. In such a scenario, prices will
increase by 12.1% (12.4%) in these weeks, with peaks of 50%. Moving to Panel (b),
increasing EPMG’s thermal capacity to 25% of its combined hydro and thermal
capacity would affect market prices in 249 (218) weeks. Average prices will drop
by 6.1% (6.6%) in these weeks, with price savings up to 24.7%. Finally, a consider-
able increase in EPMG’s capacity, as that in Panel (c), would lower prices by 10.3%
(11.1%) on average, with price savings up to 34.1%. Thus, these simulation exer-
cises support our empirical finding that greater diversification can reduce market
prices in the Colombian wholesale energy market.

54Since 2010 had an especially dry el Niño period, the counterfactual EPMG did not have enough
time to reallocate energy away from hydro, implying small synergies in 2010 and 2011.
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Figure 9: Dynamic counterfactual prices: Changing EPMG’s thermal capacity to

(a) 0% of its combined hydro and thermal capacity

(b) 25% of its combined hydro and thermal capacity

(c) 50% of its combined hydro and thermal capacity

Note: Comparison of weekly average prices simulated with simulated prices from three scenarios.
In each scenario, EPMG’s production decision in week t affects its reservoir level in week t + 1.
Dark (light) gray bars mark periods with at least one hydro unit owned by EPMG records rainfall
(temperature) 1 standard deviation below (above) its long-run average. 95% C.I. in red.
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6.2.3 Mergers and Market Power

All the previous simulations artificially modified EPMG’s capacity without affect-
ing that of its competitors. Whether EPMG acquires a generator from another firm
or expands an existing one has consequences for competition. In particular, ac-
quiring a new generator would make EPMG’s residual demand steeper, further
increasing its ability to affect prices by changing quantity unilaterally. In addition,
if the new thermal generator comes from a competing firm with hydro production,
that competitor would be more constrained in its ability to intertemporally substi-
tute production across technologies, which, according to our findings, would in-
crease prices. Focusing on the first channel, Figure 10 shows (provocatively) what
would come of reallocating all thermal generators owned by the other large com-
panies to EPMG. As a result, the artificial EPMG will increase prices substantially
in all periods, dry or not. Therefore, Figure 10 provides a cautionary tale for poli-
cymakers: incentivizing suppliers to hold a diversified technology mix helps curb
price hikes, but it backfires if market power simultaneously rises.

Figure 10: Counterfactual prices: A merger with competitors’ thermal generators

Note: Comparison of the weekly average price simulated with the simulated prices if all thermal
generators of CHVG, EMUG, ENDG, EPSG, and ISGG are merged with EPMG. EPMG’s production
decision in week t affects its reservoir level in week t + 1. Dark (light) gray bars mark periods with
at least one hydro unit owned by EPMG records rainfall (temperature) 1 standard deviation below
(above) its long-run average. 95% C.I. in red.

A final note. The simulations focus on thermal capacity because of its importance
in Colombia (Table 1). However, our results extend to similar, potentially greener
energy sources displaying a different cyclicality than hydropower.
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7 Discussion and Conclusion

This paper describes a new mechanism in the energy sector to lower market prices
in times of scarcity – a major problem for the clean-energy transition and for energy
systems heavily reliant on renewables. Leveraging detailed data on the Colombian
market, in which hydropower is prevalent, we exploit exogenous weather varia-
tions to show that firms with diverse technology portfolios raise their fossil fuel
supply – and simultaneous lower their hydropower supply – in expectation of an
adverse inflow forecast. This intertemporal substitution across production tech-
nologies helps dams store water, allowing market prices to increase less than they
would otherwise during scarcity events. We build, estimate, and simulate a dy-
namic structural model suggesting that an increase in the non-hydro capacity of
Colombia’s market-leading firm would lower prices, on average, between 6% and
10%.

The model also finds that the benefits of diversifying a firm’s production port-
folio reverse if diversification takes place through mergers raising the firm’s mar-
ket power. Because energy markets are characterized by oligopolistic competition,
aggregating many generators within the same firm reduces the number of com-
petitors, increasing the firm’s residual demand. Despite the substitution channel,
mergers can exacerbate a preexisting dominance position (see Figure 10), implying
higher, rather than lower, market prices. For this reason, government incentives
to diversify production technologies – for example, through functioning capacity
markets to incentivize investments (Fabra, 2018; Fabra and Llobet, 2021) – should
go hand-in-hand with policy attention to abuses of market power.

One advantage of the substitution channel that we identify is that it requires no
specific policies targeting the behavior of market participants. The standard way
to counteract scarcity periods relies on reliability payment systems which, like call
options, force all generators to sell a given amount of energy at a predetermined
price anytime the market price goes above a strike price. These systems have var-
ious shortcomings as, in particular, generators with market power can create the
conditions for scarcity themselves to raise their profits (McRae and Wolak, 2019).
Favoring intertemporal substitution across technologies avoids such shortcomings
because it relies on sibling generators internalizing future hydropower marginal-
cost changes by reacting accordingly. If firms had only one generator each instead,
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a hydro supply drop due to scarcity would not be automatically rebalanced by
non-hydro supply as generators do not internalize adverse events of competitors.

Our results might extend to other markets dominated by intermittent renew-
ables if adequate storing facilities exist. Also, our results are of particular interest
for the transition to clean energy, especially for developing countries in tropical
Latin America and Africa that have abundant water supplies and ongoing plans
to increase their hydropower capacities. Abandoning nonrenewable generation al-
together would expose national energy systems to the intermittency of renewables,
increasing energy prices and blackouts under scarcity. More generally, our paper
relates to the literature on the anticompetitive behaviors of horizontal mergers for
homogeneous good markets originally developed by Williamson (1968) and Far-
rell and Shapiro (1990). The tradeoff between market power and diversification
that we quantify in this paper may apply to other industries in which different
production processes result in the same homogeneous outputs and marginal costs
are volatile (e.g., Collard-Wexler and De Loecker, 2015).
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Online Appendix

A Additional Figures

Figure A1: Energy production technologies available in Colombia

(a) Hydropower (b) Run-of-river (c) Thermal

(d) Wind Farm (e) Cogeneration

Note: Each panel displays an example of a generator of the technology specified in the subtitle.

