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1. Introduction

The mechanisms underlying expectation formation are crucial for understanding eco-
nomic decisions. While it is documented that individuals in general overreact to in-
formation (Bordalo, Gennaioli, Ma, and Shleifer 2020), there has been growing interest
in the circumstances under which the overreaction is stronger or weaker and under
which an underreaction can arise. In this paper, we provide new evidence that the
degree of overreaction can be heterogeneous across individual forecasters, even when
they receive the same information. To organize the facts, we propose a forecasting
model where agents make forecasts based on noisy information (e.g., economic or fi-
nancial data) and are uncertain about information quality.

To test how agents form expectations in general and how they react to new in-
formation in particular, it would be ideal to have a testing ground in which (i) the
new information acquired by agents is observable and measurable, and (ii) agents’
forecasts before and after receiving the new information are available. We consider
an environment that is fairly close to this: financial analysts forecast the earnings of
firms, firms release managerial guidance for earnings, and then analysts update their
earnings forecasts. Forecast revisions are then defined to be the differences between
analysts’ updated forecasts after receiving managerial guidance and their initial fore-
casts before receiving it. That is, forecast revisions are constructed to reflect the impact
of the guidance on earnings.

Using earnings forecasts data (individual analysts’ EPS forecasts from the I/B/E/S
Estimates) and managerial guidance data (the I/B/E/S Guidance data) from 1994 to
2017, we provide a number of findings. First, analysts’ forecasts overreact to informa-
tion that arrives during the time window that is constructed to encompass managerial
guidance. We show that forecast revisions are negatively correlated with forecast er-
rors, which are defined to be the differences between realized earnings and analysts’
updated forecasts. This suggests that upward (downward) revisions can predict neg-
ative (positive) forecast errors, i.e., there is too much revision relative to the rational
benchmark. This result is consistent with the existing findings of Bordalo, Gennaioli,
Ma, and Shleifer (2020) using macroeconomic survey data.

Second, our new finding in this paper is that the overreaction is heterogeneous
across analysts. We define guidance surprises to be the differences between the man-
agerial guidance and analysts’ initial forecasts. We construct surprises at the firm-
quarter-analyst level, rank those surprises from the most negative to the most positive
and then group them into deciles. Estimating the degree of overreaction in each decile
subsample, we find that the overreaction is stronger when the surprises are negative;
the overreaction tends to be weaker when the surprises are larger in size.
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Third, we further directly explore how forecast revisions respond to guidance sur-
prises with nonparametric estimations. We find that forecast revisions are asymmetric
in surprises: forecast revisions are stronger when the surprises are negative than those
when the surprises are of the same magnitude but positive. Furthermore, forecast re-
visions are not monotonically increasing in surprises either: when the surprises are
large enough, forecast revisions decrease in surprises. Thus, the estimated relation-
ship between forecast revisions and surprises displays a pattern of asymmetry and
non-monotonicity. It is worth pointing out that the two new facts, i.e., heterogeneous
overreaction and asymmetric and non-monotonic relation between forecast revisions
and surprises, are consistent with each other.1

The new evidence on the documented heterogeneous overreaction pattern calls for
a new theory, in which optimal forecasts have to be state-dependent. In general, fore-
casting models with state-independent responses would predict that forecast revisions
are linear in surprises and are therefore inconsistent with the new facts documented.
In particular, the extent to which forecast revisions respond to new information should
vary, depending on the size and direction of surprises contained in the new informa-
tion, which is a necessary condition for the overreaction pattern to be heterogeneous.

In section 3, we propose one such state-dependent forecasting model where ana-
lysts have access to both private information about the earnings of a firm (unobserv-
able to the econometrician) and managerial guidance for earnings from the firm (ob-
servable to the econometrician). The key departures from standard forecasting models
are (a) that analysts are ambiguous about the quality of the managerial guidance and
(b) that they are ambiguity averse.

Given assumption (a), analysts update their beliefs about the quality of guidance
based on the guidance itself and update their beliefs about earnings for any possible
quality. On the one hand, the forecast revision should be large when a surprise is large.
On the other hand, when a surprise is large, a Bayesian analyst would believe that its
quality is likely low. When surprises are large enough, the latter force can dominate
the former, which explains why forecast revisions could decrease in surprises.

We incorporate analysts’ aversion to ambiguity (i.e., assumption (b)) with the smooth
model of ambiguity as proposed in Klibanoff, Marinacci, and Mukerji (2005), where
the degree of ambiguity aversion is finite. Given ambiguity-averse preferences, ana-
lysts wish to act in a robust fashion. In general, analysts behave as if, in their posterior
beliefs, they optimally overweigh the states of the world where their expected util-
ity is low and underweight the states where their expected utility is high. Suppose

1If forecast revisions are linear in surprises, then the extent of overreaction to new information cannot
be heterogeneous; and if overreaction is heterogeneous in size and direction of surprises, then forecast
revisions cannot be linear in surprises. This connection will be characterized in Section 6.1.
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specifically that analysts consider high earnings realizations to be favorable. Then,
they would subjectively “discount” the quality of favorable news, because it improves
analysts’ expected utility. In contrast, analysts would subjectively “overcount” the
quality of unfavorable news, because it reduces analysts’ expected utility. Therefore,
ambiguity-averse analysts are less responsive to favorable than to unfavorable sur-
prises, which explains the asymmetry of forecast revisions.

In section 4, we demonstrate that it is crucial to allow agents to possess a finite
degree of ambiguity aversion to simultaneously capture both nonmonotonicity and
asymmetry in the relationship between forecast revisions and surprises. Without am-
biguity aversion, analysts’ forecast revisions are symmetric, despite the sign of sur-
prises. With extreme ambiguity aversion (i.e., the Wald (1950) maxmin criterion), an-
alysts’ forecast revisions are monotonic in surprises, despite the uncertainty in infor-
mation quality.

In this model, to what extent analysts overreact or underreact to information, when
revising their forecasts, depends critically on how analysts perceive the quality of the
managerial guidance. As predicted in our model, when surprises are negative, ana-
lysts tend to infer the quality of guidance to be relatively high, which leads to a larger
overreaction. When surprises are large enough, analysts tend to infer the quality of
guidance to be relatively low, which leads to a milder overreaction (or even underre-
action). Both predictions are qualitatively consistent with the pattern of heterogeneous
overreaction found in the data.

In section 5, we estimate the model with the simulated method of moments (SMM)
and quantitatively evaluate the impact of ambiguity aversion. Our estimated model
can successfully predict a cross-sectional pattern of overreaction that is consistent with
the data, even though it is not targeted in our estimations. Our theory underlies the
role of uncertain information quality in organizing the new facts regarding expectation
formation.

We stress that uncertainty in information quality is one of the keys to rationalize
the observed pattern. The flip side of our theory says that once the uncertainty is very
low, analysts’ forecast revisions should be almost linear in guidance surprises. We
show in section 5.4 that this auxiliary prediction is empirically supported.

While this paper is the first that discovers and rationalizes this set of cross-sectional
patterns in the literature of expectation formation, we acknowledge that there could be
other mechanisms that simultaneously contribute to the observed patterns. To high-
light our theoretical contributions to the literature, we examine a number of existing
theories in section 6, such as diagnostic beliefs, over-confidence, loss aversion, dy-
namic models, and agency theory.
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Contributions While overreaction to information has been well documented and
studied, we discover and rationalize heterogeneous overreactions to shocks of differ-
ent properties, which is one step further from the existing literature.

We also add a new theory to the literature by explicitly studying information with
uncertain quality. It is commonplace that forecasters receive noisy economic or finan-
cial data to make forecasts but are uncertain about data quality. However, the way
they react to noisy data of uncertain quality has this far received little attention in the
expectation formation literature. Our paper fills this gap and scrutinizes how uncer-
tainty of this sort plays a role in expectation formation.

On the empirical front, we construct an empirical setting, which has unique ad-
vantages for uncovering how the properties of surprises (i.e., new information) affect
the degree of overreaction. First, managerial guidance is observable and likely the
most important part of the information flow in the time window of our intentional
construction. Second, analysts have dispersed information before receiving the guid-
ance, summarized by their initial forecasts. The two features combined imply that the
same managerial guidance delivers different surprises to analysts with different ini-
tial forecasts. The variations in surprises at the analyst level enable us to explore the
cross-sectional features of overreaction. Third, in contrast to studies using the Survey
of Professional Forecasters, this setting is not dynamic: we utilize within-quarter vari-
ations in surprises among analysts to uncover how analysts update their forecasts.
Therefore, it is cleaner for exploring cross-sectional variations in expectation forma-
tion. Finally, it has been well documented that analysts cast doubt on the quality of
managerial guidance.2 Therefore, this setting offers a natural environment to study
expectation formation when the information quality is uncertain.

Literature Review Both the facts documented and the mechanisms characterized
in this paper are relevant for the expectation formation literature in general and stud-
ies concerning overreactions to information in particular. The empirical part of this
paper builds on a new literature that empirically explores information frictions and
expectation formation. Coibion and Gorodnichenko (2015) provide a new empirical
methodology in which they regress forecast errors, i.e., the difference between the
realized random variable and the revised forecast of the forecaster, on forecast re-
visions, i.e., the difference between the revised and the initial forecast. Under the
full information rational expectation (FIRE) assumption, the coefficient will be zero.
Thus, a statistically significant coefficient suggests a departure from FIRE. Coibion

2Prior studies suggest that firm managers have various incentives to bias their forecasts either up-
wards or downwards, which renders the guidance doubtful to analysts, such as litigation concerns
(Skinner 1994; Rogers and Stocken 2005), deterring entry (Newman and Sansing 1993; Rogers and
Stocken 2005) and signaling their ability to survive and recover from financial distress (Frost 1997;
Rogers and Stocken 2005).

4



and Gorodnichenko (2015) find that consensus forecasts of macroeconomic variables
tend to underreact relative to FIRE. Applying the same approach to individual fore-
casts, Bordalo, Gennaioli, Ma, and Shleifer (2020) find that analysts overreact to infor-
mation in general. This pattern is also discovered by Broer and Kohlhas (2022) with
macroeconomic survey data. The same approach is applied to firm earnings forecast
data: Bordalo, Gennaioli, Porta, and Shleifer (2019) document that an overreaction of
individual analysts’ forecasts is present in forecast data on firms’ long-term earnings
growth, and Bouchaud, Krueger, Landier, and Thesmar (2019) discover that underre-
action is present in the case of short-term earnings growth.3

Part of our work relies on the aforementioned “FE-on-FR” approach. However, in-
stead of focusing only on the average behavior of the whole sample, we consider dif-
ferences across groups: analysts who are positively surprised vs. those who are nega-
tively surprised and analysts who are more surprised vs. those who are less surprised.
Furthermore, we provide a complementary empirical approach of “FR-on-Surprise,”
that directly explores the relationship between forecast revisions and observable new
information and can be a useful tool for the literature. It is worthwhile to highlight
that we construct a novel and nontrivial environment to study expectation formation,
which is useful for other related research in this area.4

In an experimental setting, Afrouzi, Kwon, Landier, Ma, and Thesmar (2022) estab-
lish that the overreaction is stronger for a less persistent data generation process and
stronger for longer forecast horizons. They account for the facts by allowing recent ob-
servations to have a larger influence on expectations. We focus on cross-sectional vari-
ations in overreaction and explore how the characteristics of surprises affect forecast
revisions. These two works are complementary for understanding the determinants
of overreaction to information.

The building blocks of our model have precedents in the literature on uncertain in-
formation quality. Both Gentzkow and Shapiro (2006) and Chen, Lu, and Suen (2016)
show that Bayesian agents who are uncertain about the quality of news would ra-
tionally discount its quality when the news received is far from their priors. In those
models, the direction of surprises does not matter, and there is no asymmetry. Both Ep-

3Other recent studies also provide evidence on the forecasts of financial market participants, such
as Amromin and Sharpe (2014), Barrero (2022), Ma, Ropele, Sraer, and Thesmar (2020) and Greenwood
and Shleifer (2014).

4We use managerial guidance to facilitate the exploration because this is among the very few kinds
of information that are observable, measurable and systematically accessible to econometricians. Man-
agement earnings guidance is one of the most significant events that releases new information to the
market during a quarter. For instance, Beyer, Cohen, Lys, and Walther (2010) show that the release
of management earnings forecasts accounts for more than 50% of the variations in returns during a
quarter, indicating that market participants pay close attention to it. It is thus of first-order importance
to understand how sell-side financial analysts, as an important information intermediary, revise their
beliefs on earnings projections upon managerial guidance.
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stein and Schneider (2008) and Baqaee (2020) characterize the process of expectation
formation when agents have an extreme ambiguity-averse preference (i.e., multiple
priors) and show that belief updating is asymmetric in the contexts of asset pricing
and business cycles, respectively.5 Our work allows for a finite degree of aversion in
the smooth ambiguity model by following Klibanoff, Marinacci, and Mukerji (2005)
and Cerreia-Vioglio, Maccheroni, and Marinacci (2022). However, our model differs
in that agents do not know the second moments of the data generating process, i.e.,
uncertainty in information quality.6 Our results differ qualitatively from the two afore-
mentioned polar cases in the literature. The empirical and quantitative exercises in this
paper show that such a theoretical deviation is relevant and necessary.7

The theory part of this paper adds to a growing literature on expectation formation
that deviates from the rational expectation benchmark. To rationalize such a devia-
tion in the theoretical literature, one approach pursued is to relax the full-information
assumption. Prominent examples include rational inattention (Sims 2003), sticky in-
formation (Mankiw and Reis 2002), higher-order uncertainty (Morris and Shin 2002;
Woodford 2003; Angeletos and Lian 2016) and asymmetric attention (Mackowiak and
Wiederholt 2009; Kohlhas and Walther 2021). Another approach is to introduce be-
havioral features. Prominent examples include diagnostic expectations (Bordalo, Gen-
naioli, and Shleifer 2018, Bordalo, Gennaioli, Ma, and Shleifer 2020, Bianchi, Ilut, and
Saijo 2022), overconfidence (Broer and Kohlhas 2022), cognitive discounting (Gabaix
2020), level-K thinking (García-Schmidt and Woodford 2019, Farhi and Werning 2019),
narrow thinking (Lian 2020), autocorrelation averaging (Wang 2020) and loss aversion
(Capistrán and Timmermann 2009).8 The most recent studies combine both, such as
overextrapolation with dispersed information (Angeletos, Huo, and Sastry 2020).9 A
common feature of the aforementioned theories is that, in a linear Gaussian environ-
ments, forecast revisions are monotonically increasing in surprises and the direction
of surprises does not matter. Our model differs in both aspects.

5In addition, Baqaee (2020) provides evidence that households’ inflation expectations are more re-
sponsive to inflationary news than to disinflationary news and that the downward nominal wage rigid-
ity can be driven by this asymmetric response to inflationary and disinflationary news.

6In the existing literature, it is often assumed that agents are ambiguous about the first moments and
have multiple priors preferences, such as Ilut (2012), Ilut and Schneider (2014), Ilut and Saijo (2021).

7Models that feature constant ambiguity aversion have become common in the recent literature, and
Baliga, Hanany, and Klibanoff (2013) is one such example.

8In section 6.2, we contrast our model with models featuring loss aversion as in Elliott and Tim-
mermann (2008) and Elliott, Komunjer, and Timmermann (2008). We then demonstrate that under the
flexible setup of loss aversion, though FR-on-Surprise relation is still monotonically increasing.

9Farmer, Nakamura, and Steinsson (2021) maintain the assumption that forecasters are Bayesian and
show that in a dynamic environment, slow learning over the unit root long-run trend can rationalize a
set of forecasting anomalies at the consensus level.
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2. Evidence

2.1. Data, Sample and Timing

In this section, we explore how analysts revise their earnings forecasts upon newly
received information. Our goal is to construct a scenario where the information flow
is observable, measurable and accessible to the econometrician.

Toward this end, we focus on managerial guidance, which is among the very few
information sources that satisfy such criteria. In financial markets, the management
teams of publicly listed firms issue guidance for the earnings of the current quarter
between the last quarter’s and current quarter’s earnings announcements. That is a
crucial opportunity for firms to provide information about earnings to market partic-
ipants, such as financial analysts. Because of its importance, earnings guidance often
triggers analysts’ forecast updates: analysts likely revise their forecasts a few days af-
ter receiving earnings guidance, i.e., on average 4 days in our sample (constructed in
this section). Furthermore, it is common that firms continue to provide earnings guid-
ance for an extensive period of time, and the discontinuation in earnings guidance
is typically perceived unfavorably by the market (Chen, Matsumoto, and Rajgopal
2011). Earnings guidance includes various forms, such as point estimates and range
estimates.

The Thomson Reuters I/B/E/S Guidance data provides quantitative managerial
expectations, such as earnings per share, from press releases and transcripts of cor-
porate events. The data cover managerial guidance from more than 6,000 companies
in North America that can date back to as early as 1994. Furthermore, the I/B/E/S
Guidance data are offered and presented on the same accounting basis as the I/B/E/S
Estimates that provide individual analysts’ forecast data. This makes it feasible to
rigorously identify the timing of events and to compare managerial guidance and an-
alysts’ forecasts for the same firm in a certain period. Our sample construction based
on the I/B/E/S Guidance and Estimates data is detailed as follows.

First, we retrieve all quarterly earnings guidance from the I/B/E/S Guidance De-
tail file issued for the current quarter by firm management from 1994 to 2017. The
sample starts in 1994 as this is the first year when the I/B/E/S systematically col-
lected information on managerial guidance.10 We only keep closed-ended managerial

10The coverage bias in the management forecast data documented by Chuk, Matsumoto, and Miller
(2013) is less of a concern in this particular setting. First, we obtain management forecast data from the
I/B/E/S Guidance Detail file rather than the problematic First Call CIG database. Second, the focus of
this paper is to understand how analysts update their beliefs given new information, i.e., management
guidance in our setting. While the decision on the issuance of management guidance itself is also an
important research question, it is not the focus of this paper. Third, the fact that we require at least
one analyst issuing forecasts for a firm alleviates the concern that guidance data are more likely to be
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guidance, including point and range forecasts, to quantify and compare them with
analysts’ forecasts. Consistent with the literature, the value of the guidance is set to
equal the midpoint if it is a range forecast.

Second, given that our focus is on analysts’ belief-updating process upon receiving
new information from firm management, we exclude all managerial guidance bun-
dled with earnings announcements.11 We only consider unbundled guidance, partly
because it is nearly impossible to distinguish whether a forecast revision reflects infor-
mation gained from forward-looking managerial guidance or from the realized prior
earnings when both of them occur simultaneously.

Third, for firm-quarters in which managers provide multiple rounds of earnings
guidance (at different dates during the period from two days after the prior quarter
earnings announcement date and the current quarter earnings announcement date),
we only retain the latest guidance before the current quarter earnings announcement.
However, our results are not sensitive to this specific choice and are qualitatively un-
changed if we either keep the earliest guidance issued during a quarter or discard all
firm-quarters with multiple guidance.

Fourth, we then obtain individual analysts’ EPS forecasts for a firm-quarter from
the I/B/E/S Estimates (the Unadjusted Detail History file) and match them with the
I/B/E/S Guidance data using the same firm identifier (I/B/E/S ticker). Because earn-
ings projections in the I/B/E/S Guidance Detail file are provided on a split-adjusted
basis, we manually split-adjust both individual analysts’ forecasts and managerial pro-
jections so that they are comparable with the ultimate realized earnings announced for
the forecasted quarter. The realized earnings data are also obtained from the I/B/E/S
Estimates. Following a standard practice in the literature, we deflate the EPS estimates
by the stock price at the beginning of the quarter using data retrieved from the CRSP.12

To avoid the small price deflator problem that may distort the distribution, we exclude
observations with a stock price of less than one dollar.

Finally, in these data, the initial analyst forecasts are defined and constructed by
individual analyst forecasts that are issued after the prior quarter earnings announce-
ment date and are the most updated forecasts before the earnings guidance. The re-
vised analyst forecasts are defined as those issued by the same set of analysts on or
immediately after the earnings guidance date. For analysts who initially offer fore-
casts but provide no forecast revisions until the earnings announcement, we assume

collected for firms with analyst coverage. Fourth, our results are robust to starting the sample period in
1998, after which the coverage bias has been shown to be relatively small.

11Bundled guidance is defined as the managerial forecasts issued within 2 days around the actual
earnings announcement date (Rogers and Van Buskirk 2013).

12We provide a robustness check for our empirical results without deflating the EPS estimates with
stock prices and show that this practice does not affect our findings.
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Figure 1. Timeline. We consider managerial guidance Gt issued between At−1 and At. If the guidance
for EPS in quarter t is released on the date of At−1 or within two days after At−1, then it is bundled.
If the guidance is released between Qt and At, it is a preannouncement. If more than one guidance is
released between At−1 and At, we choose the latest one.

that their revised forecasts remain the same as their initial forecasts, a practice consis-
tent with prior literature (Feng and McVay 2010; Maslar, Serfling, and Shaikh 2021).

We stress that we intentionally construct a time window where analysts’ initial and
updated forecasts encompass the earnings guidance of the current quarter. This con-
struction allows us to analyze how forecasts are updated in response to information
observable to the econometrician. The construction procedure can be better appre-
hended with the aid of Figure 1, which delineates the sequence of major events.13 An-
alyst i learns firm j’s EPS for quarter t − 1 at the date of At−1, which is EPSj,t−1. Then
he or she issues a forecast Fijt,0 for firm j’s EPS in quarter t. Firm j offers guidance Gjt

for firm j’s earnings in quarter t. Then, analyst i updates his or her forecast for firm
j’s EPS in quarter t (i.e., Fijt,1). Quarter t ends at the date of Qt, and firm j announces
its EPS for quarter t at the date of At. In sum, in this setting, both initial and updated
forecasts are made within the same period, after At−1 and before At.

Our full sample consists of 110,895 pairs of individual analysts’ forecasts (initial
and updated forecasts) issued by 6,987 different analysts for 3,226 district firms over
the period from 1994 to 2017. A summary of statistics is reported in Appendix I.A.

13Suppose that a typical fiscal quarter ends at Qt, and its realized earnings are usually announced at
At after the end of the quarter Qt (The Securities and Exchange Commission requires public firms to
file their financial statements within 45 days after the end of the fiscal quarter). Similarly, the earnings
announcement date At−1 for quarter t − 1 would also happen after Qt−1. In this paper, we retrieve
earnings guidance that is issued by firm management on any date between At−1 and At. Because
an increasing number of firms bundle their earnings projections for quarter t with the announcement
of the realized earnings for quarter t − 1, we further require the guidance to be unbundled (as justified
earlier). That is, we only consider guidances issued between two dates, i.e., At−1 and At. Given earnings
guidance Gt, we can accordingly identify the sequence of analysts’ earnings forecasts for the same
quarter. We define analysts’ forecasts that are issued after At−1 but at the latest before Gt as their initial
forecast and the forecast that is issued on or after Gt but before At as their revised forecast. As noted
above, for analysts who provide an initial forecast but do not revise, we assume that the revised forecast
remains the same as the initial forecast. There are two exceptions to this general timing. First, it might
be the case that Gt lies between Qt and At, in which case we term the guidance a preannouncement
following the convention in the literature. Second, firm management can offer more than one earnings
guidance, and therefore, Gt may appear multiple times during the period. In this case, we only retain
the latest guidance before At.
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Table 1. Forecast Error on Forecast Revision

Outcome Variable: Forecast Error FEi

Winsorization at the 1% and 99% Winsorization at the 2.5% and 97.5%

Baseline Control Unscaled Baseline Control Unscaled

(1) (2) (3) (4) (5) (6)

FRi -0.0952*** -0.0954*** -0.0964*** -0.0926*** -0.0926*** -0.0793***
(0.0146) (0.0147) (0.0124) (0.0119) (0.0119) (0.0102)

Earnings of the Last Quarter 0.0023 -0.0004
(0.0073) (0.0050)

Quarter FEs YES YES YES YES YES YES
Analyst FEs YES YES YES YES YES YES
Firm FEs YES YES YES YES YES YES

Obs. 110,895 110,895 110,895 110,895 110,895 110,895
Adj. R-sq 0.2429 0.2429 0.2170 0.2298 0.2298 0.2236

The standard errors are clustered on firm and calendar year-quarter following Petersen (2009).***
p<0.01, ** p<0.05, * p<0.1

2.2. Overreaction

Our investigation of how analysts revise their forecasts starts by following the ap-
proach proposed by Bordalo, Gennaioli, Ma, and Shleifer (2020), in which they ex-
amine professional analysts’ forecasts of macro variables. That is, we regress ex post
analyst forecast errors on ex ante analyst forecast revisions at the individual level. To
this end, we construct both forecast error FEijt and forecast revision FRijt. The former
is the difference between the realized earnings per share for firm j in quarter t and the
revised EPS forecast by individual analyst i for firm j in quarter t. The latter is the
difference between the revised forecast after guidance and the initial forecast before
guidance issued by the same analyst i for firm j in quarter t. To avoid the heterogene-
ity embedded in EPS across firms, both FEijt and FRijt are scaled by the stock price at
the beginning of quarter t. To mitigate the impact of potential outliers, both of them
are winsorized at the 1% and 99% level of their respective distributions. We estimate
the following equation:

FEijt = b0 + b1FRijt + δi + δj + δt + ωijt, (1)

where we control for analyst (δi), firm (δj) and calendar year-quarter (δt) fixed effects.
Any time-invariant analyst characteristics, time-invariant firm specific characteristics
and time-series differences are absorbed and cannot explain our results. The standard
errors are clustered at the firm and calendar year-quarter to adjust for both intertem-
poral and cross-sectional correlations, following Petersen (2009). The results from es-
timating equation (1) are presented in column (1) of Table 1.

We find that forecast errors are negatively correlated with forecast revisions at the
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individual analyst level and statistically significant at less than the 1% level. The neg-
ative coefficient indicates that analysts overreact to new information over the period
that the managerial guidance is received by analysts. Despite the settings being en-
tirely different, this result is consistent with those found in Bordalo, Gennaioli, Ma,
and Shleifer (2020) and Broer and Kohlhas (2022). Both studies document the exis-
tence of overreaction to new information in analysts’ forecasts of macro variables such
as inflation or GDP, based on the US Survey of Professional Analysts.

We add the earnings in the last quarter (t − 1) of firm j to the right-hand side of
equation (1) and report the estimation results in column (2) of Table 1. The change in
the estimated coefficient on forecast revision is negligible, and the coefficient on the
earnings in the last quarter is close to zero and not significant. This suggests that the
information about earnings in the last quarter is utilized by analysts to form their ini-
tial forecasts and therefore orthogonal to forecast revisions. That is the key difference
from studies using Survey of Professional Forecasters (SPF) data, where initial and
update forecasts are made in two separate periods.14

We check the robustness of our results by not scaling earnings and forecasts by
stock prices, and the estimate for forecast revisions is robust, which is reported in
column (3). To ensure that our results are not driven by outliers, we winsorize FEijt

and FRijt at the 2.5% and 97.5% levels of their respective distributions and rerun the
aforementioned exercises. Those results are reported in columns (4)-(6) of Table 1,
which demonstrate the robustness of our findings.

We further perform robustness checks with different subsamples. We re-estimate
equation (1) by excluding all firm-quarters with preannouncement guidance or all
firm-quarters with multiple guidances or both. We report the results in Table 8, which
is relegated to Appendix I.B. To ensure consistency with the results estimated locally
(see sections below), we estimate equation (1) after we trim outliers from the sam-
ple and present those results in Table 9 of Appendix I.B. The estimated coefficients in
the aforementioned exercises are qualitatively unchanged and only different in mag-
nitude.

2.3. Heterogeneous Overreaction

We further explore one important feature of our empirical setting: the guidance is
common for all analysts, but surprises contained in the guidance are not common
across analysts because they possess heterogeneous initial forecasts. Analysts can be

14At each survey date, forecasters make a forecast (nowcast) for the current quarter and forecasts for
the following four quarters. For example, in quarter 2005:Q3, forecasters make forecasts for 2005:Q3,
2005:Q4 and 2006:Q1-3; then, in quarter 2005:Q4, forecasters make forecasts for 2005:Q4 and 2006:Q1-4.
Between the two sets of forecasts, the realized value of forecasted variable in 2005:Q3 is available to
forecasters.
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surprised to different extents and even in different directions. One natural question
arises: Do analysts overreact differently to the same information? In fact, our data
allow us to explore such heterogeneity of overreaction across analysts.

First, we construct a variable guidance surprise (i.e., Surpriseijt) to capture the ob-
servable surprise in managerial guidance for individual analysts. It is defined and
measured by the difference between the value of guidance (i.e., Gjt) issued by firm
j in quarter t and analyst i’s corresponding initial forecast (i.e., F0ijt) for firm j in quar-
ter t before guidance. That is, Surpriseijt ≡ Gjt − F0ijt.15 For each individual analyst,
the managerial guidance can be unfavorable or favorable if it falls below or exceeds the
analyst’s initial forecast before guidance, and the managerial guidance can be large or
small if it is far from or close to the analyst’s initial forecast before guidance.

Second, we remove outliers by trimming forecast errors, forecast revisions and sur-
prises at the 2.5% and 97.5% levels of their respective distributions (to be consistent
with the nonparametric estimations in the next section). We then rank surprises from
the most negative to the most positive, sort them into deciles and label them from 1 to
10 according to the decile rank. To enlarge the subsample size and smooth estimates,
we define a running decile window j such that (1) window j covers decile j − 1, j, and
j + 1 if j ̸= 1 or j ̸= 10; (2) running decile window 1 covers deciles 1 and 2; and (3)
running decile window 10 covers deciles 9 and 10.

Third, for each subsample of a running decile window, we re-estimate equation (1)
(i.e., regressing forecast errors on forecast revisions). We plot the estimated coefficients
and confidence intervals in Figure 2 against their window ranks. We find that analysts
overreact to information in each subsample, i.e., the estimated coefficient b1 is negative
and significant. However, the degree of overreaction is not constant and is U-shaped
in surprises and skewed to the left. This implies that the overreaction is stronger when
the surprises are negative and the overreaction is weaker when the surprises are larger
in size.

To examine whether our results are robust, we rerun the exercises with a sample
where forecast errors, forecast revisions and surprises are trimmed at the 1% and 99%
levels of their respective distributions. We also re-estimate equation (1) for each decile
of surprises without using running windows. The patterns found are rather similar.
We relegate them to Appendix I.B (see Figures 14 and 15, respectively).

In summary, on the one hand, we confirm that analysts overreact to information

15We stress the fact that the constructed surprise variable for managerial guidance is what is observ-
able and accessible to the econometrician. However, it is not necessarily the real surprise for analysts,
because analysts may have acquired private information, which is only observable to themselves. In
this paper, we distinguish the two types of surprises both in the model setting and when making the
connection between the model and the data.
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Figure 2. Heterogeneous Overreaction. The estimated coefficients of the FE-on-FR regressions b1 and
the 95% confidence interval for each running decile window are plotted against the window rank. Run-
ning decile window j covers decile j − 1, j, and j + 1 if j ̸= 1 or j ̸= 9; running decile window 1 covers
deciles 1 and 2, and running decile window 10 covers deciles 9 and 10.

in this particular setting. Given that the forecast revisions are constructed around
managerial guidance, analysts are likely to overreact to guidance surprises. On the
other hand, we discover that the way that analysts react to information depends on the
characteristics of the surprises that they receive, such as magnitude and favorability.

2.4. Forecast Revisions and Surprises: Mechanisms

In this section, we set out to uncover the mechanisms that underlie the heterogeneous
overreaction pattern. To this end, we directly investigate the relationship between
forecast revisions and surprises. Note that if forecast revisions are linear in surprises,
then the degree of overreaction to new information cannot be heterogeneous (charac-
terized in section 6.1); and if overreaction is heterogeneous in the size and direction of
surprises, then forecast revisions cannot be linear in surprises.

In particular, we examine the impacts of favorability and the magnitude of guid-
ance surprises. We begin by estimating a linear relationship between forecast revisions
and surprises in guidance, controlling for the analyst, firm and quarter fixed effects,
as follows,

FRijt = b0 + b1Surpriseijt + δi + δj + δt + ωijt, (2)

where, as defined in the previous section, Surpriseijt is the observable and measurable
surprise for analyst i, contained in guidance released by firm j in quarter t. Equation
(2) estimates the average effect of surprises on analysts’ forecast revisions, and the
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Table 2. Forecast Revisions and Surprises in Managerial Guidance: Interactions

Outcome Variable: Forecast Revision FRi

Winsorization at 1% and 99% Winsorization at 2.5% and 97.5%

(1) (2) (3) (4) (5) (6)

Surprisei 0.1463*** 0.0357* 0.4624*** 0.2441*** 0.1405*** 0.4707***
(0.0127) (0.0186) (0.0177) (0.0129) (0.0281) (0.0162)

Unf -0.0023*** -0.0014***
(0.0001) (0.0001)

Surprisei × Unf 0.1130*** 0.0846***
(0.0231) (0.0286)

Large -0.0055*** -0.0016***
(0.0005) (0.0003)

Surprisei × Large -0.3666*** -0.2674***
(0.0185) (0.0181)

Constant -0.0010*** 0.0007*** 0.0002** -0.0005*** 0.0004*** 0.0001*
(0.0001) (0.0001) (0.0001) (0.0000) (0.0001) (0.0001)

Quarter FEs YES YES YES YES YES YES
Analyst FEs YES YES YES YES YES YES
Firm FEs YES YES YES YES YES YES
Obs. 110,895 110,895 110,895 110,895 110,895 110,895
Adj R-sq. 0.3943 0.4234 0.4675 0.4587 0.4723 0.4865

Notes: The standard errors are clustered on firm and calendar year-quarter following Petersen (2009).
*** p<0.01, ** p<0.05, * p<0.1.

results are reported in column (1) of Table 2.16 The significantly positive coefficient
on Surpriseijt suggests that individual analysts’ forecast revisions are positively corre-
lated with surprises in managerial guidances. It is intuitive that favorable surprises in
guidance on average lead to upward revisions and vice versa.

However, our main interest is to explore how the positive correlation between fore-
cast revisions and surprises varies with the favorability and magnitude of guidance
surprises. To this end, we construct two dummy variables. The dummy Unfijt is
equal to 1 for unfavorable guidance (i.e., Surpriseijt is negative) and 0 otherwise.17

The dummy Largeijt is equal to 1 for large surprises (i.e., Surpriseijt is larger or smaller
than the mean value of the variable Surpriseijt by one standard deviation) and 0 oth-
erwise.

We first add the dummy Unfijt and its interaction with Surpriseijt to the right-hand
side of equation (2) and estimate the following regression:

FRijt =b0 + b1Surpriseijt + b2Unfijt + b3Unfijt × Surpriseijt + δi + δj + δt + ωijt (3)

16In the accounting and finance literature, similar specifications have been utilized, such as Hassell,
Jennings, and Lasser (1988), Baginski and Hassell (1990) and Feng and McVay (2010). Hassell, Jennings,
and Lasser (1988) and Baginski and Hassell (1990) document a significant positive correlation between
analysts’ consensus forecast revisions and the deviation of managerial guidance from the consensus
forecast before guidance. Feng and McVay (2010) further investigate how this positive correlation varies
with the credibility and usefulness of the guidance.