Panel (a) Chivor. This is one of the largest dams in Colombia, with an installed capacity of
1,000MW. It is located 160km away from the capital, Bogota.

Panel (b) San Miguel. This Run-of-river generator has a capacity of 44MW and it is located in the
Antioquia region. These generators generally have no water storage and produce energy
as water enters penstock pipes that lead to the turbines.

Panel (c) Tebsa. This is the largest thermal energy generator in Colombia, with an installed capac-
ity of almost 800MW. The organization is located close to Barranquilla, in the Caribbean
Sea area. The plant has a combination of gas an steam turbines.

Panel (d) Jepirachi. This wind power generation facility has a capacity of about 19MW. It is located
in the Wayuu indigenous territory, within the municipality of Uribia in the Department
of Guajira, in the northwest region of the Atlantic coast of Colombia. The name Jepirachi
means ”northeast wind” in the Wayuu language.

Panel (e) Ingenio Providencia. This cogeneration generator is part of a sugarcane mill. During
the combustion process, the osmotized water is heated to produce high pressure steam,
which generates energy. This generator has an installed capactiy of 14MW.

1



Figure A2: Hydropower generators’ asymmetric quantity-bids response
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Note: The estimated βl,low (Panel a) and βl,high (Panel b) from equation 4.2 with quantity-bids as
dependent variable. Appendix Table B2 reports the coefficient estimates. The red line and the bar
tell the 95% and 90% C.I.s, respectively. Standard errors are clustered at the generator-quarter-year
level.

Figure A3: Hydropower generators’ asymmetric price-bids response
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Note: The estimated βl,low (Panel a) and βl,high (Panel b) from equation 4.2 with price-bids as de-
pendent variable. Appendix Table B2 reports the coefficient estimates. The red line and the bar
tell the 95% and 90% C.I.s, respectively. Standard errors are clustered at the generator-quarter-year
level.
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Figure A4: Sibling thermal generators’ asymmetric quantity-bids response
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Note: The estimated βl,low (Panel a) and βl,high (Panel b) from equation 4.2 with quantity-bids of
thermal generators and inflow expectations accruing to the whole firm as dependent and indepen-
dent variables, respectively. Appendix Table B4 reports the coefficient estimates. The red line and
the bar tell the 95% and 90% C.I.s, respectively. Standard errors are clustered at the generator-
quarter-year level.

Figure A5: Sibling thermal generators’ asymmetric price-bids response
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Note: The estimated βl,low (Panel a) and βl,high (Panel b) from equation 4.2 with price-bids of ther-
mal generators and inflow expectations accruing to the whole firm as dependent and independent
variables, respectively. Appendix Table B4 reports the coefficient estimates. The red line and the bar
tell the 95% and 90% C.I.s, respectively. Standard errors are clustered at the generator-quarter-year
level.
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A.1 Estimation of the Transition Matrix

Figure A6: Autocorrelation plots from the ARDL models
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(c) EPSG

−0.4

−0.2

0.0

0.2

0.4

EPSG − ARDL (2, 2)

Lag

A
ut

oc
or

re
la

tio
n 

F
un

ct
io

n

1 3 5 7 9 11 13 15 17 19 21 23 25

RMSE/Average Inflow:  0.13, Adj. R2:  0.68
Augmented Dickey−Fuller p−value:  <0.01
Cointegration (ARDL−Bounds) p−value:  <0.01
Breusch−Godfrey p−value:  0.62, Breusch−Pagan p−value:  0.26
Mincer Zarnowitz Regression:

intercept     0.00 (546.98)
slope          1.00  (0.03)
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Note: Autocorrelation plots of Colombia’s four largest energy suppliers. Each plot titles report the
selected ARDL(p, q) model. The blue and red dotted lines show the standard 95% and the Bartlett’s
95% critical values respectively. The bottom of each plot reports goodness of fit statistics.
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Figure A7: Autocorrelation diagnostics: Ljung-Box statistic p-values

(a) ENDG

●

●

●
●

● ●

●

●

●

●

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Ljung−Box Test for ENDG

Lag

p−
va

lu
e

1 2 3 4 5 6 7 8 9 10

(b) EPMG
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(c) EPSG
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(d) ISGG
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Note: The p-values from the Ljung-Box Test for Colombia’s four largest energy suppliers. The null
hypothesis states that the data are independently distributed (i.e., the correlations in the population
from which the sample is taken are 0, so that any observed correlations in the data result from
randomness of the sampling process).
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Figure A8: Goodness of fit of the Pearson distribution
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Note: Goodness of fit of the Pearson Type IV distrubtion. Each subplot reports (clockwise) the
comparisons of pdfs, cdfs, the quantile-quantile plot and the probability-probability plot across
the selected parametric distributions and the data. The Pearson distribution is in blue, the logistic
distribution is in green, and the normal distribution is in red. The Kolmorov-Smirnov test never
rejets the null that the Pearson Type IV distribution and the nonparametric distribution are equal
at the 5% level.
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A.2 Additional Figures from the Structural Model

Figure A9: EPMG’s installed capacity over time

(a) Total installed capacity by technology
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(b) Thermal capacity as a percentage of EPMG’s thermal and hydro capacity
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Note: The relative contribution of different technologies to EPMG’s installed capacity over time.
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Figure A10: Simulated and actual average weekly prices, different number of steps
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B Additional Tables

B.1 Hydropower generation

Table B1: Hydropower generators’ response to own inflow forecasts

Quantity-bid (kWh) Price-bid (COP/kWh)
(1) (2) (3) (4) (5) (6)

1st quarter 327.3∗∗∗ 312.1∗∗∗ 257.1∗∗∗ -1.570∗∗∗ –1.506∗∗∗ –1.059∗∗∗

(65.86) (64.93) (58.68) (0.357) (0.352) (0.323)
2nd quarter –127.4 –111.9 –118.7∗ –0.534 –0.598 –0.0135

(77.68) (78.22) (70.80) (0.372) (0.375) (0.323)
3rd quarter –132.4∗ –122.8∗ –92.56 –0.00291 –0.0405 0.242

(70.82) (70.95) (69.30) (0.287) (0.288) (0.275)
4th quarter 75.18 56.41 108.6 0.254 0.330 –0.305

(76.89) (76.46) (68.33) (0.287) (0.291) (0.269)

Month and year FE X X X X X X
Generator FE X X X X X X
Lagged demand X X X X
Lagged water stock X X X X
Lagged contracts X X X
Lagged spot price X X
Clustered s.e. GQY GQY GQY GQY GQY GQY

Mean of dep. var. 420,569 420,500 420,500 229.2 229.3 229.3
Observations 9,020 9,005 9,005 9,005 9,005 9,005
* – p < 0.1; ** – p < 0.05; *** – p < 0.01.

Note: The estimated βl from equation 4.1 with either quantity-bids (Columns 1-3) or price-bids
(Columns 4-6) as dependent variables. The second panel specifies the covariates included in each
regression. Standard errors are clustered at the generator-quarter-year level. 1 US$ is worth 3,150
COP.

9



Table B2: Hydropower generators’ asymmetric response to own forecasts

Quantity-bid (kWh) Price-bid (COP/kWh)
(1) (2) (3) (4) (5) (6)

Favorable expectations (βl,low)
1st quarter 2,241 501.3 –855.9 –1.764 3.536 5.143

(3,455) (3,460) (3,432) (18.11) (18.09) (17.82)
2nd quarter 3,058 2,534 2,437 13.89 14.77 8.631

(4,197) (4,191) (4,169) (18.02) (18.18) (17.36)
3rd quarter –2,648 –3,366 –3,791 7.876 9.535 11.40

(4,338) (4,279) (4,249) (19.96) (19.99) (18.95)
4th quarter –2,632 –3,725 –4,030 –15.35 –12.53 –3.301

(4,111) (4,067) (4,034) (18.28) (18.43) (17.53)

Adverse expectations (βl,high)
1st quarter –8,810∗∗ –8,804∗∗ –5,038 107.6∗∗∗ 107.1∗∗∗ 57.20∗∗

(3,998) (3,964) (3,701) (24.66) (24.65) (23.03)
2nd quarter –4,173 -4,498 -2,153 69.46∗∗∗ 70.21∗∗∗ 36.69∗

(5,068) (5,064) (4,833) (23.89) (23.82) (22.07)
3rd quarter 3,036 2,654 2,239 –11.40 –9.657 –8.654

(5,679) (5,692) (5,458) (23.29) (23.28) (22.22)
4th quarter –714.0 –248.9 –6,222 –53.29∗∗ –55.23∗∗ 4.830

(4,948) (4,922) (4,720) (25.54) (25.67) (24.68)

Month and year FE X X X X X X
Generator FE X X X X X X
Lagged demand X X X X X
Lagged water stock X X X X
Lagged contracts X X X
Lagged spot price X X
Clustered s.e. GQY GQY GQY GQY GQY GQY

Mean of Dv 431,882 431,852 431,852 228 228 228
Observations 9,544 9,527 9,527 9,544 9,527 9,527
* – p < 0.1; ** – p < 0.05; *** – p < 0.01.

Note: The estimated βl,low (top panel) and βl,high (middle panel) from equation 4.2 with either
quantity-bids (Columns 1-3) or price-bids (Columns 4-6) as dependent variables. Standard errors
are clustered at the firm/generator-quarter-year level. 1 US$ is worth 3,150 COP.
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B.2 Thermal generation

Table B3: Sibling thermal generators’ response to same firm’s inflow forecasts

Quantity-bid (kWh) Price-bid (COP/kWh)
(1) (2) (3) (4) (5) (6)

1st quarter –138.1∗ –136.8∗ –117.8 0.248 0.251 0.193
(80.98) (80.95) (76.60) (0.377) (0.379) (0.390)

2nd quater –171.0∗∗ –170.2∗∗ –54.83 0.088 0.0800 0.055
(73.25) (73.27) (74.81) (0.325) (0.330) (0.397)

3rd quater –211.9∗∗ –214.3∗∗ –100.1 0.230 0.236 0.253
(90.17) (90.18) (85.01) (0.484) (0.486) (0.457)

4th quater –226.3∗∗ –227.6∗∗ –192.1∗∗ –0.259 –0.257 –0.218
(98.70) (98.50) (96.73) (0.597) (0.598) (0.600)

Month and year FE X X X X X X
Generator FE X X X X X X
Lagged demand X X X X
Lagged contracts X X
Lagged spot price X X
Clustered s.e. FQY FQY FQY FQY FQY FQY

Mean of dep. var. 104,179 104,265 104,265 421.8 422.1 422.1
Observations 5,441 5,419 5,419 5,441 5,419 5,419
* – p < 0.1; ** – p < 0.05; *** – p < 0.01.

Note: The estimated βl from equation 4.1 with quantity-bids or price-bids of sibling thermal gen-
erators as dependent variables. Standard errors are clustered at the firm-quarter-year level. 1 US$
is worth 3,150 COP.
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Table B4: Sibling thermal generators’ asymmetric response to same firm’s inflow
forecasts

Quantity-bid (kWh) Price-bid (COP/kWh)
(1) (2) (3) (4) (5) (6)

Favorable expectations (βl,low)
1st quarter –8,393∗∗ –8,318∗∗ –6,735∗ 82.94∗∗∗ 82.95∗∗∗ 83.33∗∗∗

(4,093) (4,084) (3,982) (26.66) (26.74) (27.35)
2nd quarter –2,846 –2,782 1,940 41.55 40.93 48.62∗

(3,728) (3,728) (3,925) (27.54) (27.52) (28.40)
3rd quarter –5,517 –5,425 –1,379 43.51∗ 43.47 51.38∗

(4,263) (4,248) (3,993) (26.24) (26.28) (28.59)
4th quarter –13,582∗∗∗ –13,527∗∗∗ –10,564∗∗ 18.42 18.01 24.29

(4,789) (4,778) (4,739) (29.54) (29.71) (30.20)

Adverse expectations (βl,high)
1st quarter –7,204 –6,811 –13,528∗∗ 2.105 1.633 –3.665

(6,701) (6,670) (6,229) (24.72) (24.96) (26.45)
2nd quarter 2,893 3,228 –109.2 8.999 8.516 3.574

(6,000) (6,101) (5,793) (25.60) (25.74) (25.58)
3rd quarter 3,281 3,708 1,446 –39.95 –41.01 –44.66∗

(6,847) (6,820) (6,253) (25.13) (25.48) (26.24)
4th quarter –761.7 –346.4 94.76 1.277 0.254 -5.871

(5,542) (5,671) (5,392) (24.69) (25.27) (27.47)

Month and year FE X X X X X X
Generator FE X X X X X X
Lagged demand X X X X
Lagged contracts X X
Lagged spot price X X
Clustered s.e. FQY FQY FQY FQY FQY FQY

Mean of dep. var. 104,179 104,265 104,265 421.8 422.1 422.1
Observations 5,441 5,419 5,419 5,441 5,419 5,419
* – p < 0.1; ** – p < 0.05; *** – p < 0.01.