17Approximately 10.73% of the initial forecasts in our sample are equal to the respective managerial
guidance in the corresponding quarter. We classify them as favorable to be conservative. However, our
results remain qualitatively unchanged, if we exclude these confirming cases.
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Such a specification allows us to compare the degrees to which analysts’ forecast re-
visions correlate with managerial guidance surprises in each subsample. Column (2)
of Table 2 shows the regression results. The positive coefficient on Surpriseijt suggests
that, given favorable managerial guidances, forecast revisions and surprises are still
positively correlated. The coefficient on the interaction term is positive and signifi-
cant, implying that the positive correlation is even more pronounced when unfavor-
able guidance is received.

We then add the dummy Largeijt and its interaction with Surpriseijt to the right-
hand side of equation (2) and estimate the following regression:

FRijt =b0 + b1Surpriseijt + b2Largeijt + b3Largeijt × Surpriseijt + δi + δj + δt + ωijt

(4)

Column (3) of Table 2 shows the regression result. The coefficient on the interaction
term is negative and significant, implying that the positive correlation between fore-
cast revisions and guidance surprises is smaller when the surprises are larger. In Ap-
pendix I.B, we present regression results by using various definitions of large surprises
in Table 10, which shows that our results are robust to its definition.

However, it may be argued that our results can be very sensitive to the obser-
vations in the tails of the distribution. Considering that we study the properties of
“large” surprises, this concern is particularly relevant. To mitigate this, we winsorize
both forecast revisions and surprises at the 2.5% and 97.5% levels of their respective
distributions and re-estimate equations (2), (3) and (4). The results are displayed in
columns (4), (5) and (6) of Table 2, respectively. Although the magnitude of the coeffi-
cients varies, all results are qualitatively robust.

The results in Table 2 suggest that analysts tend to react more strongly (in terms
of revising their forecasts) to unfavorable surprises and that they react less strongly
to large surprises. In addition, those results indicate that the underlying relationship
between forecast revisions and surprises may not be linear, which motivates us to
deviate from the linear regressions framework to uncover it.

To estimate the relationship in a more reliable fashion, we resort to the nonpara-
metric estimation approach. Using the standard tool of local polynomial regression,
we estimate the relationship between forecast revisions and surprises by using the
Epanechnikov kernel and the third degree of the smoothing polynomial.

Because we are interested in “large” surprises and because we estimate the rela-
tionship with local polynomials, the results can be affected and biased by winsoriza-
tion of the data. To alleviate this concern, we instead trim both forecast revisions and
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Figure 3. Nonparametric estimation, 5% trimming (2.5%, 97.5%). Panel (a) illustrates the relation-
ship between forecast revisions and surprises in managerial guidances (both trimmed at 5%) that is
nonparametrically estimated using the Epanechnikov kernel and the third degree of the smoothing poly-
nomial. It is decreasing, increasing and decreasing and asymmetric around the origin. The shaded areas
represent the 95% confidence intervals for the respective estimations. Panel (b) illustrates its derivatives
with respect to surprises. The derivatives are negative when the surprises are large enough and positive
when they are small. Forecast revisions respond more strongly to negative surprises than to positive
surprises of the same magnitude.

surprises at the 2.5% and 97.5% levels of their respective distributions and residual-
ize them by controlling for quarter, firm and analyst fixed effects. We estimate their
relationship using the local polynomial specification, and the results are presented in
Figure 3(a). Forecast revisions are decreasing, increasing and decreasing in surprises
and are asymmetric around the origin. Figure 3(b) illustrates its derivatives with re-
spect to surprises. The derivatives are negative when the surprises are large enough
and positive when they are small. Forecast revisions respond more strongly to nega-
tive surprises than to positive surprises of the same magnitude.

In Appendix I.B, we present various robustness checks, and the empirical findings
are robust. We first present results when both forecast revisions and surprises are
trimmed at the 1% and 99% levels of their respective distributions (see Figure 10).
For the purpose of comparison, we also present the results by using forecast revisions
and surprises that are winsorized at the 2% (1% and 99%) and 5% (2.5% and 97.5%)
levels of their respective distributions. The results are all similar. In addition, we
present the binscatter plots for the same set of data with various parameters. The
patterns discovered with binscatter plots are consistent with those identified with local
polynomial regressions.

One valid concern is that the decreasing arms of the estimated relationship might
be driven by a small number of observations in the tails. Ultimately, the confidence in-
tervals become very wide when the surprises are relatively large in magnitude. How-
ever, we find that this is not the case. For the local polynomial estimation using the
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trimmed data, there are 3,060 observations to the left of the trough and 7,045 observa-
tions to the right of the peak, which account for close to 10% of the total observations
used in this estimation. Given the number of observations utilized, this concern is
alleviated.

Another potential issue is that whether to offer earnings guidance could be strategi-
cally chosen by firms, which could affect our estimations. First, this is unlikely because
firms do not make decisions about whether they disclose the earnings guidance on a
quarterly basis and typically continue to provide earnings guidance for an extended
period of time (Chen, Matsumoto, and Rajgopal 2011). Second, we construct a sub-
sample in which we only include earnings forecasts conditional on firms (whose earn-
ings are being forecasted) having to release earnings guidance for at least 12 consecu-
tive quarters during our sample period.18 We nonparametrically re-estimate the rela-
tionship between forecast revisions and surprises following the procedure described
above. The results are presented in Figure 12 in Appendix I.B. They are rather similar
to those obtained using the full sample, and the two key characteristics are even more
pronounced. Therefore, the concern of strategic disclosure is inconsequential for our
findings.

Our data cover the period of the 2007-2009 financial crisis, and it is not unlikely that
financial market participants behaved abnormally during that period, which could
affect the relationship in which we are interested. To investigate this possibility, we
remove the data from 2007 to 2009, i.e., the financial crisis period, and re-estimate the
relationship. The results are presented in Figure 13 in Appendix I.B, which are very
similar to those obtained by using the full sample.

The facts documented in sections 2.3 and 2.4 would be puzzling if one assumed
that analysts know the quality of managerial guidance with certainty. In such a case,
forecast revisions would be linear in surprises, and the degree of overreaction would
also be constant. Once we relax this assumption and accommodate the conjecture that
the quality of information can be uncertain to analysts, those documented facts can
be reasonable and consistent with each other. To account for those facts in a unifying
framework, we propose a model where analysts are uncertain about the quality of
information that they receive.

18Based on the initial full sample of management guidance, we select a quarterly management guid-
ance for our subsample if it lies in any series of at least 12 consecutive quarters where managers provide
earnings forecasts in each quarter. For example, the guidance issued in 2012Q4 is selected if it is in a
series of 12 consecutive quarters from 2011Q1 to 2013Q4 with management guidance. The subsample
consists of 49,116 observations with 5,601 firm-quarters. We also vary the threshold for the number of
consecutive quarters, such as 8 and 16. The results are rather similar.
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3. The Model

3.1. Setup

Consider a one-period static model where there exists a continuum of analysts, in-
dexed by i ∈ [0, 1], and a firm. The firm’s earnings θ are stochastic. Analyst i makes
a forecast F0i about the earnings at the beginning of the period and makes an updated
forecast Fi at the end of the period.

Utility function. In the context of forecasting problems, we impose one restriction
that analysts’ optimal forecast is precisely F∗ = θ, conditional on analysts’ information
being complete (i.e., the earnings θ are known to the analysts). Any utility functions
that satisfy this restriction can be approximated by a utility function U (·, ·) that is
quadratic in both forecasts and earnings. In the main text, we consider one particular
case among this class of quadratic utility functions, which is given by:

U (F, θ) =− (F − θ)2 + βθ, (5)

where β is a constant. To interpret parameter β, consider the scenario where analysts
have complete information. They can minimize the forecasting errors to zero, but the
realized earnings may still matter for analysts in our model. The parameter β > 0
(β < 0) implies that analysts would be better (worse) off if the realized earnings θ

were higher. The parameter β will be estimated and interpreted in section 5.2.19

This utility function is used for ease of exposition and highlighting our new mecha-
nisms. In Online Appendix B, we present a full characterization of the model with the
most general quadratic utility function of this class. We show that it is qualitatively
similar and provide evidence that the additional parameters in the general case are
empirically irrelevant in this setting.

Information structure. We assume that the earnings follow a normal distribution
with mean 0 and variance σ2

θ , i.e., θ ∼ N
(
0, σ2

θ

)
; let τθ = 1/σ2

θ . The distribution
of earnings is known to all analysts. To have a direct mapping with the data, we
allow each analyst i to be endowed with private information about the earnings before
making the initial forecasts, as follows:

z0i = θ + ιi,

where ιi is normally distributed with mean 0 and variance σ2
z , i.e., ιi ∼ N

(
0, σ2

z
)
; let

τz = 1/σ2
z . Analyst i makes forecast F0i with heterogeneous information z0i.

19Section 5.2 provides discussions on empirical evidence that analysts’ utility can be dependent on
earnings. In this section, we provide a characterization in which β can take any value.
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Each analyst then receives a set of new information. First, analysts receive man-
agerial guidance released by the firm, which is a noisy signal about earnings:

y = θ + η.

where η is normally distributed with mean 0 and variance σ2
Y, i.e., η ∼ N

(
0, σ2

Y
)
; let

τY = 1/σ2
Y. The managerial guidance is a public signal and can be accessed by the

econometrician. Second, each analyst also receives a noisy private signal:

xi = θ + εi.

where εi is normally distributed with mean 0 and variance σ2
x , i.e., εi ∼ N

(
0, σ2

x
)
; let

τx = 1/σ2
x . It can be interpreted as a sufficient statistic for all the new information

analyst i receives prior to making forecast Fi, except the managerial guidance.20 Such
a private signal is not observable to other analysts and thereby not observable to the
econometrician. After analysts have made their updated forecasts, the earnings an-
nouncement is made, and the payoffs to analysts are realized.

The information structure in this model warrants discussion. First, in this paper,
we focus on a static model without modeling the dynamics of earnings across peri-
ods. As discussed in section 2.1, analysts have perfect information about earnings in
the last quarter. In fact, we show in section 2.2 that earnings in the last quarter can-
not predict forecast errors in the current quarter conditional on forecast revisions and
are orthogonal to forecast revisions in the data. Second, both the initial and updated
forecasts in the data are made after the earnings in the last quarter are known to ana-
lysts. In this case, forecasts of the last period’s earnings are not relevant in this period,
conditional on the last quarter’s earnings themselves. Note that the updated earnings
forecasts of the last period are not the initial forecasts for earnings in this period.

Ambiguity-averse preferences. The key departure of this model from the existing fore-
casting literature is that we assume that analysts are uncertain or ambiguous about the
quality of the managerial guidance or their objective precision (i.e., τY). Therefore, they
have to form their own subjective belief about its precision (i.e., τy). Such an assump-
tion is reasonable. Analysts may not know the quality of the guidance with complete
certainty because management has incentives not to release the best possible informa-
tion at hand and because even the best possible estimates from the management can

20For example, this can include new information generated from analysts’ own research or private
information acquired from other sources. We also allow the analysts to have access to others’ initial
forecasts, either a subset of them or all of them. In the latter case, to prevent analysts from learning
about the earnings, we can assume that there exists a common noise in z0i, such that aggregation does
not guarantee full revelation. Our qualitative and quantitative results will not be affected by this as-
sumption.

19



be plagued with noise but analysts are not certain about its structure.

Specifically, we let Γy be the range of support for the possible precision τy of man-
agerial guidance. Analysts believe that τy ∈ Γy and possess some prior belief over Γy,
whose density distribution is given by p

(
τy
)
. We say that one particular τy represents

a model that generates the managerial guidance y.

Furthermore, we assume that analysts dislike uncertainty in the quality of the man-
agerial guidance or are ambiguity averse. In this model, we capture such a preference
of analysts by using the smooth model of ambiguity as proposed in Klibanoff, Marinacci,
and Mukerji (2005). That is, analyst i maximizes the objective function:∫

Γy
ϕ (Eτy [U (Fi, θ) |z0i, xi, y]) p

(
τy|z0i, xi, y

)
dτy, (6)

where ϕ (·) is some increasing, concave and twice continuously differentiable function.
In addition, Eτy [U (Fi, θ) |z0i, xi, y] denotes the mathematical expectation conditional
on analyst i’s information set (z0i, xi, y) for a particular model τy (or a certain precision
of managerial guidance). In what follows, we use E

τy
i [U (Fi, θ)] to denote the expected

utility of analyst i, unless it causes confusion. The density of the posterior belief over
possible models is assumed to be Bayesian and denoted by p

(
τy|z0i, xi, y

)
.

The curvature of function ϕ (·) captures an aversion to mean-preserving spreads in
E

τy
i induced by ambiguity in τy.21 The more concave the function ϕ (·) is, the stronger

the ambiguity aversion. In other words, it characterizes analysts’ taste for ambigu-
ity. In this paper, we consider a function ϕ (·) that features constant absolute ambi-
guity aversion (CAAA) following Cerreia-Vioglio, Maccheroni, and Marinacci (2022)
throughout:

ϕ (t) = − 1
λ

e−λt, (7)

where λ ≥ 0 measures the degree of ambiguity aversion. Two special cases are nested.
When λ = 0 and ϕ (·) is linear, this corresponds to the case where analysts are ambi-
guity neutral or fully Bayesian. When λ → +∞, this corresponds to the case where
analysts’ aversion to ambiguity is infinite, which is the classic Wald (1950) maxmin
criterion.22

21Ambiguity aversion differs from risk aversion, which is implicitly captured by U (Fi, θ). In this
model, it is the aversion to ambiguity rather than the aversion to risk that drives our results.

22The model with extreme ambiguity aversion is a special case of the multiple priors preference pro-
posed by Gilboa and Schmeidler (1989), where the priori set of priors include all Dirac measures of each
model.
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3.2. Noisy Information Benchmark: A Special Case

Our framework is a generalized version of the standard forecasting problem in which
analysts possess noisy information and minimize the mean-squared error of their fore-
casts of the random variable. In other words, the noisy information benchmark is a
special case of our model when agents are ambiguity neutral (i.e., λ = 0) and there
exists no uncertainty in information quality (i.e., Γy is singleton).23 In this section, we
characterize such a special case and illustrate why it fails to account for the empirical
patterns documented in section 2.3 and 2.4 and why deviations from this benchmark
are necessary.

With noisy information expectations, the optimal initial and updated forecasts are
such that

FNI
0i = E [θ|z0i] ; FNI

i = E [θ|z0i, xi, y] ,

where E [θ|Ii] denotes the conditional expectations (i.e., Bayesian posterior). The rela-
tionship between FNI

0i and FNI
i is therefore given by:

FNI
0i =

(
1 − κx − κy

)
FNI

0i + κxxi + κREy,

where κx and κRE are the relevant weights assigned to the private and public informa-
tion:

κx ≡ τx

τθ + τz + τx + τY
> 0; κRE ≡ τY

τθ + τz + τx + τY
> 0. (8)

Therefore, the relevant forecast revision is given by

FRNI
i ≡ FNI

i − FNI
0i = κRE

(
yi − FNI

0i

)
+ κx

(
xi − FNI

0i

)
, (9)

and forecast error is given by

FENI
i ≡ θ − FNI

i = κθθ + κzιi + κxϵi + κREη, (10)

where κθ ≡ τθ
τθ+τz+τx+τy

> 0 and κz ≡ τz
τθ+τz+τx+τy

> 0.

Lemma 1 (FR-on-Surprise and FE-on-FR). In the noisy expectation benchmark, forecast
revisions are linear in guidance surprises and uncorrelated with forecast errors,

COV
(

FENI
i , FRNI

i

)
= 0.

23In the noisy information benchmark, the parameter β in Equation (5) plays no role at all. However,
it is important for the optimal forecasts when agents have ambiguity averse preferences.
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Observe that the term (y − FNI
0i ) in equation (9) is the theory counterpart of man-

agerial guidance surprises in our empirical exercise. Equation (9) predicts that forecast
revisions should be linear in guidance surprises and the unobservable surprises con-
tained in the private information (xi − FNI

0i ) is the white noise to the FR-on-Surprise
relation. However, this prediction contradicts the non-monotone and asymmetric re-
lationship documented in section 2.4.

Further, using Equations (9) and (10), it is evident that forecast revisions and fore-
cast errors are uncorrelated. It then predicts that the estimated coefficient in the FE-on-
FR regression should be 0, i.e., no over-reaction at the individual level. This prediction
contradicts evidence that analysts overreact to new information (documented in sec-
tion 2.2) and that such overreaction varies in a non-monotonic and asymmetric fashion
(documented in section 2.3).

The key to the failure that the noisy information benchmark cannot capture the
empirical patterns, is that the optimal forecasting rule is state-independent and deter-
mined by constant signal-to-noise ratios. That is, the weight κRE assigned to the public
signal (i.e., managerial guidance in this context) is constant and independent of the re-
alization of the public signal. However, evidence suggests that the weight should vary
depending on the realization of public signal in a particular way: the weight should
be larger when the surprise is negative than when it is positive but of the same mag-
nitude; and the weight should be negative (instead of positive) when surprises are
large enough. In the following section, we demonstrate that our framework, featuring
the ambiguous information quality and ambiguity aversion towards uncertainty, can
generate a state-dependent forecasting rule that is consistent with data.

3.3. Equilibrium Characterization

In this section, we turn to the characterization of analysts’ optimal forecasts. The initial
forecast of each analyst F∗

0i is derived by Bayes’ rule:

F∗
0i =

τz

τz + τθ
z0i.

To choose the optimal updated forecast F∗
i after obtaining a new set of information,

analysts maximize the objective in equation (6). That is, the optimal forecast F∗
i is such

that the first-order condition holds:

Fi =
∫

Γy

(
τzz0i + τxxi + τyy
τθ + τz + τx + τy

)
p̃
(
τy|z0i, xi, y; Fi

)
dτy, (11)
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where the distorted posterior belief p̃ is such that

p̃
(
τy|z0i, xi, y; Fi

)
∝ ϕ′

(
E

τy
i [U (Fi, θ)]

)
︸ ︷︷ ︸

Pessimistic Distortion

p
(
z0i, xi, y|τy

)
p
(
τy
)︸ ︷︷ ︸

Bayesian Kernel

. (12)

The term with the combined fraction in equation (11) captures the posterior mean
of the random variable θ for a particular model τy, where the weights assigned to
observations (z0i, xi, y) are dictated by Bayes’ rule.

The distribution of τy is updated by following equation (12). When analysts are am-
biguity neutral (i.e., λ = 0), ϕ′(·) is constant and the posterior distribution of τy simply
follows Bayes’ rule. When analysts are ambiguity averse (i.e., λ > 0), the posterior dis-
tribution of τy is distorted by their pessimistic attitude: its density is reweighted by the

term ϕ′
(

E
τy
i [U (Fi, θ)]

)
.

To understand such pessimism, consider analyst i who obtains observations (z0i, xi, y)
and contemplates releasing a forecast Fi. She views model τy as the more likely model
if she is worse off under such a model. That is, a model with τy that generates a
lower expected utility for analyst i is given a higher weight in her distorted poste-
rior belief. Recall that ϕ′(·) > 0 and ϕ′′(·) < 0. Consequently, the posterior belief
p̃
(
τy|z0i, xi, y; Fi

)
depends on her forecast Fi. Such a dependence is the key difference

from the standard forecasting problems.

To facilitate the subsequent analysis and characterize the pessimism, we represent
the first-order condition by orthogonalizing the information set, which has a natural
interpretation. Analyst i who receives xi, updates her belief about θ, and then her
posterior belief will be:

Xi = F0i +
τx

(τθ + τz + τx)
(xi − F0i) .

The analyst next receives the managerial guidance y, and the surprise for analyst i is
denoted by si ≡ y − Xi, i.e., the difference between the guidance y and the analyst’s
posterior belief Xi. The optimality condition of equation (11) is represented by:

Fi = Xi + κ (Xi, si, Fi) · si, (13)

where

κ (Xi, si, Fi) ≡
[∫

Γy

(
τy

τθ + τz + τx + τy

)
p̃
(
τy|Xi, si; Fi

)
dτy

]
, (14)
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and the distorted posterior belief is such that

p̃
(
τy|Xi, si; Fi

)
≡ p̃

(
τy|z0i,

τθ + τz + τx

τx
(Xi − F∗

0i) + F∗
0i, si + Xi; Fi

)
. (15)

For any particular model τy, the optimal response to the surprise si is τy
τθ+τz+τx+τy

,
which is dictated by Bayes’ rule and increasing in τy (the quality of managerial guid-
ance). The response to the surprise (represented by κ) is a weighted average over
the model space by using the distorted distribution p̃

(
τy|Xi, si; Fi

)
, and therefore it is

bounded between 0 and 1. In this representation, the pessimistic preference of analysts
is specifically captured by the following lemma.

Lemma 2 (Pessimism). Consider any F′
i > Fi and the likelihood ratio

L
(
τy
)
≡

p̃
(
τy|Xi, si; F′

i
)

p̃
(
τy|Xi, si; Fi

) .

If the surprise si is positive, L
(
τy
)

decreases in τy; if it is negative, L
(
τy
)

increases in τy.

All proofs are collected in Appendix B. Suppose that the surprise si is positive. An
analyst i who contemplates a higher forecast F′

i would consider the positive surprise to
be less likely to be informative and assign a lower probability density for models with
a high τy in her distorted belief p̃. Therefore, κ is decreasing in Fi. In contrast, suppose
that the surprise si is negative. An analyst i who contemplates a higher forecast would
consider the negative surprise to be more likely to be informative and therefore assign
a higher probability density to models with high τy in her distorted belief. Therefore,
κ is increasing in Fi.

As implied by Lemma 2, the right-hand side of equation (13) always decreases in Fi.
The optimal forecast F∗

i is the fixed point of equation (13). The following proposition
summarizes the equilibrium existence and uniqueness of the forecasting problem.

Proposition 1 (Existence and Uniqueness). If analysts are ambiguity averse (λ > 0), there
always exists a unique optimal forecast F∗

i (Xi, si) that satisfies (13) and a unique optimal
response κ∗ (si) ≡ κ

(
Xi, si, F∗

i
)

associated with it.

An interesting special case is nested in this framework: if analysts are ambigu-
ity neutral, there is no dependence of analyst i’s posterior belief p̃ on Fi. Bayes’ rule
dictates that the posterior distribution of τy only depends on the magnitude of the
surprise, but not its sign. Therefore, the response to surprises in managerial guidance
should always be symmetric.
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4. Equilibrium Analysis

This section presents a set of equilibrium analyses corresponding to the empirical facts
documented in section 2. We demonstrate that the two basic model mechanisms (un-
certainty in quality and aversion to uncertainty) and their interaction can help account
for those empirical patterns.

4.1. Asymmetry

We first characterize the impacts of ambiguity aversion on analysts’ asymmetric re-
sponses to negative and positive surprises in managerial guidance. To state this for-
mally, let a pair of surprises be

(
s−i , s+i

)
, such that s−i < 0 < s+i and s−i + s+i = 0.

Proposition 2. If analysts are ambiguity averse, forecast revisions in response to surprises are
asymmetric. Specifically,

(
κ∗
(
s−i
)
− κ∗

(
s+i
))

β ≥ 0,

where the equality holds if and only if β = 0.

To illustrate this, consider the case where analysts are better off when the earnings
realization is high (i.e., β > 0). That is, analysts consider the news that suggests higher
realizations of earnings to be favorable.

Proposition 2 states that analysts would always be less responsive to positive sur-
prises (i.e., s+i , favorable news) than to negative surprises (i.e., s−i , unfavorable news).
The mechanism is as follows. In this model, analysts are uncertain about the quality
of the information source and, therefore, need to assess its quality based on the news
itself. Given that favorable news improves analyst i’s expected utility, she would be-
have with more caution (due to her ambiguity-averse preferences) and “discount” the
quality of favorable news. Conversely, given that negative surprises or unfavorable
news reduce her expected utility, she would “over-count” its quality, i.e., assign a high
probability density to models with high quality τy. Therefore, analyst i responds to
negative surprises to a larger extent than to positive surprises of the same magnitude,
that is, κ∗

(
s−i
)
> κ∗

(
s+i
)
.

4.2. Nonmonotonicity

Next, we show that the model also features a nonmonotonic relationship between
forecast revisions and surprises. Two key take-away messages are as follows. First,
the nonmonotonicity does not rely on ambiguity aversion but instead on ambiguity
(uncertainty) in quality. Second, in fact, the nonmonotonicity disappears when the
degree of ambiguity aversion becomes extreme. Proposition 3 formalizes the former,
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and proposition 4 characterizes the latter. To simultaneously capture both nonmono-
tonicity and asymmetry, neither ambiguity-neutral preferences nor extreme ambiguity
aversion is feasible.

Proposition 3. If analysts are ambiguity neutral (λ = 0), the optimal forecast revision F∗
i −

Xi increases in si conditional on surprise si being small in magnitude and decreases in si

conditional on surprise si being sufficiently large in magnitude. The forecast revision at the
individual level F∗

i − Xi is always symmetric around the origin.

Given that the quality of guidance is uncertain, analyst i updates her belief through
two mechanisms. First, for any given quality τy, analyst i updates her belief about the
earnings upon receiving the guidance. This mechanism dictates that positive (nega-
tive) surprises raise (suppress) forecasts. Second, she also updates her belief about
the distribution of quality. When the surprise is large, Bayesian analysts will as-
sign a higher probability density to low qualities. That is, they tend to believe that
large surprises are of low quality. Crudely, this is because low-quality information
sources would have fatter tails and be more likely to generate large surprises. In other
words, the posterior distribution of information quality given a small surprise first-
order stochastically dominates the posterior distribution given a large surprise. There-
fore, this mechanism implies that forecast revisions can be less responsive to surprises
when they are larger.

For small enough surprises, the second mechanism (i.e., updating the distribution
of quality) is less consequential, and therefore forecast revisions increase in surprises.
For large enough surprises, the second mechanism dominates the first, and, as a result,
forecast revisions decrease in surprises. Figure 4(a) illustrates this pattern that forecast
revisions decrease and increase and then decrease in surprises. The symmetry is trivial
given that analysts are Bayesian.

Now, we turn to the other polar cases: extreme ambiguity aversion (λ → +∞) or
the classic max-min criterion.

Proposition 4. If analysts have extreme degree of ambiguity aversion (λ → +∞), the optimal
forecast revision F∗

i − Xi is increasing in surprise si.

When surprises are relatively small in magnitude, the Bayesian mechanism dictates
that forecast revisions increase in surprises (Proposition 3). Furthermore, the ambigu-
ity aversion mechanism also dictates an increasing relationship. To see this and ease
exposition, we assume that Xi = 0. Then, analyst i tends to believe that negative sur-
prises are of higher (lower) quality than positive surprises of the same magnitude if
β > 0 (β < 0). Given that the ambiguity aversion is extreme, analysts believe that the
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Figure 4. Monotonicity and the degree of ambiguity aversion. Panel (a) illustrates the case where an-
alysts are ambiguity neutral. Forecast revisions are decreasing, increasing and decreasing in surprises.
Panel (b) illustrates the case where analysts have extreme degree of ambiguity aversion (λ → +∞).
Note that Xi = 0 and β > 0. Forecast revisions are increasing in surprises and asymmetric. Panel
(c) illustrates the case where analysts’ ambiguity aversion is moderate. Both asymmetry and nonmono-
tonicity are present.

quality of negative news is of the highest possible value and that of positive news is
of the lowest possible value if β > 0 and vice versa. Figure 4(b) illustrates the case
where Xi = 0, β > 0 and λ → +∞. In this case, analyst i with Xi = 0 believes that
negative surprises are of the highest quality and positive surprises are of the lowest
quality. Therefore, forecast revisions increase in surprises with a flatter slope when
surprises are positive and with a steeper slope when surprises are negative.

When surprises are very large in magnitude, the Bayesian mechanism dictates that
forecast revisions decrease in surprises (Proposition 3). However, this is dominated
by the impact of extreme ambiguity aversion. Therefore, forecast revisions always
increase in surprises, despite the sign of β.

In summary, the contrast of the two polar cases reveals (i) that ambiguity in guid-
ance quality gives rise to nonmonotonicity in surprises and (ii) that aversion to such
ambiguity leads to asymmetric responses to negative and positive surprises. Our
model of finite ambiguity aversion lies in between. Figure 4(c) illustrates the relation-
ship between forecast revisions and surprises when the degree of ambiguity aversion
is moderate. The optimal forecast revision is not monotonically increasing, which re-
sembles the case of ambiguity neutrality. Nevertheless, it is also asymmetric, which
resembles the case of extreme ambiguity aversion.

4.3. Overreaction and Ambiguity Aversion

Do ambiguity-averse preferences contribute to analysts’ overreaction to information
in our model and its asymmetrical and nonmonotonic pattern documented in section
2.3? We take two steps to analyze this question. First, we study a special case of
the model where analysts are ambiguity neutral (λ = 0) and show that analysts can
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either overreact or underreact to information in this model given the uncertainty in
guidance quality. It predicts heterogenous degrees of overreaction across analysts, but
the pattern is symmetric. Second, we illustrate how ambiguity aversion can amplify
the overreaction to information and skew such a distribution in a negative direction.

We start our investigation by constructing a theoretical counterpart of the FE-on-FR
coefficient, i.e., b1 in equation (1). Specifically, let

b̂1 ≡ Cov (FEi, FRi)

Var (FRi)
.

To construct a benchmark for overreaction and underreaction, recall the rational ex-
pectation case where analysts know the actual quality of guidance τY (discussed on
page 24) and the analyst’s response to surprises κRE is characterized by Bayes’ rule
(see Equation (8)). In this case, there is neither any overreaction nor any underreaction
to information.

Proposition 5. If analysts are ambiguity neutral (i.e., λ = 0), analysts may on average either
over- or underreact to information, depending on their prior beliefs p (si). That is,

sgn
{

b̂1

}
= sgn

{
κRE − Ê [κ (si)]

}
.

where Ê is an expectation operator under the adjusted belief p̂ (si),

Ê [κ (si)] ≡
∫

R
κ (si) p̂ (si)dsi; p̂ (si) ∝ Ω(si)p (si) ; Ω(si) ≡

κ (si) s2
i

E
[
κ (si) s2

i
] .

The term Ω(si) is an adjusted term for the transformed belief. If the average re-
sponse of analysts (i.e., Ê [κ (si)]) is higher than the rational expectation benchmark
κRE, analysts appear to be overreacting to information (i.e., b̂1 < 0); if it is lower than
κRE, analysts appear to be underreacting to information (i.e., b̂1 > 0).

A special case is nested in this proposition. Suppose that analysts believe the qual-
ity is one particular τy (different from τY). Then, their response to surprises would
be constant and not depend on surprises, and therefore the average response is such
that Ê [κ (si)] = κ, where κ = τy/

(
τθ + τz + τx + τy

)
. If analysts’ belief is such that

τY < τy, i.e., a prior belief consistent with the diagnostic belief (Bordalo, Gennaioli,
Ma, and Shleifer 2020) or overconfidence (Broer and Kohlhas 2022), then κRE < κ.
Therefore, analysts appear to be overreacting to information (i.e., b̂1 < 0). Suppose
that analysts know the quality of guidance τY; then, the distorted expectation Ê[κ] de-
generates to precisely κRE. This is consistent with the prediction that there is no over-
or underreaction in a rational expectation model, i.e., b̂1 = 0.
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Figure 5. Distribution of analysts’ responses to guidance. Panel (a) displays the cross-sectional distri-
bution of κ (si) when analysts are ambiguity neutral. Panel (b) displays the cross-sectional distribution
of κ (si) when analysts are ambiguity averse.

Observe that Ê depends on the prior belief about the information quality, i.e.,
p
(
τy
)
. Therefore, corresponding to various prior beliefs, analysts may either over- or

underreact to information. To illustrate this, consider one more special case in which
analysts entertain a set of possible models such that τy > τY for any τy ∈ Γy and
τY /∈ Γy. That is, the actual quality of guidance is lower than all the possible val-
ues in the analysts’ belief set. It is straightforward to show that κRE < Ê [κ (si)], and
therefore, all analysts overreact to information.

Interestingly, when analysts’ belief set includes the actual quality, i.e., τY ∈ Γy, it
may be the case that some analysts underreact to the guidance and others overreact
to it. In other words, our model predicts a cross-sectional distribution of analysts
who may over- and underreact to the same guidance. Figure 5(a) illustrates this case.
For analysts that receive surprises of a smaller magnitude from the guidance, they
tend to believe that the quality of guidance is relatively high and therefore react more
strongly to the news. For analysts who receive surprises of a larger magnitude from
the guidance, they tend to believe that the quality of guidance is relatively low and
therefore react less strongly to the news. The shaded area illustrates the fraction of
analysts that overreact to the guidance, and the remaining area represents the fraction
of analysts that underreact.

In general, the average response can be either higher or lower than κRE depending
on p

(
τy
)
. That is, if we regress forecast errors on forecast revisions at the analyst level,

we may conclude that the population on average over- or underreacts to information,
without noticing that some analysts overreact and others underreact to information.

Figure 5(b) illustrates the case when ambiguity-averse preferences are present in
the model. As predicted by proposition 2, if analysts are ambiguity averse, forecast
revisions in response to surprises are asymmetric, i.e., it skews the distribution in a
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negative direction, and analysts react even more strongly to new information when
it contains unfavorable news than when it contains favorable news. This is consis-
tent with our finding in section 2.3 that analysts’ overreaction to new information is
stronger when the managerial guidance is negative.

Combining these findings, the pattern emerging from our model indicates that for
very large and positive surprises, analysts overreact to them mildly or even underre-
act; that relative to positive surprises, analysts overreact more to negative ones; and
that for very large negative surprises, analysts overreact less strongly or even under-
react. The cross-sectional profile of overreaction present in our model is broadly con-
sistent with the empirical pattern illustrated by Figure 2.

5. Quantitative Analysis

While the patterns of asymmetry, nonmonotonicity and overreaction in our model
qualitatively correspond to their counterparts in the data, is the model indeed infor-
mative about the empirical findings? In this section, we further pursue a quantitative
analysis. We estimate the model using the simulated method of moments to match
the relationship between forecast revisions and surprises that is empirically estimated
in section 2.4. The estimated model will be interpreted and then used to revisit the
pattern of heterogeneous overreaction (documented in sections 2.2 and 2.3).

5.1. Connecting Theory to Data

In the model, we construct surprises in managerial guidances with the analyst’s pri-
vate information, i.e., si ≡ y − Xi, and implicitly assume its availability. However, in
our empirical setting, the econometrician cannot have access to private information
available to analysts and can only construct observable surprises with guidance and
initial forecasts, i.e., Si ≡ y − F0i.24 To directly relate the relationship characterized in
our model (section 3) to that in the data (section 2.4), we need to carefully distinguish
the two surprises. First, in our quantitative exercises, we construct and work with sur-
prises observable to the econometrician (i.e., Si) from our simulated data and estimate
the relationship between forecast revisions and surprises in the same way as we do
with the data. Second, we also show that, in our model, forecast revisions can be ex-
plicitly approximated by a cubic function of observable surprises in closed form. Our
model predictions for the signs of polynomial coefficients imply that forecast revisions
may decrease, increase and decrease in observable surprises and that the relationship
is asymmetric, a pattern that is consistent with our empirical findings. We relegate the
relevant characterization and discussion to Online Appendix A.