Note: The estimated βl,low (top panel) and βl,high (middle panel) from equation 4.2 with either
quantity-bids (Columns 1-3) or price-bids (Columns 4-6) of sibling generators and inflow expecta-
tions accruing to the whole firm as dependent and independent variables, respectively. Standard
errors are clustered at the firm/generator-quarter-year level. 1 US$ is worth 3,150 COP.
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Table B5: Intertemporal technological substitution and weekly market prices

Market prices (COP/kWh)
(1) (2) (3) (4) (5)

Thermal Capacity (γcap) –0.227∗∗ –0.144∗ –0.176∗∗ –0.112∗ –0.274∗∗∗

(0.0910) (0.0835) (0.0845) (0.0638) (0.0774)

Favorable expectations (βhigh
l )

1st quarter 48.81 30.68
(42.00) (24.15)

2nd quarter 19.60 28.44
(23.87) (20.25)

3rd quarter –5.308 6.843
(20.06) (23.12)

4th quarter 30.41 –43.93∗∗

(35.16) (18.39)

Adverse expectations (βlow
l )

1st quarter –4.302 67.25
(39.95) (52.78)

2nd quarter 150.3∗∗ 167.9∗∗

(61.84) (69.50)
3rd quarter 16.36 –6.768

(33.27) (51.06)
4th quarter –138.5∗∗ –116.3∗

(60.96) (61.83)

Interactions of favorable expectations with thermal capacity (γhigh
l )

1st quarter –0.175 –0.110
(0.137) (0.0847)

2nd quarter –0.00317 –0.0568
(0.0797) (0.0717)

3rd quarter 0.0156 –0.0642
(0.0625) (0.0756)

4th quarter –0.159 0.0821
(0.116) (0.0610)

Interactions of adverse expectations with thermal capacity (γlow
l )

1st quarter 0.117 –0.0799
(0.133) (0.183)

2nd quarter –0.328∗ –0.365∗

(0.198) (0.221)
3rd quarter –0.0690 –0.0474

(0.106) (0.175)
4th quarter 0.319 0.148

(0.245) (0.229)

Month FE X X X X X
Lagged Demand X X X X X
Lagged Contract X X X X X
Clustered s.e. Newey Newey Newey Newey Newey

Mean of dep. var. 154.398 154.398 154.398 154.398 154.398
Observations 623 623 623 623 623
*p < 0.1, **p < 0.05, ***p < 0.01

Note: The estimated coefficients from equation 4.3. All regressions include month fixed effects, and
lagged demand and average net forward contract position. Columns 2 to 5 replicate the analysis in
column 1 adding each expectation indicator quarter by quarter. Newey-West standard errors are
computed using four lags. 1 US$ is worth 3,150 COP.
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Table B6: Estimated primitives of the structural model, homogeneous value func-
tion across firms

Weekly Daily
Quadratic Cubic Quadratic Cubic

Marginal costs (COP/MWh)
Cogeneration 143,563∗∗∗ 144,539∗∗∗ 136,419∗∗∗ 134,594∗∗∗

(1,836) (1,194) (847.3) (1,204)
Hydropower 122,150∗∗∗ 116,837∗∗∗ 88,419∗∗∗ 66,508∗∗∗

(5,197) (2,797) (2,282) (3,448)
Run-of-river 141,096∗∗∗ 142,661∗∗∗ 139,516∗∗∗ 142,173∗∗∗

(1,314) (1,200) (701.9) (894.1)
Thermal 183,465∗∗∗ 185,528∗∗∗ 172,183∗∗∗ 177,079∗∗∗

(3,100) (2,542) (1,621) (2,101)

Value function parameters (COP/MWh)
Linear term –26,586∗∗∗ –2,098 –11,784∗∗∗ 33,123∗∗∗

(1,824) (2,865) (868.9) (3,355)
Quadratic term 0.00425∗∗∗ –0.00938∗∗∗ 0.00223∗∗∗ –0.0254∗∗∗

(0.000361) (0.00147) (0.000190) (0.00164)
Cubic term 1.66e-09∗∗∗ 3.65e-09∗∗∗

(1.80e-10) (1.95e-10)

Observations 528,141 528,141 3,704,578 3,704,578

F-test cogeneration 24855 24,855 102583 106,112
F-test hydropower 1,954 1,954 5,802 5,989
F-test run-of-river 15,432 15,432 54,598 56,354
F-test thermal 2,512 2,512 11,368 11,759
* – p < 0.1; ** – p < 0.05; *** – p < 0.01.

Note: Two-stage least squares estimates of equation 5.7 assuming same value function parameters
for all firms. The instruments are the temperature in Colombia’s seven largest cities interacted
with the hourly lagged demand of the previous week (demand shifters), the price of coal, gas, oil,
ethanol, and sugar interacted with the lagged-demand for each hour (cost shifters), and the rainfall
for each hydro-power plant in levels, squared and cubic terms. Each column includes week-of-the-
year, firm and hour fixed effects. Standard errors are clustered at the firm-day level. 1 US$ is worth
3,150 COP.
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Table B7: Estimated primitives of the structural model, homogeneous value func-
tion across firms

9:00 AM Weekdays
Quadratic Cubic Quadratic Cubic

Marginal costs (COP/MWh)
Cogeneration 157,081∗∗∗ 157,410∗∗∗ 137,607∗∗∗ 140,927∗∗∗

(9,670) (6,555) (2,098) (1,521)
Hydropower 129,126∗∗∗ 137,912∗∗∗ 103,391∗∗∗ 104,772∗∗∗