24The observable surprise to the econometrician is the sum of the surprise to the analyst and a noise
term. That is, Si = si +

τx
(τθ+τz+τx)

(xi − F0i).
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Furthermore, our model features a finite degree of ambiguity aversion, i.e., λ is in
the range (0,+∞). On the one hand, our analysis shows that the degree of ambiguity
aversion matters for qualitative predictions of the model. On the other hand, it is a
quantitative question how much ambiguity aversion is needed to generate a relation-
ship between forecast revisions and guidance surprises that is close to the data. We
uncover the degree of ambiguity aversion by estimating our model to match moments
in the empirical relationship estimated nonparametrically from the data (section 2.4).
Various quantitative exercises using this estimated model will reveal the roles of key
mechanisms, such as ambiguity averse preferences and prior beliefs.

5.2. Estimation

The model characterized in section 3.1 is fully specified by two sets of parameters and
one distribution. First, two parameters characterize the preferences of analysts, i.e.,
ambiguity aversion λ, and analysts’ attitude toward earnings β.

Second, there is a set of volatilities, i.e., the objective volatility of earnings σθ, the
objective volatility of managerial guidance σY, the volatility of initial endowed in-
formation about earnings before the initial forecast σz, and the volatility of private
information σx.

Third, the analysts’ prior belief about guidance quality p
(
τy
)

defined in section
3.1 also needs to be specified. We assume that the ratio δ ≡ τy/(τθ + τz + τx + τy)

is a uniform distribution over [L, U], where 0 ≤ L < U ≤ 1. The advantage of this
transformation is that we can entertain the possibility that τy is very large, without
dealing with a very wide support for τy, which economizes our computation. The
upper bound U (lower bound L) regulates the perceived largest (smallest) possible
precision for managerial guidance.

To estimate the set of parameters Θ = {λ, β, L, U, σθ, σx, σY, σz}, we follow Cher-
nozhukov and Hong (2003) in computing Laplace type estimators (LTE) with an MCMC
approach, and the “distance” between the empirical and simulated revision-surprise
relationships is constructed in the fashion of the method of simulated moments.

To define the distance, we first choose N = 50 equally spaced points for surprises
between [−0.025, 0.03], within which the empirical relationship (nonparametrically es-
timated in section 2.4) decrease, increase and then decrease. Then, we derive the corre-
sponding values of forecast revisions from the estimated revision-surprise relationship
and denote them with the vector m̂. We further construct the vector m, i.e., the model
counterpart of m̂, which is estimated by using our simulated dataset. Specifically,
for each set of model parameters, we simulate our model and estimate the revision-
surprise relationship with the same nonparametric regression as for the empirical data
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Table 3. Estimated Model Parameters

Mean 90% HPDI 95% HPDI

λ 449.9 (411.9, 504.0) (379.5, 504.2)
β 1.379 (0.773, 1.971) (0.694, 2.092)
U 0.772 (0.676, 0.855) (0.674, 0.875)
L 0.082 (0.036, 0.119) (0.030, 0.121)

100σx 0.472 (0.332, 0.593) (0.305, 0.625)
100σz 0.186 (0.140, 0.234) (0.137, 0.240)
100σY 0.435 (0.416, 0.453) (0.411, 0.453)

(see section 2.4). We then obtain the vector m from the estimated relationship between
forecast revisions and surprises observable to the econometrician. The distance that
we construct is:

Λ(Θ) =
1
N

[m (Θ)− m̂]′ Ŵ [m (Θ)− m̂] .

where N = 50 is the length of the vector of targeted moments m̂ and Ŵ is the weighting
matrix with diagonal elements being the precision of moments m̂. Our goal is to choose
model parameters to “minimize” the distance Λ(Θ) in a pseudo Bayesian manner by
using MCMC with the Metropolis-Hastings algorithm.

A few remarks regarding the simulation procedure are in order. First, we choose
σθ, i.e., the standard deviation of θ, to exactly match the empirical counterpart of an
unconditional standard deviation of realized earnings (after removing the firm and
time fixed effects). As a result, the calibrated value of 100σθ is 0.985. Second, when
we simulate the model, we feed surprises (to the econometrician) uncovered from
the empirical data into our simulation. We recover the corresponding surprises to
the analysts and then obtain updated forecasts by using decision rules in our model.
Third, in this model, the unconditional volatility of surprises to the econometrician
is determined by both σY and 1/σ2

θ + 1/σ2
z . We directly estimate 1/σ2

θ + 1/σ2
z in the

estimation and back out σY by requiring that the unconditional volatility of surprises
matches its empirical counterpart, an internal consistency condition for our estimation
strategy.

The estimated parameters are reported in Table 3 together with the 90% and 95%
high posterior density interval (HPDI). The relative magnitude of the estimated volatil-
ities appears to be reasonable. The volatility of private information is larger than that
of earnings. The managerial guidance is much more precise than the private informa-
tion. This is likely because there may not be much private information that arrives
during the time window that we construct (i.e., between the two forecasts around the
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Figure 6. The revision-surprise relationship nonparametrically estimated with simulation data. We
simulate the model with the set of parameters reported in Table 3 and, in particular, λ = 449.9. The
dashed line in panel (a) illustrates the revision-surprise relationship estimated with simulation data.
The empirical counterpart (i.e., the solid line) and its confidence interval (i.e., the shaded area) are also
plotted for comparison. Panel (b) illustrates the derivative of the revision-surprise relationship with the
dashed line. Its empirical counterpart is illustrated with the solid line.

date of managerial guidance release). Based on this set of parameters, the response
of forecast revisions to surprises under noisy rational expectation (i.e., κRE) is 0.132.
The upper bound for the subjective belief on managerial guidance precision is 0.772,
and the lower bound is 0.082. The support is large enough to allow sufficient ambigu-
ity and encompass κRE. The degree of ambiguity aversion is the key, and its value is
estimated to be λ = 449.9.

Furthermore, the parameter β that characterizes the utility function is estimated to
be positive (i.e., slightly larger than 1), indicating that analysts are likely to care about
the earnings performance of firms that they cover. Prior empirical studies suggest that
it is plausible that β is positive. There are multiple channels through which finan-
cial analysts would benefit from better earnings performance of the firms that they
cover and therefore view positive surprises in managerial guidance as favorable. For
example, stronger earnings performance can be rewarding to financial analysts who
make earnings forecasts and recommendations for the underlying stocks through the
trading commissions channel.25

Using this set of estimated parameters, we simulate the model and nonparamet-
rically estimate the revision-surprise relationship with the simulation data. In Figure
6(a), we display the relationship, together with its empirical counterparts (previously

25One goal of financial analysts is to generate stock trading and bring in trading commissions to
the brokerage houses for which they work. Analysts’ positive recommendations, based on earnings
expectations, are more likely to generate a larger trading volume that, in turn, is beneficial for the
analysts. Barber and Odean (2008) provide evidence that investors are more likely to follow analysts’
positive recommendations (i.e., “buy-type”) and tend to be net buyers.

33



Table 4. Regress Forecast Errors on Forecast Revisions and Regress Forecast Revisions on Surprises

(1) (2) (3) (4)

Coff. Data λ = 449.9 λ = 0 λ → ∞

(A) FEi = b0 + b1FRi + ωi b1 −0.0950∗∗∗ −0.4603∗∗∗ −0.4387∗∗∗ −0.6938∗∗∗

(−0.4686,−0.4512) (−0.4475,−0.4304) (−0.6998,−0.6882)

(B) FRi = b0 + b1Surpi + ωi b1 0.2441∗∗∗ 0.3007∗∗∗ 0.2917∗∗∗ 0.4391∗∗∗

(0.2992, 0.3020) (0.2903, 0.2932) (0.4366, 0.4423)

(C) FRi = b0 + b1Surpi + b2Unfi + b3Surpi × Unfi + ωi b1 0.1405∗∗∗ 0.2159∗∗∗ 0.2537∗∗∗ 0.1056∗∗∗

(0.2126, 0.2190) (0.2505, 0.2569) (0.1034, 0.1079)

b3 0.0846∗∗∗ 0.0914∗∗∗ −0.0001 0.6669∗∗∗

(0.0864, 0.0957) (−0.0042, 0.0048) (0.6644, 0.6690)

(D) FRi = b0 + b1Surpi + b2Largei + b3Surpi × Largei + ωi b1 0.4707∗∗∗ 0.3565∗∗∗ 0.3459∗∗∗ 0.4391∗∗∗

(0.3550, 0.3584) (0.3441, 0.3476) (0.4365, 0.4417)

b3 −0.2674∗∗∗ −0.0697∗∗∗ −0.0677∗∗∗ 0.0000
(−0.0719,−0.0672) (−0.0699,−0.0654) (−0.0032, 0.0031)

*** p<0.01, ** p<0.05, * p<0.1. In columns (2), (3) and (4), we report the average of point estimates and a 99% high posterior density
interval (HPID) in the bracket (calculated based on the posterior distribution of point estimates for N = 1000 estimations). For each
simulation, there are 101,086 observations of analysts, and the size is consistent with our data.

shown in Figure 3(a)). In Figure 6(b), we illustrate its implied derivative with respect
to surprises. Our model can successfully capture both features of nonmonotonicity
and asymmetry.

The estimated value of λ is not too high or too low, indicating that neither extreme
ambiguity aversion (λ → +∞) nor ambiguity-neutral preferences (λ = 0) would be
realistic for analysts in this setting. To illustrate this, we simulate the model N = 1000
times, and in each simulation there are 101,086 observations of analysts (i.e., the size
is consistent with our empirical data). In each simulation, we estimate equations (A),
(B), (C) and (D) in Table 4, which are counterparts of equations (1), (2), (3) and (4) in
sections 2.2 and 2.4.26 For comparison, we repeat the aforementioned exercises twice
with the same set of parameters, except allowing λ to be 0 or +∞. Then, we estimate
equations (A), (B), (C) and (D) with the two additional datasets. We report the average
of the point estimates from each simulation and its 99% high posterior density interval
(HPID) in columns (2), (3) and (4), corresponding to λ = 449.9, λ = 0 and λ → ∞,
respectively. We reproduce the estimates from the data in column (1).

Column (2) shows that the average response of forecast revisions to surprises in our
estimated model (the coefficient on b1 in equation (B)) is fairly close to that in the data.
Our model can also generate differential responses to positive and negative surprises,
as well as to large and small surprises. That is, both interaction terms in equations (C)
and (D) are highly significant. In other words, our estimated model is consistent with
the empirical results obtained using linear regressions.

26For this purpose, we do not need to use the surprises revealed in the data to simulate the model.
Instead, we resample them for each simulation.
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Column (3) presents the results when λ = 0. It is evident that the revision-surprise
relationship is symmetric, i.e., the interaction term in equation (C) is almost zero and
insignificant. However, the size of surprises matters for the response of forecast re-
visions to surprises, i.e., the interaction term in equation (D) is highly significant and
negative.

Column (4) presents the results when λ → ∞. It is evident that the revision-
surprise relationship is asymmetric, i.e., the interaction term in equation (C) is pos-
itive and significant. However, the size of surprises does not matter for the response
of forecast revisions to surprises, i.e., the interaction term in equation (D) is zero and
insignificant.

In sum, to simultaneously capture both qualitative features of nonmonotonicity
and asymmetry, we do need a moderate amount of ambiguity aversion.

5.3. Heterogeneous Overreaction and Ambiguity Aversion

In this section, we examine whether our estimated model can produce the pattern of
heterogeneous overreaction found in the data (in section 2.3). To investigate this, we
utilize the simulated data and construct the surprises observable to the econometrician
in the same way as we do with the empirical data. We rank surprises from the most
negative to the most positive and sort them into deciles, labelling them from 1 to 10
according to the decile rank. We further define a running decile window j, such that
(1) the window j covers decile j − 1, j, and j + 1 if j ̸= 1 or j ̸= 10; (2) running decile
window 1 covers deciles 1 and 2; and (3) running decile window 10 covers deciles
9 and 10. For each subsample, we re-estimate equation (A). We plot the estimated
coefficients and confidence intervals in Figure 7 against their window ranks. In the
simulated data, we find that the pattern of heterogeneous overreaction is U-shaped
and skewed to the left, which is consistent with our model predictions in section 4.3
and also close to the pattern in the empirical data (Figure 2).

While our model can predict the pattern of cross-sectional variation in overreac-
tion, can it also produce overreaction to information at the aggregate level? To ex-
amine the average extent of overreaction implied by the estimated model, we first
estimate the regression specified in equation (A) (in Table 4) with our simulation data
(λ = 449.5). It is the counterpart of equation (1) in section 2.2. We contrast the results
from the empirical and simulated data in columns (1) and (2) of Table 4, respectively.
All of the reported coefficients from our simulate data are highly significant. In regres-
sion (A), we observe that the estimated coefficient on b1 is negative and significantly
different from zero, indicating that analysts do, on average, indeed overreact to infor-
mation in our model, even though it is not targeted in the estimation.
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Figure 7. Overreaction by surprise deciles with simulated data. Using simulated data, we report the
estimated coefficients of the FE-on-FR regressions b1 for each running decile window, and we plot them
against the window rank. Running decile window j covers decile j − 1, j, and j + 1 if j ̸= 1 or j ̸= 10;
running decile window 1 covers deciles 1 and 2, and running decile window 10 covers deciles 9 and 10.

Why is it the case that analysts overreact to information in our estimated model?
Recall that analysts act as if their posterior beliefs are governed by equation (12). It
has two key components: a Bayesian kernel and pessimistic distortion, both of which
contribute to the observed overreaction.

To illustrate the role of prior beliefs and ambiguity averse preferences, we simulate
the model by varying the prior distribution of τy or, specifically, the upper bound of
the prior belief U (defined in section 5.2) from a value larger than the lower bound L to
1, while we keep other parameters unchanged. Recall that the distribution of τy is such
that the ratio δ ≡ τy/(τθ + τz + τx + τy) is a uniform distribution over [L, U], where
0 ≤ L < U ≤ 1. A higher U implies that a larger fraction of probabilistic density in
the prior belief is allocated to the right of the objective quality τY, corresponding to a
situation where analysts are more likely to overestimate the quality of guidance.

We re-estimate regression (A) for each simulation and plot the average value of
estimated coefficients for b1 against the corresponding upper bound U. The solid line
in Figure 8 illustrates the relationship: when U is small, the estimated coefficients on
b1 are small in magnitude; when U is large, they are negative and larger in magnitude.
This is intuitive: when analysts’ prior belief is such that the guidance is, on average,
more precise than it actually is, they overreact.

We repeat the same exercise by using simulation data that sets λ = 0 and plot
the counterpart in Figure 8 with the dashed line. The contrast between the cases of
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Figure 8. Ambiguity aversion and prior beliefs. The solid line illustrates the relationship between
estimated coefficients b1 and the upper bound of the prior belief, i.e., U. The dashed line corresponds to
the case where λ = 0. For the same value of U, a larger degree of ambiguity aversion leads to a larger
overreaction. The vertical dashed line indicates the value of U in our benchmark estimation.

λ = 0 and λ = 449.5 shows that ambiguity-averse preferences indeed contribute to
the overreaction. For the same prior belief (represented by U here), analysts tend to
overreact more when they are ambiguity averse.

The comparison of the results with and without ambiguity aversion reveals mech-
anisms that drive the overreaction to information in this model. First, the prior belief
p(τy) plays a role in the observed overreaction: the estimated prior allocates a suffi-
ciently large density to the right of objective quality τY. That is, our structural estima-
tion shows that analysts tend to overreact to information even without the distortion
of ambiguity aversion preferences. Such an estimated prior is hardly surprising: it can
be interpreted as a version of diagnostic belief (Bordalo, Gennaioli, Ma, and Shleifer
2020) or overconfidence (Broer and Kohlhas 2022) in the context that model uncer-
tainty exists.27

Second, the ambiguity aversion (or pessimistic distortion) also contributes to the
observed overreaction. On the one hand, analysts may overreact to information be-
cause they treat unfavorable surprises as higher quality news than they actually are.
On the other hand, analysts may underreact to information because they discount the
quality of large surprises more heavily. In this estimated model, we observe that the
former dominates the latter, because large surprises by definition account for only a

27Put it crudely, analysts may appear to be over-reacting to information in managerial guidance,
when they allocate higher probabilistic density in their posterior beliefs to the states of the world where
the managerial guidance’s quality is higher than its objective value τY. Conversely, analysts may appear
to be under-reacting to information in managerial guidance, when they allocate lower probabilistic
density in their posterior beliefs to such states.
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smaller fraction of the sample.

We need to stress that this model does not have a priori about the aggregate level of
overreaction and only predicts the cross-sectional pattern. While the aggregate level
of overreaction has been documented and studied by a number of aforementioned
contributions, we discover and rationalize heterogeneous overreactions to shocks of
different properties, which is one step further from the existing literature.

5.4. Auxiliary Predictions

In this paper, we provide a theory about how the expectation is formed when forecast-
ers are not completely certain of the quality of the information that they receive. Our
theory organizes a number of facts that we document with the earnings forecasts data.
Our underlying assumption is that firms’ earnings guidance is of uncertain quality.
However, the extent of uncertainty is likely heterogenous across firms. For example,
there should be established firms with a good reputation whose managerial guidance
is of high quality and analysts have little doubt about its quality.

For firms with low or no uncertainty in earnings guidance quality, our theory pre-
dicts that analysts’ forecast revisions should be close to linear in guidance surprises,
i.e., the relationship is monotonic and symmetric. That is because once the uncertainty
in quality has been removed, analysts only update their beliefs based on the guidance
and do not need to update their beliefs on the quality.

There is a conceptual hurdle to testing this auxiliary prediction with our data: the
perceived uncertainty in guidance quality is not observable and therefore not measur-
able. To circumvent this issue, we proxy for it with the observed average quality in the
data, i.e., the ex post variance of the differences between guidance and actual earnings
in the data. Our assumption is that the perceived uncertainty in quality is low if the
observed average quality is high.

We construct a subsample that only includes firms that deliver very precise earn-
ings guidance whose uncertainty with respect to quality is supposed to be low. The
first step is to rank firms in terms of their average guidance quality. Our full sample of
110,895 individual analyst forecasts consists of 16,241 firm-quarter observations, based
on which we trim realized earnings and management guidance (both scaled by the
stock price at the prior-quarter end) at the 2.5% and 97.5% percentiles of their respec-
tive distributions. With the remaining 15,427 firm-quarter observations, we regress
management guidance on the realized earnings of the same quarter by controlling for
year-quarter fixed effects to obtain the residuals. We drop firms present for fewer than
5 quarters, which reduces the sample to cover 1,035 firms. Then, we compute the stan-
dard deviations of the residuals for each remaining firm and sort those firms according
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Figure 9. Nonparametric estimation using a subsample with the top 5% of firms in terms of guidance
precision. Panel (a) illustrates the relationship between forecast revisions and surprises in managerial
guidance that is nonparametrically estimated using the Epanechnikov kernel and the third degree of
the smoothing polynomial. The shaded areas represent the 95% confidence intervals for the respective
estimations. Panel (b) illustrates the derivative of forecast revisions with respect to surprises.

to the calculated standard deviations. Second, we focus on the top 5% of firms with the
highest average guidance quality and construct a corresponding subsample of 2,521
individual analyst forecast revisions and guidance surprises.

Using this subsample, we nonparametrically re-estimate the relationship between
forecast revisions and guidance surprises by following the same procedure as detailed
in section 2.4. The results are shown in Figure 9(a). The relationship between forecast
revisions and surprises is almost linear, unless the surprises are relatively very large
and positive. The derivative estimated and shown in Figure 9(b) is close to a constant
when the surprises are not too large, thus contrasting with the derivative estimated
using the full sample (shown in Figure 3(b)). This exercise strengthens our confidence
in our model mechanisms. Furthermore, it helps us stress that uncertainty in informa-
tion quality does have an impact on how analysts update their beliefs.

6. Discussions on Alternative Hypotheses

In this paper, we provide a simple unified framework to account for new facts re-
garding how analysts update their forecasts or form expectations. It is important that
our estimated model can generate the skewed U-shaped pattern of overreaction that
is consistent with the data. This paper is the first that discovers and rationalizes this
set of facts in the literature of expectation formation. Nevertheless, we acknowledge
that there could be other mechanisms that simultaneously contribute to the observed
patterns. We examine several likely candidates in sequence, which helps differentiate
our theory from those in the existing literature.
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6.1. Diagnostic Expectations and Over-confidence

Bordalo, Gennaioli, Ma, and Shleifer (2020) show that forecasters with diagnostic ex-
pectations over-react to new information at the individual level. Diagnostic expec-
tations proposed by Bordalo, Gennaioli, and Shleifer (2018) is a non-Bayesian model
of belief formation that formalizes representativeness heuristic (Kahneman and Tver-
sky 1972): agents overweight states that are more likely in light of the arrival of new
signals. As a consequence, agents over-react to new information when forming expec-
tations. Specifically, agents update their beliefs using the following distorted posterior
density f ψ (θ|Iit):

f ψ (θ|Iit) ∝ f (θ|Iit)

(
f (θ|Iit)

f (θ|Iit−1)

)ψ

where f (θ|Iit) denotes the Bayesian posterior density and the constant ψ ≥ 0 mea-
sures the extent to which the posterior of agents with diagnostic expectations are dis-
torted away from Bayesian benchmark. When ψ = 0, the model with diagnostic expec-
tations reduces to the noisy information benchmark. Observe that Rt (θ) ≡ f (θ|Iit)

f (θ|Iit−1)

measures the representativeness of the new information defined as the gap between
Iit and Iit−1. When ψ > 0, the distorted posterior belief overweights states θ featuring
Rt (θ) ≥ 1, which leads to overreaction to the arrival of new information (Bordalo,
Gennaioli, Ma, and Shleifer 2020).

In this section we investigate the optimal forecasting rule in a setting where we
allow for diagnostic expectations in the benchmark model specified in section 3.2. In
this case, the optimal initial and updated forecasts are given by:

FDE
0i = E [θ|z0i] + ψ (E [θ|z0i]− E [θ]) ,

and

FDE
i = E [θ|z0i, xi, y] + ψ (E [θ|z0i, xi, y]− E [θ|z0i]) ,

where E [θ|Ii] denotes the conditional expectations (i.e., Bayesian posterior). As a
consequence, forecast revisions under diagnostic expectations are given by:

FRDE
i = (1 + ψ) κRE

(
y − FDE

0i

)
+ (1 + ψ) κx

(
x − FDE

0i

)
+ ψ

[(
κx + κRE

)
− 1

1 + ψ

]
FDE

0i ,

(16)

where κx ≡ τx
τθ+τz+τx+τY

> 0 and κRE ≡ τY
τθ+τz+τx+τY

> 0 are the respective weights for
the private and public information in the noisy information benchmark. Similar to the
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noisy information benchmark, the term y − FDE
0i is the theoretical counterpart to the

manager guidance surprises in our empirical exercise. Observe that the relationship
between forecast revisions and surprises in Equation (16) remains linear and state-
independent.

Broer and Kohlhas (2022) show that over-confidence can help rationalize over-
reaction documented with SPF data, in which they assume that forecasters subjectively
believe that new signals are more precise than they actually are. Interestingly, once
we allow for such behavioral feature in the noisy information benchmark specified in
section 3.2, the FR-on-Surprise relation is still linear, while overreaction to new infor-
mation appears. To see this, specifically we assume that analysts subjective believe
that η ∼ N

(
0, 1/τ̄y

)
such that τ̄y > τY and derive the relationship between forecast

revisions and surprises as follows:

FROC
i ≡ FOC

i − F0i = κ̄y (yi − F0i) + κ̄x (xi − F0i) ,

where κ̄x ≡ τx
τθ+τz+τx+τ̄y

> 0 and κ̄y ≡ τ̄y
τθ+τz+τx+τ̄y

> 0.

Corollary 1: If forecast revisions are linear in surprises, forecast errors are linear
in forecast revisions, or the degree of overreaction does not depend on realizations of
surprises.

When forecast revisions are linear in surprises, it must be the case that both forecast
errors and forecast revisions are linear in Gaussian noises. Such a property implies
that COV(FE,FR)

V(FR) can be zero or a non-zero constant but is always independent of the
realizations of surprises.

6.2. Loss Aversion

Another plausible conjecture is that analysts are loss-averse, which may also likely
generate the empirical pattern documented in section 2.4, given that they behave in a
pessimistic way. To investigate this possibility, we consider two commonly used speci-
fications of loss aversion: one parsimonious setup with analytical solutions (Capistrán
and Timmermann 2009) and another flexible setup with more quantitative potentials
(Elliott, Komunjer, and Timmermann 2008, Elliott and Timmermann 2008). In this
section, we show that (1) the parsimonious setup predicts a linearly increasing rela-
tion between forecast revisions and surprises and that (2) the flexible setup predicts a
monotone increasing relation between forecast revisions and surprises.
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The Parsimonious Setup. We follow Capistrán and Timmermann (2009) and specify
the loss function of analysts to be:

L (Fi, θ; ϕ) =
1

ϕ2 [exp (ϕ (θ − Fi))− ϕ (θ − Fi)− 1] ,

where Fi stands for the forecast of analyst i and the parameter ϕ is a constant that
captures asymmetries in the loss function. If ϕ > 0, analysts dislike negative forecast
error θ − Fi < 0 more than positive forecast error θ − Fi > 0. If ϕ goes to zero, the loss
function is reduced to the standard MSE function. Information structure is the same
as that of the noisy information benchmark.

Analyst i chooses the optimal forecasts FL
i to minimax the loss function conditional

on her information set, which leads to her decision rule:

FL
i = Ei [θ]−

1
2

ϕVari [θ] .

Relative to the noisy information expectations benchmark (ϕ = 0), the loss-averse an-
alyst i (ϕ > 0) would like to inflate the forecast errors and bias her forecast downward
by 1

2 ϕVari [θ].

Accordingly, the initial optimal forecast is given by:

FL
0i = E [θ|z0i]−

1
2

ϕVar [θ|z0i] =
τz

τθ + τz
z0i −

1
2

ϕ
1

τθ + τz
.

and the updated optimal forecast is given by:

FL
i = E [θ|z0i, xi, y]− 1

2
ϕVar [θ|z0i, xi, y] =

τzzi + τxxi + τYy
τθ + τz + τx + τY

− 1
2

ϕ
1

τθ + τz + τx + τY
.

Therefore, the forecast revision is such that

FRL
i ≡ FL

i − FL
0i = κy

(
y − FL

i0

)
+ κx

(
xi − FL

i0

)
. (17)

where κx ≡ τx
τθ+τz+τx+τy

> 0 and κy ≡ τY
τθ+τz+τx+τy

> 0 are the relevant weights for the
private and public information under noisy information benchmark. Observe that the
relation between forecast revisions and guidance surprises are still linear.

The Flexible Setup. Following Elliott, Komunjer, and Timmermann (2008) and El-
liott and Timmermann (2008), we specify the loss function of analysts to be:

Lp (Fi, θ; α) = [α + (1 − 2α) 1 {θ − Fi < 0}] |θ − Fi|p , (18)
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where 1 {·} denotes an indicator function, the parameter α ∈ (0, 1) is a constant cap-
tures asymmetries in the loss function, and the parameter p ≥ 1 is another constant
that controls the curvature of the loss functions.

This specification of loss function is flexible and can be reduced to many commonly
used loss functions in the literature (as shown in Elliott, Komunjer, and Timmermann
2008 and Elliott and Timmermann 2008). For example, if α = 1

2 the loss function is
symmetric. It can be further reduced to the standard MSE loss function if p = 2 or
mean absolute error function if p = 1. In particular, when α < 1

2 , negative forecast
error (θ − Fi < 0) disproportionately induces more loss than positive forecast error
(θ − Fi > 0), indicating that analysts are loss averse.

For the ease of exposition, we focus our analysis on the parameter space that p = 2,
that is, the loss function is of a generalized MSE form. However, it is noted that all
results presented below can be extended to the general case that p ≥ 1.

Analyst i chooses the optimal forecasts FL
i to minimax the loss function conditional

on her information set. Implicitly, her optimal decision rule is characterized by:

∫ +∞

−∞

(
θ − FL

i

)
f (θ|Ii)dθ +

1 − 2α

α

∫ FL
i

−∞

(
θ − FL

i

)
f (θ|Ii)dθ = 0, (19)

where f (θ|Ii) denotes the posterior density of the fundamental θ with respect to the
information set Ii.

It is worth noting that when α = 1
2 (i.e., the loss function is symmetric), only the

first term of the LHS of (19) is relevant. Therefore, the optimal forecast is just the
conditional expectation as in the noisy information setup:

∫ +∞

−∞

(
θ − FL

i

)
f (θ|Ii)dθ = 0 ⇒ FL

i = E [θ|Ii] .

where E [θ|Ii] denotes the conditional mean under Bayesian posterior.28

Furthermore, observe that the second term of the LHS of (19) is negative if and only
if analysts are loss averse (α < 1

2 ). Therefore, as in the parsimonious setup, loss averse
analysts would like to inflate the forecast errors by biasing their forecasts downwards

FL
i < E [θ|Ii] .

Proposition 6. With the flexible specification of the loss function (18), forecast revisions are
globally monotone in surprises.

28For the general case p ≥ 1, the same result holds. Intuitively, as long as the information structure is
symmetric, any symmetric loss function implies that optimal forecasts are the conditional expectations
(Bhattacharya and Pfleiderer 1985).
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To understand this lemma, we note that a sufficient condition for the global mono-
tonicity is that the optimal forecast FL

i is globally monotone in signals. According to
(19), the optimal forecasts can be written as the summation of the Bayesian posterior
mean and a bias:

FL
i = E [θ|Ii]︸ ︷︷ ︸

Bayesian

+
1 − 2α

α

∫ FL
i

−∞

(
θ − FL

i

)
f (θ|Ii)dθ︸ ︷︷ ︸

Bias

. (20)

In the proof of Lemma 6, we demonstrate that both the Bayesian posterior mean and
the bias are increasing in signals of the fundamental θ, which is the same as the parsi-
monious setup. Though the FR-on-Surprise relation can be non-linear in this case, it is
still globally monotone, which is still inconsistent with the documented non-monotone
FR-on-Surprise relation in section 2.4.

6.3. Dynamic models.

Using the Survey of Professional Forecasters (SPF), Kohlhas and Walther (2021) show
that forecasters’ expectations overreact to recent realizations of the output growth and
therefore display a pattern of extrapolation. To explain this, they propose a model
of “asymmetric attention”, where Bayesian agents pay more attention to the procycli-
cal component and less attention to the countercyclical component. Afrouzi, Kwon,
Landier, Ma, and Thesmar (2022) design an experiment where participants who ob-
serve a large number of past realizations of a given AR(1) process make forecasts about
future realizations. They show a pattern of overreaction, i.e., the perceived persistence
of the AR(1) process is larger than the actual persistence. They propose a “top-of-
mind”model, where agents rely excessively on or overreact to the recent realizations,
relative to the rational benchmark.

In our empirical setting, both initial and updated forecasts are made within the
same period, which encompass the earnings guidance for the current period. We use
the variations of surprises contained in the earnings guidance across analysts to ex-
plore impacts of surprises’ characteristics on forecast revisions. Dynamic models such
as Kohlhas and Walther (2021) and Afrouzi, Kwon, Landier, Ma, and Thesmar (2022)
are not informative about the cross-sectional heterogeneity of overreaction.

To illustrate, recall that we show in section 2.2 that earnings in the last quarter
cannot predict forecast errors conditional on forecast revisions (see Table 1). How do
forecast errors react to earnings in the last quarter without controlling forecast revi-
sions? We run a regression of forecast errors (i.e., analyst i’s forecast error in quarter
t for firm j) on earnings in the last quarter (quarter t − 1 and firm j) with a full set of
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Table 5. Forecast Errors, Forecast Revisions and Earnings in the Last Quarter

Outcome Variable: in Quarter t for Firm j, analyst i’s

Forecast Errors Forecast Revisions

1% and 99% 2.5% and 97.5% 1% and 99% 2.5% and 97.5%

(1) (2) (3) (4)

Earnings in the Last Quarter (t − 1) 0.0008 -0.0010 -0.0048 -0.0058
(0.0070) (0.0049) (0.0066) (0.0053)

Surprisei 0.1468*** 0.2445***
(0.0125) (0.0128)

Constant -0.0000 0.0001** -0.0009*** -0.0004***
(0.0001) (0.0001) (0.0001) (0.0001)

Quarter FEs YES YES YES YES
Analyst FEs YES YES YES YES
Firm FEs YES YES YES YES
Obs. 110,895 110,895 110,895 110,895
Adj. R-sq 0.2341 0.2202 0.3943 0.4588

The standard errors are clustered on firm and calendar year-quarter following (Petersen 2009).
*** p<0.01, ** p<0.05, * p<0.1

fixed effects as in equation (1). We report the estimation results in Table 5. Column
(1) shows that the estimated coefficient is very small and insignificant, suggesting that
earnings in the last quarter cannot predict analysts’ forecast errors. To ensure robust-
ness, we winsorize the FEijt and the last quarter earnings at 2.5% and 97.5% of their
respective distributions and re-estimate equation (1). We report the results in column
(2), which are consistent with those in column (1). This result is in contrast with both
Kohlhas and Walther (2021) and Afrouzi, Kwon, Landier, Ma, and Thesmar (2022).

Furthermore, in this setting, we predict that forecast revisions would not be af-
fected by earnings in the last quarter. To confirm this, we add earnings in the last
quarter to equation (2) and re-estimate it. The results are reported in columns (3) and
(4) of Table 5 for different levels of winsorization. The estimated coefficient on earn-
ings in the last quarter is very small and insignificant, suggesting that they do not
affect analysts’ forecast revisions in the current period either.

This set of results is intuitive: the initial forecast in this setting absorbed informa-
tion contained in earnings in the last quarter, which do not impact forecast revisions
that take place in the current quarter. Therefore, forecast revisions reflect the impact of
earnings guidance, instead of the impact of earnings in pervious quarters. By contrast,
in studies using SPF data, “initial forecasts” for a random variable xt+k in period t + k
are made in period t − 1 and “updated forecasts” are made in period t after observing
the current realization of the variable xt.

6.4. Agency issues

This empirical setting is new to the literature and informative about expectation for-
mation. However, one may worry about the role of agency issues between analysts
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Table 6. Guidance Quality and Negativity

Outcome Variable: Absolute Difference between Guidance and Earnings

Sample: Full Exclude Conforming

1% and 99% 2.5% and 97.5% 1% and 99% 2.5% and 97.5%

(1) (2) (3) (4)

Negative Guidance 0.0012*** 0.0008*** 0.0010*** 0.0003
(5.1339) (3.7038) (3.1044) (1.2632)

Constant 0.0050*** 0.0048*** 0.0057*** 0.0056***
(35.1519) (38.5143) (26.4874) (30.2028)

Quarter FEs YES YES YES YES
Firm FEs YES YES YES YES

Observations 15,528 15,528 13,476 13,500
Adjusted R-squared 0.6105 0.5395 0.6151 0.5428
Notes: The observation numbers in columns (3) and (4) vary because the numbers of conforming
cases vary due to Winsorization. The standard errors are clustered on firm and year-quarter. ***
p<0.01, ** p<0.05, * p<0.1.

and the managerial teams who might have incentives to misrepresent information.
Managers could have both incentives to overstate or understate information related to
earnings (discussed below). In fact, that is one of the crucial factors underlying our
assumption that the quality of managerial guidance is uncertain. Nevertheless, we
examine two such likely mechanisms, respectively.

Skewed information reliability. In the literature, it is often shown that managers
spin information in self-serving ways to cater to investors and analysts (e.g. Solomon
2012). Given managerial guidance is an important information protocol provided by
managers, it is reasonable to conjecture that managers have an incentive to bias their
guidance positively, which makes positive managerial guidance less reliable than neg-
ative managerial guidance. This skewed information reliability, if exists, may lead to
the asymmetry we documented.