(28,782) (17,703) (5,530) (3,465)
Run-of-river 151,679∗∗∗ 150,588∗∗∗ 137,682∗∗∗ 141,766∗∗∗

(5,064) (4,738) (1,517) (1,421)
Thermal 189,663∗∗∗ 186,928∗∗∗ 170,895∗∗∗ 179,465∗∗∗

(13,934) (11,335) (3,531) (3,023)

Value Function parameters (COP/MWh)
Linear term 27,499∗∗ 701.7 –35,852∗∗∗ –10,892∗∗∗

(11,094) (14,906) (1,956) (3,261)
Quadratic term –0.00438∗∗ 0.0125∗ 0.00642∗∗∗ –0.00783∗∗∗

(0.00186) (0.00712) (0.000392) (0.00174)
Cubic term –2.12e-09∗∗ 1.77e-09∗∗∗

(8.89e-10) (2.21e-10)

Observations 22,006 22,006 528,081 528,081

F-test cogeneration 1006 1006 26597 26597
F-test hydropower 87.31 87.31 1868 1868
F-test run-of-river 612.6 612.6 14637 14637
F-test thermal 101.7 101.7 2530 2530
* – p < 0.1; ** – p < 0.05; *** – p < 0.01.

Note: Two-stage least squares estimates of equation 5.7 assuming same value function parameters
for all firms and subsetting the data to either 9:00 AM markets or markets on weekdays. The in-
struments are the temperature in Colombia’s seven largest cities interacted with the hourly lagged
demand of the previous week (demand shifters), the price of coal, gas, oil, ethanol, and sugar inter-
acted with the lagged-demand for each hour (cost shifters), and the rainfall for each hydro-power
plant in levels, squared and cubic terms. Each column includes week-of-the-year, firm and hour
fixed effects. Standard errors are clustered at the firm-day level. 1 US$ is worth 3,150 COP.
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C Supply Schedules and Inflows to Competitors

Forecasted inflows to competitors. To study whether a generator reacts to the
expected inflow of its competitors, we extend equation 4.2 as follows:

yij,t =
4

∑
l=1

(
γlow

l 1[̂in f low−i,t+l∈Q1
−i,t+l

] + γ
high
l 1[̂in f low−i,t+l∈Q4

−i,t+l

]) (C.1)

+
4

∑
l=1

(
βlow

l 1[̂in f lowij,t+l∈Q1
ij,t+l

] + β
high
l 1[̂in f lowij,t+l∈Q4

ij,t+l

])+ Xij,t−1 α + µij + δt + ε ij,t,

where ̂in f low−i,t+l = ∑k 6=i ∑Jk
j=1

̂in f lowk,j,t+l is the sum of the expected inflows
to the competitors of firm i, l quarters ahead. Both the indicator function and the
second line of (C.1) are defined as in (4.2). This setting is particularly convenient
because it allows testing the hypothesis that a firm’s strategy depends also on fu-
ture expected events to its competitors through simple F-tests of joint significance
of the four sets of coefficients {γlow

l }
4
l=1, {γhigh

l }4
l=1, {βlow

l }
4
l=1 and {βhigh

l }4
l=1.

The top panel of Appendix Table C1 reports the coefficient estimates for both
quantity- and price-bid regressions.55 First, we confirm that a firm reacts to its
expectations of adverse events, but not to its own favorable ones as the estimates
relating to a generator’s own shocks (βlow and βhigh in equation C.1) are similar in
magnitude to those already presented in Appendix Table B2. The F-test results in
the bottom panel further validate this conclusion.

Across columns, we also see that generators do no react to favorable expec-
tations to competitors. The reaction to adverse expectations is incoherent. For in-
stance, we observe a rise in a generator’s quantity-bid if the adverse shock happens
in two or four quarters ahead, but not three quarters ahead (column 3), suggesting
that these estimates capture noise rather than actual strategies. The F-test results
in the bottom panel support this interpretation.

Future water stocks of competitors. However, a firm could react to the water
stock rather than the inflow accruing to its competitors because the water stock
determines the available supply of a hydropower generator. Thus, we extend the

55The correlations between the dummy variables in equation C.1 are an order of magnitude lower
than those across the actual forecasted inflows. Looking at the Spearman correlation matrix of the
16 dummies, its average absolute value is 0.22, its minimum (maximum) is -0.35 (0.70), and 90% of
the correlations are below 0.36, which indicates no multicollinearity problem.
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analysis above to consider whether a firm’s supply schedule correlate with the
observed future water stock of competitors by regressing,

yijt = β0 + βsel f log

(|Hi|

∑
l=1

wilt+q

)
+ βcomp log

(
∑
k 6=i

|Hi|

∑
l=1

wikt+q

)
(C.2)

+ Xij,t−1 α + µij + δt + εijt,

where the dependent variable refers to generator i− j quantity- or price-bid, and
βsel f and βcomp multiply by firm i’s total water stock and firm i’s competitors wa-
ter stock q-quarters ahead, respectively. Appendix Tables C2 and C3 inspect these
correlations – that is, βsel f and βcomp – quarter-by-quarter by either focusing on all
generators, or only on generators of firms with dams – that is, the largest Colom-
bian firms. Across tables, we find that generators’ decisions correlate substantially
with the water stock of the firm, but that they do not correlate with those of their
competitors, supporting our findings from appendix Table C1.

Discussion. In conclusion, when forecasting future events, a generator is con-
cerned about the outcomes to itself and its sibling generators. We do not find
evidence that generators update their price- or quantity-bids due to competitors’
future expected inflows.
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Table C1: Supply schedule reactions to extreme inflow expectations of competitors

Quantity-bid (kWh) Price-bid (COP/kWh)
coef. s.e. coef. s.e. coef. s.e coef. s.e
(1) (2) (3) (4) (5) (6) (7) (8)

Favorable expectations for competitors (γhigh
l )

1st quarter 1,412 (1,166) 1,412 (1,083) 3.856 (6.812) 3.856 (6.812)
2nd quarter 1,304 (1,333) 1,304 (1,137) 0.235 (6.925) 0.235 (6.925)
3rd quarter 1,289 (1,045) 1,289 (1,024) -6.619 (7.149) -6.619 (7.149)
4th quarter 329.4 (1,173) 329.4 (1,032) -12.13* (6.412) -12.13* (6.412)

Adverse expectations for competitors (γlow
l )

1st quarter 286.0 (1,264) 286.0 (1,299) -8.500 (5.459) -8.500 (5.459)
2nd quarter 1,815 (1,292) 1,815* (1,089) -1.958 (4.940) -1.958 (4.940)
3rd quarter -373.0 (1,310) -373.0 (1,159) 6.199 (6.045) 6.199 (6.045)
4th quarter 2,134 (1,312) 2,134* (1,271) -3.918 (5.582) -3.918 (5.582)

Favorable expectations for self (βhigh
l )

1st quarter 2,859 (3,191) 2,859 (3,128) -2.054 (17.49) -2.054 (17.49)
2nd quarter 2,487 (3,491) 2,487 (3,486) -4.399 (16.90) -4.399 (16.90)
3rd quarter -3,663 (3,717) -3,663 (3,704) -19.67 (18.65) -19.67 (18.65)
4th quarter -2,150 (3,922) -2,150 (3,866) -44.49** (17.84) -44.49** (17.84)

Adverse expectations for self (βlow
l )

1st quarter -9,431** (4,142) -9,431** (4,258) 114.2*** (24.22) 114.2*** (24.22)
2nd quarter -5,456 (4,951) -5,456 (5,301) 65.23*** (23.07) 65.23*** (23.07)
3rd quarter -2.934 (5,123) -2.934 (5,482) 11.60 (25.58) 11.60 (25.58)
4th quarter -4,111 (4,401) -4,111 (4,304) -28.94 (24.30) -28.94 (24.30)

Month-year FE X X X X
Generator FE X X X X
Lagged demand X X X X
Lagged contracts X X X X
Lagged spot price X X X X
Clustered s.e. GQY FQY GQY FQY

Observations 42,454 42,454 42,454 42,454

Tests of Joint Significance of Quarter-Specific Coefficients
F-test p-value F-test p-value F-test p-value F-test p-value

Fav. expect. for comp. 0.819 0.513 1.192 0.316 1.342 0.252 1.342 0.252
Adv. expect. for comp. 1.384 0.237 1.514 0.200 0.886 0.472 0.886 0.472
Fav. expect. for self 0.652 0.626 0.653 0.625 2.022 0.089 2.022 0.089
Adv. expect. for self 2.795 0.025 2.794 0.028 9.583 0.000 9.583 0.000
* – p < 0.1; ** – p < 0.05; *** – p < 0.01.

Note: The estimates from equation C.1. Columns 1 to 4 (5 to 8) report the coefficient from OLS re-
gressions for quantity-bids (price-bids). The drop in the number of observations between quantity-
and price-bids regressions depend on several non-hydro generators bidding only quantity-bids
(i.e., they accept any price). Even columns report the standard errors which are clustered either at
the generator-quarter-year (GQY) level or at the firm-quarter-tear (FQY) level. The bottom panel
test shows test results of joint significance of the quarter-level coefficients in the top panel. The
analysis includes all generators. 1 US$ is worth 3,150 COP.
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Table C2: Correlation between a firm’s generator schedule and the total future
water stock at the firm level, all generators

Quantity-bid (kWh) Price-bid (COP/kWh)
(1) (2) (3) (4) (5) (6) (7) (8)

Firm i’s future water stock (βsel f ):
1st quarter 3,305 -11.86

(4,538) (21.48)
2nd quarter 244.6 26.22

(4,256) (21.04)
3rd quarter 4,107 61.16***

(4,430) (22.06)
4th quarter 9,893** 53.87**

(4,877) (22.67)
Competitors’ future water stock (βcomp):

1st quarter -1,095 -11.23
(4,535) (16.67)

2nd quarter -327.6 -6.902
(4,534) (17.26)

3rd quarter 811.4 -14.28
(4,929) (17.43)

4th quarter 1,780 -42.77**
(5,212) (18.60)

Week counter FE X X X X X X X X
Generator FE X X X X X X X X
Lagged demand X X X X X X X X
Lagged water stock X X X X X X X X
Lagged spot price X X X X X X X X
Lagged contracts X X X Y Y Y Y Y
Clustered s.e. GQY GQY GQY GQY GQY GQY GQY GQY

Observations 42,078 41,782 41,499 41,235 42,080 41,784 41,501 41,237
* – p < 0.1; ** – p < 0.05; *** – p < 0.01.

Note: The estimates from equation C.2 where the dependent variable refers to generator i − j
quantity- (Columns 1 to 4) or price-bid (Columns 5 to 8). Each column refers to different values
of q (1 to 4 quarter). We run separate regressions for each quarter instead of pooling all regressors
together because the realizations of future water stocks are highly correlated. Standard errors are
clustered at the generator-quarter-year (GQY) level. Controls are defined in the bottom panel. 1
US$ is worth 3,150 COP.
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Table C3: Correlation between a firm’s generator schedule and the total future
water stock at the firm level, only hydropower generators

Quantity-bid (kWh) Price-bid (COP/kWh)
(1) (2) (3) (4) (5) (6) (7) (8)

Firm i’s future water stock (βsel f ):
1st Quarter Ahead 16,374 107.0***

(10,002) (35.87)
2nd quarter 5,097 186.5***

(9,206) (35.42)
3rd quarter 15,119 248.2***

(9,574) (38.71)
4th quarter 32,211*** 181.2***

(10,507) (36.80)
Competitors’ future water stock (βcomp):

1st quarter -11,074 40.45
(9,961) (34.50)

2nd quarter -10,669 56.90*
(9,851) (34.18)

3rd quarter -6,115 56.15
(10,358) (36.74)

4th quarter -2,112 4.381
(11,010) (40.69)

Week counter FE X X X X X X X X
Generator FE X X X X X X X X
Lagged demand X X X X X X X X
Lagged water stock X X X X X X X X
Lagged spot price X X X X X X X X
Lagged contracts X X X X X X X X
Clustered s.e. GQY GQY GQY GQY GQY GQY GQY GQY

Observations 9,527 9,527 9,527 9,527 9,527 9,527 9,527 9,527
* – p < 0.1; ** – p < 0.05; *** – p < 0.01.