It is empirically testable whether positive guidance is of lower quality on aver-
age.29 We regress a measure of guidance quality on guidance negativity and report
the results in Table 6. Specifically, the dependent variable is the absolute difference be-
tween managerial guidance and actual realized earnings per share for firm i in quarter
t, scaled by the stock price at the beginning of quarter t. The independent variable of
our interest, Negative Guidance, is an indicator, which is equal to 1 if the managerial
guidance is smaller than the median of individual analysts’s initial forecasts before
guidance, and 0 otherwise. We control for firm and calendar year-quarter fixed effects
so that the results cannot be explained by any time-invariant firm characteristics and

29We thank one anonymous referee for providing the idea of testing this conjecture.
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across-quarter differences.

Column (1) reports the regression results based on the full sample of 15,528 firm-
quarter observations, while column (2) presents results of the same specification ex-
cept that we winsorize the managerial guidance and the difference between guidance
and earnings at the 2.5% and 97.5 levels to mitigate potential bias driven by extreme
observations. Furthermore, we repeat the same set of exercises (reported in columns
(1) to (2)), by excluding all cases where the managerial guidance coincides with the
prevailing median analysts’ forecast (i.e., conforming cases), and show the respective
results in columns (3) to (4).

The coefficient on Negative Guidance is positive and significant in columns (1),
implying that the quality of guidance, which is inversely related to the magnitude of
differences between guidance and realized earnings, is on average slightly lower on
condition that the managerial guidance is negative. We worry that that is driven by
outliers, but results in column (2) suggest that it is unlikely. The result, reported in
column (3), remains the same, once we exclude conforming cases. The effect becomes
insignificant, reported in column (4), if we exclude conforming cases and winsorize at
5%. In any case, the evidence does not favor the conjecture that positive guidance is
less reliable. The managerial motives can be complex, often unobservable and unpre-
dictable, which constitutes a source for guidance quality to be unreliable. That is the
key motivation for our assumption that guidance quality is uncertain.

“Walk-down to beatable” The literature also documents that managers could have
incentives to manage earnings expectation downwards before the earning releases to
make it beatable (e.g., Matsumoto, 2002; Cotter et al., 2006; Johnson et al., 2020). Given
that one may imagine that more negatively surprised analysts could adjust their fore-
casts by more to ensure that the firms beat their earnings forecasts. Does this mech-
anism affect our findings, besides that it contributes to the uncertainty of guidance
quality?

To investigate, we rely on Johnson et al. (2020) who construct the expectation man-
agement index (EMI) that captures the extent to which firms manage investors’ earn-
ings expectations. Specifically, EMI is constructed as a composite score that consists of
three broad categories of factors (i.e., “attention,” “pressure,” and “relevance”), which
comprehensively capture firms’ incentives to manage expectations.30 EMI is the first

30The first component “attention”refers to the extent to which firms? realized earnings can garner
attention from the market. Intuitively, managers are more incentivized to manage market expectations
when their earnings performance is covered by more financial analysts and institutional investors. The
second component “pressure”captures managerial incentives to soften the negative impact from re-
porting a break in a string of consecutive earnings increases. The last one, “relevance,”is constructed to
capture sensitivity of the market reaction to earnings news. Intuitively, managers are more inclined to
manipulate market expectations if their earnings announcement can trigger stronger market reactions.
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principal component of these three inputs and a higher value of EMI score indicates
stronger incentives for expectation management or driving down earning expecta-
tions.

We add EMI as an additional control in our main regressions (reported by Table 1
and 2) and in specifications presented by Figure 2. If such a walk-down-to-beatable
mechanism is crucial for our investigations, the estimated coefficients from our re-
gressions should be greatly affected in terms of magnitude and significance. How-
ever, we find that all our estimations only change marginally at the best (available
upon request), which suggests that our findings are unlikely driven only by manage-
rial strategic guidance.

7. Conclusion

This paper documents a set of cross-sectional facts concerning expectation formation
using firm-level earnings forecast and managerial guidance data: the overreaction
to information is stronger for unfavorable surprises and weaker for larger surprises,
and forecast revisions are asymmetric in surprises and nonmonotonic. We present
a model of information uncertainty and smoothed ambiguity aversion to account for
these facts. Qualitatively, our model differs from models with extreme ambiguity aver-
sion or those with ambiguity-neutral agents. Quantitatively, we estimate the degree
of ambiguity aversion for analysts in this setting and illustrate its role in overreaction
to information. Our work adds to the literature that studies expectation formation by
documenting new facts and providing new theory.

The empirical setting has instrumental value and will be useful for exploiting other
aspects of expectation formation. The empirical strategy in this paper, i.e., the FR-on-
surprise approach, can be complementary to the FE-on-FR approach, which is widely
used in the literature.

Our results can be also interesting to the literature that studies information pro-
duction in financial markets. First, sell-side financial analysts constitute a significant
share of capital market participants and play an important role by collecting, pro-
cessing, and conveying relevant information to capital markets. Second, as financial
intermediaries, one of the most important functions of financial analysts is to gener-
ate forecasts about firms’ performance and form expectations. Given the qualitative
features of analyst forecasts documented in this paper, it will be interesting to explore
how participants in financial markets react to and make use of the information that
analysts provide. We leave those topics to future work.
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Appendix I: Data and Robustness Tests

A. Summary of Statistics

Table 7. Summary of Statistics

(1) (2) (3) (4) (5) (6)
N mean sd p25 p50 p75

Initial forecasts 110,895 0.0120 0.0129 0.0070 0.0123 0.0180
Revised forecasts 110,895 0.0104 0.0149 0.0057 0.0113 0.0173
Forecast revision 110,895 -0.0016 0.0055 -0.0017 0.0000 0.0000
Forecast errors 110,895 -0.0000 0.0047 0.0000 0.0003 0.0011
Unfavorable 110,895 0.6256 0.4840 0.0000 1.0000 1.0000
Large 110,895 0.0848 0.2785 0.0000 0.0000 0.0000
Surprise 110,895 -0.0040 0.0171 -0.0062 -0.0012 0.0003

Managerial guidance 16,241 0.0067 0.0293 0.0027 0.0089 0.0160
Earnings 16,241 0.0089 0.0197 0.0044 0.0112 0.0177
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Table 8. Forecast Error on Forecast Revision: Samples

Outcome Variable: Forecast Error FEi

Winsorization at the 1% and 99% Winsorization at the 2.5% and 97.5%

Excl Pre-anc Excl Multiple Excl Both Excl Pre-anc Excl Multiple Excl Both

(1) (2) (3) (4) (5) (6)

FRi -0.0733** -0.1561*** -0.1545*** -0.0731*** -0.1536*** -0.1540***
(0.0284) (0.0217) (0.0469) (0.0228) (0.0171) (0.0352)

Quarter FEs YES YES YES YES YES YES
Analyst FEs YES YES YES YES YES YES
Firm FEs YES YES YES YES YES YES

Obs. 50,558 46,493 17,606 50,558 46,493 17,606
Adj R-sq. 0.2675 0.3020 0.3412 0.2727 0.2842 0.3285

The standard errors are clustered on firm and calendar year-quarter following Petersen (2009).*** p<0.01,
** p<0.05, * p<0.1

B. Robustness

Overreaction: Subsamples. The result in column (1) of Table 8 is based on a sample
excluding all firm-quarters with pre-announcement guidance, which is defined as the
guidance issued between firms’ fiscal quarter-end and the earnings announcement
date for the quarter. The result in column (2) of Table 8 is based on a sample excluding
all firm-quarters with multiple guidances. The result in column (3) of Table 8 is based
on a sample excluding all firm-quarters with either pre-announcement guidance or
multiple guidances. To ensure that our results are not driven by outliers, we winsorize
FEijt and FRijt at the 2.5% and 97.5% of their respective distributions and re-estimate
equation (1). The results for the corresponding subsamples are reported in column (4),
(5) and (6).
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Table 9. Forecast Error on Forecast Revision: Trimming Outliers

Outcome Variable: Forecast Error FEi

Trimmed at 1% and 99% Trimmed at 2.5% and 97.5%

Full Excl Pre-anc Excl Multiple Excl Both Full Excl Pre-anc Excl Multiple Excl Both

(1) (2) (3) (4) (5) (6) (7) (8)

FRi -0.1024*** -0.0942*** -0.1627*** -0.1774*** -0.0854*** -0.0819*** -0.1492*** -0.1568***
(0.0105) (0.0208) (0.0137) (0.0287) (0.0082) (0.0137) (0.0107) (0.0186)

Quarter FEs YES YES YES YES YES YES YES YES
Analyst FEs YES YES YES YES YES YES YES YES
Firm FEs YES YES YES YES YES YES YES YES

Obs. 106,614 48,950 43,756 16,738 100,308 46,363 40,148 15,484
Adj R-sq. 0.2250 0.2762 0.2817 0.3336 0.2110 0.2748 0.2654 0.3139

The standard errors are clustered on firm and calendar year-quarter following Petersen (2009).*** p<0.01, ** p<0.05, * p<0.1

Overreaction: Trimming Outliers. In the main text, we estimate equation (1) with
winsorized data to mitigate the influence of outlier observations. In this Appendix,
we re-estimate equation (1) with trimmed data and examine the robustness of our
results reported in the main text. The corresponding results are summarized in Table
9. All results are robust, thus suggesting that our results are not sensitive to the way
in which we handle outliers.
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Table 10. Robustness: Definition of Large Surprises

Outcome Variable: Forecast Revision FRi

Winsorization at 1% and 99% Winsorization at 2.5% and 97.5%

(1) (2) (3) (4)

Surprisei 0.4311*** 0.3971*** 0.4575*** 0.4193***
(0.0188) (0.0184) (0.0162) (0.0169)

Large -0.0060*** -0.0046*** -0.0020*** -0.0019***
(0.0006) (0.0007) (0.0003) (0.0003)

Surprisei × Large -0.3502*** -0.3203*** -0.2852*** -0.2655***
(0.0194) (0.0182) (0.0167) (0.0175)

Constant 0.0001 -0.0001 0.0001 -0.0000
(0.0001) (0.0001) (0.0001) (0.0001)

Quarter FEs YES YES YES YES
Analyst FEs YES YES YES YES
Firm FEs YES YES YES YES
Obs 110,895 110,895 110,895 110,895
Adj R-sq. 0.4819 0.4811 0.5019 0.5032

The standard errors are clustered on firm and calendar year-quarter following (Petersen 2009).
*** p<0.01, ** p<0.05, * p<0.1

Definition of large surprises. In the main text, we define a surprise to be large for
analyst i, if Surpriseijt is larger than the mean value of the variable Surpriseijt by one
standard deviation. However, this definition appears to be arbitrary. In this section,
we present the results with alternative definitions. We define a surprise to be large for
analyst i, if Surpriseijt is larger than the mean value of the variable Surpriseijt by 1.5
or 2 standard deviations. We estimate equation (4) and report the former in column
(1) and the latter in column (2) of Table 10. We repeat the same exercise using the
sample in which all variables are winsorized at the 2.5% and 97.5% of their respective
distributions. Correspondingly, they are reported in columns (3) and (4) of Table 10,
respectively. All estimations present very similar results to those in the main text. The
definition of surprises being large does not drive the results reported in the main text.
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(b) Trimming, Derivative: marginal effect

Figure 10. Non-parametric estimation, 2% trimming (1%, 99%). Panel (a) illustrates the relationship
between forecast revisions and surprises in managerial guidances (both trimmed at 2%) that is non-
parametrically estimated using the Epanechnikov kernel and the third degree of the polynomial smooth.
It is decreasing, increasing and decreasing and asymmetric around the origin. The shaded areas stand
for the 95% confidence intervals for the respective estimations. Panel (b) illustrates its derivatives with
respect to surprises. The derivatives are negative when the surprises are large enough and positive when
they are small. Forecast revisions respond more strongly to negative surprises than to positive ones of
the same magnitude.

Trimming. In the main text, we estimate the relationship between forecast revi-
sions and surprises using the standard tool of local polynomial regression. In this
section, we re-estimate the same relationship by trimming forecast revisions and sur-
prises at the 1% and 99% of their respective distributions and by controlling for quar-
ter, firm and analyst fixed effects. We still rely on the Epanechnikov kernel and the
third degree of the polynomial smooth, as in the main text. The result is presented in
Figure 10. The pattern is very similar to the one reported in the main text, while the
difference is that, as expected, the tails of the estimated relationship are longer with
larger confidence intervals. For the trimmed version, there are 1,947 observations to
the left of the trough of the estimated relationship and 4,083 observations to the right
of the peak.
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(a) Winsorization, Non-parametric estimation
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(b) Winsorization, Derivative: marginal effect

Figure 11. Non-parametric estimation, 2% winsorization and trimming (1%, 99%). Panel (a) il-
lustrates the relationship between forecast revisions and surprises in managerial guidances (both win-
sorized at 2%) that is non-parametrically estimated using the Epanechnikov kernel and the third degree
of the polynomial smooth. It is decreasing, increasing and decreasing and asymmetric around the origin.
Panel (b) illustrates its derivatives with respect to surprises. The derivatives are negative when the sur-
prises are large enough and positive when they are small, in the regions where the response of forecast
revisions to surprises is significantly different from zero.

Winsorization. For comparison, we re-estimate the same relationship by winsoriz-
ing forecast revisions and surprises at the 1% and 99% of their respective distribu-
tions and by controlling for quarter, firm and analyst fixed effects. We still rely on
the Epanechnikov kernel and the third degree of the polynomial smooth, as in the
main text. The result is presented in Figure 11. The pattern is very similar to the
one reported in the main text, while the difference is that, as expected, the tails of the
estimated relationship are longer with larger confidences intervals.
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Subsample of Firms where Guidances were Issued at Least 12 Consecutive Guid-
ances.
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Figure 12. Non-parametric estimation, for the subsample that only includes earnings forecasts on condi-
tion that firms release earnings guidances more than 12 consecutive quarters during our sample period.
Panel (a) illustrates the relationship between forecast revisions and surprises in managerial guidances,
both of which are trimmed at 2.5% and 97.5%. It is non-parametrically estimated using the Epanech-
nikov kernel and the third degree of the polynomial smooth. It is decreasing, increasing and decreasing
and asymmetric around the origin. Panel (b) illustrates the relationship between forecast revisions and
surprises in managerial guidances, both of which are trimmed at 1% and 99%, by using the same pro-
cedure. The pattern is rather similar.
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Subsample that Excludes the Period of the Financial Crisis.
−

.0
0
5

0
.0

0
5

.0
1

F
R

−.04 −.02 0 .02 .04
Suprises
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Figure 13. Non-parametric estimation, for the subsample that excludes observations during the finan-
cial crisis. Panel (a) illustrates the relationship between forecast revisions and surprises in managerial
guidances, both of which are trimmed at 2.5% and 97.5%. It is non-parametrically estimated using the
Epanechnikov kernel and the third degree of the polynomial smooth. It is decreasing, increasing and
decreasing and asymmetric around the origin. Panel (b) illustrates the relationship between forecast
revisions and surprises in managerial guidances, both of which are trimmed at 1% and 99%, using the
same procedure. The pattern is rather similar.
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Heterogeneous Overreaction with Trimming 2% Outlier observations.
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Figure 14. Heterogeneous Overreaction, Trimming 2% Outliers. The estimated coefficients of the FE-
on-FR regressions b1 and 95% confidence interval for each running decile window is plotted against the
window rank. A running decile window j covers decile j − 1, j, and j + 1 if j ̸= 1 or j ̸= 9; the running
decile window 1 covers deciles 1 and 2 and the running decile window 10 covers deciles 9 and 10.
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Heterogeneous Overreaction for Each Decile of Surprises.
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Figure 15. Heterogeneous Overreaction. The estimated coefficients of the FE-on-FR regressions b1 and
95% confidence interval for each decile of surprises, without using running windows.
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Binscatter Plot.

(a) Binscatter (50 bins), trimmed at 5% (b) Binscatter (100 bins), trimmed at 5%

(c) Binscatter (50 bins), trimmed at 2% (d) Binscatter (100 bins), trimmed at 2%

Figure 16. Binscatter Plot, 2% and 5% trimming. Panel (a) illustrates the binscatter plot relationship
between forecast revisions and surprises in managerial guidances (both trimmed at 5%), with 50 bins.
Panel (b) presents the binscatter plot with the same data and 100 bins. Panel (c) illustrates the binscatter
plot relationship between forecast revisions and surprises in managerial guidances (both trimmed at
2%), with 50 bins. Panel (d) presents the binscatter plot with the same data and 100 bins.
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Appendix II: Proofs

Proof of Lemma 1. Forecast revisions being linear in guidance surprises directly fol-
lows (9). Zero correlation between forecast errors and forecast revisions follows the
fact that noisy information expectation features rationality, in which case forecast er-
rors are uncorrelated with any observables in the information set including forecast
revisions.

Derivation of Equation (13)-(15). Denote δ ≡ τy
τθ+τz+τx+τy

. Then, it can be shown that

p̃
(
τy|Xi, si; Fi

)
≡ p̃
(

τy|z0i,
τθ + τz + τx

τx
(Xi − F0i) + F0i, si + Xi; Fi

)
= p̃
(
τy|z0i, xi, y

)
∝ exp

(
−λ

{
−F2

i + (2Fi + β) (Xi + δsi)−
[
(Xi + δsi)

2 +
1 − δ

τθ + τz + τx

]})
︸ ︷︷ ︸

ϕ′
(

E
τy
i [U(Fi,θ)]

)
× p (F0i) p (Xi − F0i) p

(
si|τy

)︸ ︷︷ ︸
=p(z0i,xi,y|τy)

p
(
τy
)

∝ exp
(
−λ

[
(2Fi + β) δsi −

(
2Xiδsi + δ2s2

i −
δ

τθ + τz + τx

)])
p
(
si|τy

)
p
(
τy
)

where the third line uses the fact that F0i, Xi − F0i, and si are independent with only the
distribution of si affected by τy; and the last line drops all terms that are not a function
of τy. Then, the optimality condition (11) can be compactly written as

Fi = Xi + κ (Xi, si, Fi) · si

where

κ (Xi, si, Fi) =
∫

Γy

(
τy

τθ + τz + τx + τy

)
p̃
(
τy|Xi, si; Fi

)
dτy

Proof of Lemma 2. The log-likelihood ratio can be specifically written by:

log
(

L
(
τy
))

=− λsi

[
2
(

F′
i − Fi

) ( τy

τθ + τz + τx + τy

)]
+ constant.