Note: The estimates from equation C.2 where the dependent variable refers to generator i − j
quantity- (Columns 1 to 4) or price-bid (Columns 5 to 8). Each column refers to different values
of q (1 to 4 quarter). We run separate regressions for each quarter instead of pooling all regressors
together because the realizations of future water stocks are highly correlated. We subset the data to
include only hydropower generators. Standard errors are clustered at the generator-quarter-year
(GQY) level. Controls are defined in the bottom panel. 1 US$ is worth 3,150 COP.
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D Market Prices During Extreme Weather Events

This section studies the impact of intertemporal substitution across production
technologies during weather shocks. We consider asymmetric behavior across pos-
itive and negative shocks using the following specification:

pht = βlow ∑
lk

1[lk: adverse]caplkt + βhigh ∑
lk

1[lk: favorable]caplkt (D.1)

+ ψ ∑
lk

caplkt + γlow1[∑lk 1[lk: adverse]>0] + γhigh1[∑lk 1[lk: favorable]>0] + Xht α + ε ij,t,

where the left-hand side is the average market price at hour h of week t in
COP/MWh, and the first line includes coefficients for the total thermal capac-
ity connected to firms that are adversely and favorably shocked (βlow and βhigh),
while the second line includes the direct effect of the shocks through indicators
for whether these shocks take place (γlow and γhigh, respectively) and for the total
thermal capacity available (ψ), and Xht includes control variables.

We estimate equation D.1 on a subset of the data which includes only firms with
hydro units. Appendix Table D1 reports the results for morning hours (columns
1-3) and evening hours (columns 4-6) separately. Across all columns, we find that
the average hourly price decreases between 255 and 309 COP per MW of thermal
capacity connected with a negatively shocked hydro unit. Taking a conservative
approach, since on average there are 538MW of connected thermal capacity, the
price impact of synergies is about 137,259 COP/MW (about 37 USD/MW), and
this value increases with the connected thermal capacity. On the other hand, prices
increase with the size of the total thermal capacity in the market. This suggests that
thermal units with no hydro siblings contribute negatively to prices because they
do not internalize the intertemporal shocks of other firms.

For positive shocks, we estimate coefficients between 6 and 12 times smaller
than those for negative shocks, and not significantly different from zero after in-
cluding controls for demand, forward contracts (Columns 2 and 3), and weather
(Columns 5 and 6).56 Thus, the possibility of switching production from hydro to
thermal units lowers market prices also during an adverse weather event, extend-
ing the results presented in Section 4.2.

56Appendix Table D2 shows similar results including month fixed effects and instrumenting the
average water stock with its lagged value.
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Table D1: Price impact of substituting hydro and thermal production during ex-
treme events

Market price (COP/MWh)
Hours 7 AM – 1 PM Hours 5 PM – 9 PM

(1) (2) (3) (4) (5) (6)

Adversely shocked cap. (βlow) −308.993∗∗∗ −289.358∗∗∗ −255.415∗∗∗ −303.112∗∗∗ −286.662∗∗∗ −256.082∗∗∗

(22.875) (22.556) (22.411) (27.805) (27.204) (27.129)

Favorably shocked cap. (βhigh) 56.304∗∗ 48.030∗ 39.410 46.240 27.932 20.671
(25.647) (25.346) (24.947) (31.175) (30.744) (30.364)

Total thermal capacity (MW) 331.525∗∗∗ 237.229∗∗∗ 196.869∗∗∗ 329.861∗∗∗ 249.924∗∗∗ 215.297∗∗∗

(15.210) (18.396) (18.675) (18.488) (21.485) (21.874)

Indicator for adv. shock (γlow) 133, 565.500∗∗∗ 135, 129.800∗∗∗ 124, 143.000∗∗∗ 132, 758.600∗∗∗ 133, 235.200∗∗∗ 124, 219.400∗∗∗

(7, 889.021) (7, 758.074) (7, 709.313) (9, 589.359) (9, 365.906) (9, 330.556)

Indicator for adv. shock (γhigh) −10, 869.370 −7, 821.529 5, 714.682 −5, 548.333 −1, 731.293 10, 702.290
(7, 659.088) (7, 527.685) (7, 520.256) (9, 309.870) (9, 097.170) (9, 117.074)

Avg. weekly water stock X X X X X X
Avg. weekly market demand X X X X
Forward contracts X X X X
Avg. weekly temperature X X
Avg. weekly rainfall X X

Adjusted R2 0.318 0.342 0.364 0.300 0.332 0.350
Observations 3,276 3,276 3,276 2,340 2,340 2,340
* – p < 0.1; ** – p < 0.05; *** – p < 0.01.

Note: The estimates from equation D.1 for two different hourly periods. Columns 1 to 3 refer to the
hours between 7 AM and 1 PM and Column 2 refers to the hours between 5 PM and 9 PM. An ad-
verse (favorable) shock is defined by a drop (surge) of the water stock by two standard deviations.
The total thermal capacity is defined in MW (instead of GW), which inflates the coefficients of the
indicator variable. 1 US$ is worth 3,150 COP.
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Table D2: Price impact of substituting hydro and thermal production during ex-
treme events, FE and 2SLS regressions

Market price (COP/MWh)
Hours 7 AM – 1 PM Hours 5 PM – 9 PM

OLS 2SLS 2SLS OLS 2SLS 2SLS
(1) (2) (3) (4) (5) (6)

Adversely shocked cap. (βlow) −257.387∗∗∗ −253.317∗∗∗ −257.422∗∗∗ −255.674∗∗∗ −254.275∗∗∗ −255.859∗∗∗

(21.724) (34.384) (31.243) (26.226) (41.781) (37.811)

Favorably shocked cap. (βhigh) 34.445 35.823 32.868 16.342 17.536 15.306
(24.384) (22.289) (21.757) (29.555) (26.734) (25.985)

Total thermal capacity(MW) 207.644∗∗∗ 199.764∗∗∗ 209.584∗∗∗ 223.767∗∗∗ 218.182∗∗∗ 225.711∗∗∗

(18.221) (21.685) (21.662) (21.484) (25.052) (25.377)

Indicator for adv. shock (γlow) 119, 609.300∗∗∗ 125, 202.100∗∗∗ 120, 424.000∗∗∗ 119, 236.600∗∗∗ 125, 020.800∗∗∗ 119, 818.400∗∗∗

(7, 415.948) (13, 005.170) (11, 421.650) (8, 942.061) (15, 675.250) (13, 734.290)

Indicator for fav. shock (γhigh) 5, 138.690 5, 187.892 5, 098.261 11, 546.630 10, 218.500 11, 531.040
(7, 349.802) (7, 351.475) (7, 318.955) (8, 882.394) (9, 093.546) (8, 999.696)

Avg. weekly water stock X X X X X X
Avg. weekly market demand X X X X X X
Forward contracts X X X X X X
Avg. weekly temperature X X X X X X
Avg. weekly rainfall X X X X X X
Month FE X X

F-test 74, 042.418 69, 241.192 56, 076.098 51, 916.649

Adjusted R2 0.433 0.364 0.434 0.424 0.349 0.424
Observations 3,276 3,269 3,269 2,340 2,335 2,335

* – p < 0.1; ** – p < 0.05; *** – p < 0.01.

Note: The estimates from equation D.1 for two different hourly periods. Columns 1 to 3 refer to
the hours between 7 AM and 1 PM and Column 2 refers to the hours between 5 PM and 9 PM.
An adverse (favorable) shock is defined by a drop (surge) of the water stock by two standard
deviations. Columns 1 and 4 present the OLS estimates, while columns 2 and 3 and columns 5
and 6 presents instruments the averaged stock of water with its lagged value. The total thermal
capacity is defined in MW (instead of GW), which inflates the coefficients of the indicator variable.
1 US$ is worth 3,150 COP.
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E Smooth Supply and Demand Functions

This appendix section shows how to smooth the Bellman equation to make it dif-
ferentiable. This approach is based on the seminal work of Wolak (2007) and re-
lies on smoothing the indicator defining the supply function with a kernel. For
example, we replace the indicators in Siht(p) = ∑Ji

j=1 qijht1[p≤bijt]
with a smooth-

ing kernel to account how far a price bid bijt is from the realized market price
p. This transformation effectively allows interchanging differentiation and ex-
pectation after taking the first-order conditions of the value function 5.3 – that
is, ∂

∫
ε V(w,p(ε)) fε(ε)dε

∂p =
∫

ε
∂V(w,p(ε))

∂p fε(ε)dε – simplifying the identification of the
primitives of the model presented in Section 5.

Residual demand of firm i. Following the notation in Section 5, the residual de-
mand to firm i is D̃R

iht(p, ε) = Dht(ε)− S̃−iht(p), where the notation x̃ means that
variable x is smoothed.57 Smoothing the residual demand follows from smooth-
ing the supply of the competitors of firm i, S̃−iht(p) = ∑N

m 6=i ∑Jm
j=1 qmjhtK

(
p−bmjt

bw

)
,

where Jm is the number of generation units owned by firm m. Let K(·) denote the
smoothing kernel, which we choose to be the standard normal distribution in the
estimation (Wolak, 2007). We follow Ryan (2021) and set bw equal to 10% of the ex-
pected price in MWh. The derivative of DR

iht(p, ε) with respect to the market price

in hour h and day t is ∂D̃R
iht(p,ε)
∂pht

= −∑N
m 6=i ∑Km

k=1 qmkht
∂K
( p−bmkt

bw

)
∂pht

.

Supply of firm i. The supply of firm i becomes, S̃iht(pht) = ∑Ji
j=1 qijhtK

(
p−bijt

bw

)
,

leading to the following smoothed derivatives,

∂S̃iht
∂pht

=
Ji

∑
j=1

qijht
∂K
( p−bmkt

bw
)

∂pht
,

∂S̃iht
∂qijht

= K
( p− bijt

bw

)
,

∂S̃iht
∂bijt

= −qijht
∂K
( p−bijt

bw
)

∂bijt
.

The derivatives of the smoothed supply functions by technology τ are found anal-

57We drop the tilde in the main text for smoothed variables to simplify the notation.
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ogously:
∂S̃τ

iht
∂pht

= ∑
k∈τ

qikht
∂K
( p−bikt

bw
)

∂pht
,

∂S̃τ
iht

∂qijht
=

K
(

p−bijt
bw

)
if j has technology τ,

0 otherwise,

∂S̃τ
iht

∂bijt
=

−qijht
∂K
( p−bijt

bw

)
∂bijt

if j has technology τ,

0 otherwise.

Market price. The derivatives of the market price with respect to price- and
quantity-bids in (5.3) are computed using the envelop theorem. Their smoothed

versions are ∂pht
∂bijt

=

∂S̃iht
∂bijt

∂D̃R
iht

∂pht
− ∂S̃iht

∂pht

and ∂pht
∂qijht

=

∂S̃iht
∂qijht

∂D̃R
iht

∂pht
− ∂S̃iht

∂pht

, respectively.

References in the Online Appendix

RYAN, N. (2021). The competitive effects of transmission infrastructure in the in-
dian electricity market. American Economic Journal: Microeconomics, 13 (2), 202–42.

WOLAK, F. A. (2007). Quantifying the supply-side benefits from forward contract-
ing in wholesale electricity markets. Journal of Applied Econometrics, 22 (7), 1179–
1209.

25


	Introduction
	Institutional Background
	Data
	Intertemporal Substitution
	Supply Schedules and Inflow Forecasts: Empirical Strategy
	Supply Schedules and Inflow Forecasts: Results

	Market Prices: Empirical Strategy
	Market Prices: Empirical Evidence


	Modeling Substitution Across Technologies
	Production Capacities and Costs
	Market-clearing
	Profit Maximization
	Identification
	Estimation
	First Step: Smoothing Supply and Demand
	Second Step: Transition Matrix
	Third Step: Marginal Cost and Value Function Parameters


	Benefits and Limitations of Diversifying Suppliers
	The Simulation Model
	Counterfactual Simulations
	Simulations without Reservoir Updates
	Simulations with Reservoir Updates
	Mergers and Market Power


	Discussion and Conclusion
	Additional Figures
	Estimation of the Transition Matrix
	Additional Figures from the Structural Model

	Additional Tables
	 Hydropower generation 
	 Thermal generation 

	Supply Schedules and Inflows to Competitors
	Market Prices During Extreme Weather Events
	Smooth Supply and Demand Functions