Given the fact that τy/
(
τθ + τz + τx + τy

)
increases in τy and that F′

i − Fi > 0, L(τy)

12



decreases in τy, if and only if si > 0; and L(τy) increases in τy, if and only if si < 0. The
lemma is shown.

Proof of Proposition 1. The optimality condition (11) is equivalent to (13):

Fi = Xi +

[∫
Γy

(
τy

τθ + τz + τx + τy

)
p̃
(
τy|z0i, xi, y; Fi

)
dτy

]
︸ ︷︷ ︸

κ

·si (21)

To obtain the second equality, we use the definition of Xi and si and the definition of
p̃
(
τy|z0i, xi, y; Fi

)
specified in the main text.

We first demonstrate that the right-hand side of (21) is decreasing in Fi. Towards
this end, we show

1
2

∂κ

∂Fi
si =


∫

Γy

(
τy

τθ + τz + τy + τx

) ϕ′′
(

E
τy
i [U (Fi, θ)]

)
ϕ′
(

E
τy
i [U (Fi, θ)]

) ∂E
τy
i [U (Fi, θ)]

∂Fi
p̃
(
τy|z0i, xi, y; Fi

)
dτy

− κ

∫
Γy

ϕ′′
(

E
τy
i [U (Fi, θ)]

)
ϕ′
(

E
τy
i [U (Fi, θ)]

) ∂E
τy
i [U (Fi, θ)]

∂Fi
p̃
(
τy|z0i, xi, y; Fi

)
dτy

 si,

=
∫

Γy

ϕ′′
(

E
τy
i [U (Fi, θ)]

)
ϕ′
(

E
τy
i [U (Fi, θ)]

) (∂E
τy
i [U (Fi, θ)]

∂Fi

)2

p̃
(
τy|z0i, xi, y; Fi

)
dτy,

<0.

The first equality is obtained by using the definition of κ and the expression of ∂ p̃/∂Fi.
That is,

∂ p̃
(
τy|z0i, xi, y; Fi

)
∂Fi

=
ϕ′′
(

E
τy
i [U (Fi, θ)]

)
ϕ′
(

E
τy
i [U (Fi, θ)]

) ∂E
τy
i [U (Fi, θ)]

∂Fi
p̃
(
τy|z0i, xi, y; Fi

)

− p̃
(
τy|z0i, xi, y; Fi

) ∫
Γy

ϕ′′
(

E
τy
i [U (Fi, θ)]

)
ϕ′
(

E
τy
i [U (Fi, θ)]

) ∂E
τy
i [U (Fi, θ)]

∂Fi
p̃
(
τy|z0i, xi, y; Fi

)
dτy

 .

To get the second equality, we use the expression of ∂E
τy
i [U (Fi, θ)] /∂Fi. That is,

∂E
τy
i [U (Fi, θ)]

∂Fi
=

(
τy

τθ + τz + τy + τx
− κ

)
si.

The third inequality holds given ϕ′(·) > 0 and ϕ′′(·) < 0.
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We then notice that κ is bounded between 0 and 1. Therefore, the right-hand side
of equation (13) goes to ∞, when Fi approaches −∞; and it goes to −∞ when Fi ap-
proaches ∞. Both existence and uniqueness are implied.

Next we show that the optimal response κ∗ only depends on si. Observe that

p̃
(
τy|Xi, si; Fi

)
= p̃

(
τy|si; κ

)
∝ exp

(
−λ

[
βδsi + 2κδs2

i −
(

δ2s2
i −

δ

τθ + τz + τx

)])
p
(
si|τy

)
p
(
τy
)

.

To derive the first equality, we use the equation (13) to replace Fi, and therefore Xi

drops out. Therefore, κ∗ is the fixed point of the following condition:

κ∗ =
∫

Γy

(
τy

τθ + τz + τx + τy

)
p̃
(
τy|si; κ∗

)
dτy

Therefore, it is the case that κ∗ is only a function of si.

Proof of Proposition 2. By using the definition F∗
i , the difference in the expected util-

ities is explicitly given by:

Eτy
[
U
(

F∗ (Xi, s+i
)

, θ
)]

− Eτy
[
U
(

F∗ (Xi, s−i
)

, θ
)]

= 2βδs+i +
[(

κ∗
(
s−i
)
− δ
)2 −

(
κ∗
(
s+i
)
− δ
)2
] (

s+i
)2 .

where δ ≡ τy/
(
τθ + τz + τx + τy

)
.

Let T (β) ≡ κ∗
(
s−i
)
− κ∗

(
s+i
)
.

Claim 1: If β = 0, then T (β) = 0.

We guess and verify that it holds that κ∗
(
s−i
)
= κ∗

(
s+i
)

. If this is true, we establish
that E

τy
i [U (Fi, θ)] is symmetric in si: for any τy and any pair of

(
s−i , s+i

)
, we have:

Eτy
[
U
(

F∗ (Xi, s+i
)

, θ
)]

= Eτy
[
U
(

F∗ (Xi, s−i
)

, θ
)]

In other words, for any τy, we have:

ϕ′
(

E
τy
i
[
U
(

F∗ (Xi, s+i
)

, θ
)])

= ϕ′
(

E
τy
i
[
U
(

F∗ (Xi, s−i
)

, θ
)])

.

By the definition of κ, this implies:

κ∗
(
s−i
)

= κ∗
(
s+i
)

.

which implies that β = 0 is a solution to T (β) = 0. Further, according to Proposition

14



1, both κ∗
(
s−i
)

and κ∗
(
s+i
)

are unique.

Claim 2: If β ̸= 0, T (β) ̸= 0.

Suppose towards a contradiction that there exists some β′ > 0, such that T (β′) = 0.
This implies that κ∗

(
s−i
)
= κ∗

(
s+i
)
= κ′. For any pair of

(
s−i , s+i

)
, we have:

∂ log
(

p̃(τy|Xi,s−i ;Xi+κ′s−i )
p̃(τy|Xi,s+i ;Xi+κ′s+i )

)
∂τy

=λ

(
∂E

τy
i
[
U
(

F∗ (Xi, s+i ; κ′
)

, θ
)]

∂τy
−

∂E
τy
i
[
U
(

F∗ (Xi, s−i ; κ′
)

, θ
)]

∂τy

)
> 0.

The last inequality is obtained by using the fact that

E
τy
i
[
U
(

F∗ (Xi, s+i
)

, θ
)]

− E
τy
i
[
U
(

F∗ (Xi, s−i
)

, θ
)]

= 2β′δ
(
s+i − s−i

)
> 0.

In other words, p̃
(
τy|Xi, s−i ; Xi + κ′s−i

)
first-order stochastically dominates p̃

(
τy|Xi, s+i ; Xi + κ′s+i

)
.

By the definition of κ, this implies:

κ∗
(
s−i
)
> κ∗

(
s+i
)

.

A contradiction. Similarly, suppose towards a contradiction that there exists some
β′ < 0 such that T (β′) = 0. It implies that κ∗

(
s+i
)
> κ∗

(
s−i
)
. A contradiction. The

claim is shown.

Claim 3: If β goes to ∞, T (β) > 0.

When β goes to → ∞, both κ∗
(
s−i
)

and κ∗
(
s+i
)

are bounded. Therefore,

E
τy
i
[
U
(

F∗ (Xi, s+i
)

, θ
)]

− E
τy
i
[
U
(

F∗ (Xi, s−i
)

, θ
)]

→ 2βδ
(
s+i − s−i

)
> 0.

p̃
(
τy|Xi, s−i ; Xi + κ′s−i

)
first-order stochastically dominates p̃

(
τy|Xi, s+i ; Xi + κ′s+i

)
, given

β → ∞. Therefore, by the definition of κ, it implies that

κ∗
(
s−i
)
> κ∗

(
s+i
)

.

That is, T (β) > 0. The claim is shown.

Claims 1 and 2 imply that T (β) crosses zero once and only at β = 0. Combined
with Claim 3, it further implies that βT (β) ≥ 0, where the equality holds only when
β = 0. The proposition is shown.

Proof of Proposition 3 . If forecasters are ambiguity neutral, the optimal forecasts are
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such that

F∗
i = Xi +

[∫
Γy

δp
(
τy|si

)
dsi

]
si

where δ ≡ τy/(τθ + τz + τx + τy) and the posterior belief p
(
τy|si

)
is given by

p
(
τy|si

)
∝
√

δ exp
(
−1

2
(τθ + τz + τx) s2

i δ

)
p
(
τy
)

,

Taking the derivative of F∗
i w.r.t si leads to

∂F∗
i

∂si
=
∫

Γy
δp
(
τy|si

)
dsi − (τθ + τz + τx)V (δ|si) s2

i

where V (δ|si) denotes the conditional volatility of δ under probability density p
(
τy|si

)
.

It is then straightforward to show that:

lim
|si|→0

∂F∗
i

∂si
= lim

|si|→0

∫
Γy

δp
(
τy|si

)
dsi > 0

Furthermore, when |si| → +∞, p
(
τy|si

)
converges to p∞

(
τy
)

and is given by:

p∞
(
τy
)

∝
√

δp
(
τy
)

Then it must be the case that lim|si|→+∞ V (δ|si) s2
i → +∞. Further using the fact that∫

Γy
δp
(
τy|si

)
dsi is bounded above by δmax, it is straightforward to demonstrate that

lim
|si|→+∞

∂F∗
i

∂si
→ −∞.

Finally, the symmetry of F∗
i − Xi around the origin directly follows from the fact that∫

Γy
δp
(
τy|si

)
dsi is symmetric, since p

(
τy|si

)
= p

(
τy| − si

)
for ∀si ∈ R.

Proof of Proposition 4 . The objective function (6) under the maxmin criterion be-
comes:

max
F∈R

min
τy∈Γy

E
[
− (F − θ)2 + βθ|zi, xi, y; τy

]
where Γy is the full support for τy. Let the upper bound be τmax

y and the lower bound
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be τmin
y . For ease of notation, denote the subjective relative precision of guidance to be

δ ≡
τy

τθ + τz + τx + τy
.

and accordingly, it is bounded by

δmin ≡
τmin

y

τθ + τz + τx + τmin
y

and δmax ≡
τmax

y

τθ + τz + τx + τmax
y

.

To prove the proposition, we first characterize the optimal forecasting rule under
the maxmin criterion. Then, we proceed to prove that F∗

i − Xi is non-decreasing in si.

First of all, it can be shown that

θ̄τy = Xi + δsi Ei

[
θ2|zi, xi, y; τy

]
= (Xi + δsi)

2 + (1 − δ)

(
1

τθ + τz + τx

)
Then, the problem can be transformed into

max
κ∈R

min
δ∈∆

V (κ, δ)

where ∆ ≡ [δmin, δmax] and the value function V (κ, δ) is given by

V (κ, δ) ≡− (Xi + κsi)
2 + [2 (Xi + κsi) + β] (Xi + δsi)−

[
(Xi + δsi)

2 + (1 − δ)
1

τθ + τz + τx

]
where we have used the fact that F = Xi + κsi. Notice that V (κ, δ) is quadratic in κ

and δ. Also note that V (κ, δ) is concave in δ. Therefore, we have that for any κ ∈ R:

argmin
δ∈∆

V (κ, δ) ∈ {δmin, δmax}

Notice that

V (κ, δmax)− V (κ, δmin)

= (2κsi + β) si (δmax − δmin) +
1

τθ + τz + τx
(δmax − δmin)− s2

i

(
δ2

max − δ2
min

)
It can then be shown that

V (κ, δmax)− V (κ, δmin) > 0

⇔κ > T (si) ≡
(δmax + δmin)

2
−

βsi +
1

τθ+τz+τx

2s2
i
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In what follows, we characterize the optimal forecasting rule for three exclusive
cases:

• If δmin > T (si), it can be shown that

– when κ ∈ (−∞, T (si)], minδ∈∆ V (κ, δ) = V (κ, δmax). Hence, minδ∈∆ V (κ, δ)

is increasing in κ.

– when κ > T (si), minδ∈∆ V (κ, δ) = V (κ, δmin). Hence, minδ∈∆ V (κ, δ) is
first increasing in κ and then decreasing in κ. It achieves its maximum at
κ = δmin.

Figure 17(a) graphically illustrates the value function under the worst case sce-
nario when δmax < T (si). Therefore, it must be the case that the optimal κ∗ =

δmin when δmin > T (si).

• If δmax < T (si), it can be shown that

– when κ ∈ (−∞, T (si)], minδ∈∆ V (κ, δ) = V (κ, δmax). Hence, minδ∈∆ V (κ, δ)

is first increasing in κ and then decreasing in κ. It achieves its maximum at
κ = δmax.

– when κ ∈ [T (si) ,+∞), minδ∈∆ V (κ, δ) = V (κ, δmin). Hence, minδ∈∆ V (κ, δ)

is decreasing in κ.

Figure 17(b) graphically illustrates the value function under the worst case sce-
nario when δmax < T (si). Therefore, it must be the case that the optimal κ∗ =

δmax when δmax < T (si).

• If δmin < T (si) < δmax, it is then straightforward to show the following:

– when κ ∈ (−∞, T (si)], minδ∈∆ V (F, δ) = V (F, δmax). Hence, minδ∈∆ V (F, δ)

is increasing in κ.

– when κ ∈ [T (si) ,+∞), minδ∈∆ V (F, δ) = V (F, δmin). Hence, minδ∈∆ V (F, δ)

is decreasing in κ.

Figure 17(c) graphically illustrates the value function under the worst case sce-
nario when δmin < T (si) < δmax. Therefore, it must be the case that the optimal
κ∗ = T (si) when δmin < T (si) < δmax.

To summarize, we have the following optimal forecasting rule under the maxmin
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δmin δmaxT

(a) δmin > T (si)

δmin δmax T

(b) δmax < T (si)

δmin δmaxT

(c) δmin < T (si) < δmax

Figure 17. The value function under the worst case scenario: minτy∈Γy V (κ, δ).

criterion:

κ∗ =


δmin if δmin > T (si)

δmax if δmax < T (si)

T (si) otherwise

(22)

Or equivalently,

F∗ − Xi =


δminsi if δmin > T (si)

δmaxsi if δmax < T (si)

T (si) si otherwise

(23)

Note that T (si) si is always increasing in si. Therefore, given the continuity of F∗
i − Xi

with respect to si, it must be the case that F∗
i − Xi is non-decreasing in si.

Proof of Proposition 5 . It can be shown that

Cov (FEi, FRi) =Cov
(

κREsi, κ (si) si

)
− Var (κ (si) si)

=Cov
(

κREsi − κ (si) si, κ (si) si

)
=E

[(
κREsi − κ (si) si

)
κ (si) si

]
− E

[
κREsi − κ (si) si

]
E [κ (si) si]

=κREE
[
κ (si) s2

i

]
− E

[
κ2 (si) s2

i

]
where the third equality uses the fact that E [κ (si) si] = 0 under symmetry of κ (si)

when λ = 0.
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It is then straightforward to show that

sgn
{

b̂1

}
= sgn {Cov (FEi, FRi)} = sgn

{
κRE −

E
[
κ2 (si) s2

i
]

E
[
κ (si) s2

i
] }

Notice that
E[κ2(si)s2

i ]
E[κ(si)s2

i ]
is nothing more than an average of κ (si) over some adjusted

beliefs of si:

E
[
κ2 (si) s2

i
]

E
[
κ (si) s2

i
] = Ê [κ (si)] ≡

∫
R

κ (si) p̂ (si) dsi

where

p̂ (si) ∝ Ω (si) p (si) Ω (si) ≡
κ (si) s2

i
E
[
κ (si) s2

i
]

Proof of Proposition 6. The optimal forecast FL
i is globally monotone in the signal is

a sufficient condition for the global monotonicity. According to (19), the optimal fore-
casts can be expressed as

FL
i = E [θ|Ii] +

1 − 2α

α

∫ FL
i

−∞

(
θ − FL

i

)
f (θ|Ii)dθ (24)

Assume that Ii = {xi} with xi ∼ N
(
θ, σ2

x
)
, where the fundamental θ ∼ N

(
0, σ2

θ

)
.

In what follows, we prove that dFL
i

dxi
> 0. Taking total derivative w.r.t xi on both

sides of (24) and re-arranging leads to

dFL
i

dxi
=

dE [θ|xi]

dxi
− 1 − 2α

α
P
(

θ < FL
i

∣∣∣ xi

) dFL
i

dxi

+
1 − 2α

α

(
1
σ2

θ

+
1
σ2

x

) ∫ FL
i

−∞

(
θ − FL

i

)
(θ − E [θ|xi]) f (θ|xi)dθ

where P
(

θ < FL
i

∣∣∣ xi

)
denotes the conditional probability of negative forecast error.

Using the fact that FL
i < E [θ|xi], we can prove that

1 − 2α

α

(
1
σ2

θ

+
1
σ2

x

) ∫ FL
i

−∞

(
θ − FL

i

)
(θ − E [θ|xi]) f (θ|xi)dθ > 0
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Combined with the fact that dE[θ|xi]
dxi

> 0, it is straight-forward to see that

dFL
i

dxi
> 0
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