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Abstract

Probabilistic surveys on macroeconomic variables provide a wealth of information
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however. This chapter discusses the challenges involved in this task and the approaches

used so far in the literature for conducting inference on probabilistic surveys. It also

provides an application of some of these methods using the U.S. Survey of Professional

Forecasters and investigates the evolution of uncertainty and tail risk for both output

growth and inflation during the COVID pandemic.
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I Introduction

Manski (2004) made economists appreciate the advantages of probabilistic surveys relative to

surveys that simply ask respondents for their point projections. Probabilistic surveys provide

information about the entire predictive distribution, which can in principle be used to extract

subjective measures of mean predictions, uncertainty, and tail risks. Partly following Manski

(2004)’s lead, and partly because of the growing interest in studying uncertainty in the af-

termath of the Great Recession, a large number of probabilistic surveys in macroeconomics

have emerged over the last decade or so, which elicit predictive probabilities on macroeco-

nomic variables from professional forecasters, financial market participants, consumers, and

firms, in the US and other countries. Examples are the New York Fed’s Survey of Consumer

Expectations (see Armantier et al., 2017), the New York Fed’s Survey of Primary Dealers

and Market Participants, the Atlanta Fed’s Survey of Business Uncertainty and Business

Inflation Expectations Survey (see Altig et al., 2020), the European Central Bank’s Survey

of Professional Forecasters and the Bank of England’s Survey of External Forecasters (see

Boero et al., 2008a), in addition to the already established Philadelphia Fed’s U.S. Survey

of Professional Forecasters (henceforth, SPF).

Yet, respondents to probabilistic surveys do not generally provide macroeconomists with

direct information on the objects they are interested in, such as various moments (e.g.,

means, variances, skewness) and quantiles of their forecast distribution. Instead, they provide

probabilities associated with generally pre-specified (by the survey designer) bins. Extracting

and using the information provided by respondents is not a trivial task, however. This

chapter discusses the challenges involved in this task and the approaches used so far in the

literature for conducting inference on probabilistic surveys. While the focus of the chapter is

on the inference problem, it also discusses some of the literature that made use of probabilistic

surveys in macroeconomics—although we keep this review to a minimum given that some of

this literature is already covered in ClementsetalCHAPT-inVOLUME (2022).

Finally, the chapter also provides an application of some of these inference methods

using the SPF. In particular, it investigates the evolution of uncertainty and tail risk for

both output growth and inflation during the COVID pandemic.

The structure of the chapter is as follows. Section II discusses the approaches used in

conducting inference on probabilistic surveys and some related econometric issues that arise.

In particular, Section II.A describes the inference problem posed by probabilistic forecasts,

while Section II.B reviews existing approaches and their limitations. Section II.C describes
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a Bayesian non-parametric approach based on Del Negro et al. (2018), which tries to address

some of the issues mentioned in Section II.B, with a particular emphasis on inference for

measures of uncertainty and tail risk. This Section also includes a comparisons between the

different approaches in a real data application. Section III discusses some of the challenges

in assessing the uncertainty of forecasters, while Section IV documents the heterogeneity

in density predictions across forecasters, again focusing on uncertainty. Section V gives an

overview of some existing approaches for aggregating individual responses (opinion pools).

Finally, the Bayesian non-parametric method discussed in Section II.C is used in Section VI

to analyze the evolution of US SPF density forecasts for GDP growth and inflation during

the COVID pandemic. The analysis focuses on how the COVID pandemic affected the

consensus forecast, average measures of subjective uncertainty, as well as heterogeneity in

mean projections, uncertainty, and tail probabilities.

II Inference on Probabilistic Surveys

This section reviews current approaches used for inference on probabilistic surveys. It dis-

cusses some challenges these approaches face, while attempting to address some of them

based on recent work by Del Negro et al. (2018).

II.A The Inference Problem

Probabilistic forecasts take the form of probabilities assigned to bins: the percent chance that

the variable of interest, such as inflation or GDP growth, falls within different contiguous

ranges. In most of the surveys, the bins are pre-specified by the survey designer (e.g., the

Philadelphia Fed’s SPF), although some recent surveys only specify the number of bins and

let the respondents determine their boundaries (e.g., the Atlanta Fed’s Survey of Business

Uncertainty, where a 5-point probability is provided by each survey respondent). The bins

are mutually exclusive and contiguous, and generally cover the entire real line whenever the

variable being forecast, y, is continuous and can take values in the interval (−∞,+∞). In

what follows, (yj−1, yj], j = 1, . . . , J will be a set of bins such that y0 < y1 < . . . < yJ ,

where y0 and yJ are equal to −∞ (left open bin) and +∞ (right open bin), respectively.

For each forecaster i = 1, ..., n, the available data consists of a vector of probabilities zi =

(zi,1, . . . , zi,J), with zi,j ≥ 0 and zi,1 + zi,2 + . . .+ zi,J = 1, measuring the predictive likelihood

that y falls within the respective bins.
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Figure 1: Probability Forecasts for Selected Examples from the 2020Q2 SPF

Forecasts for output growth in 2020 made in 2020Q2

(587) (576)

Forecasts for output growth in 2021 made in 2020Q2

(422) (527)

Note: Each panel displays the forecast probabilities zi,j , j = 1, . . . , 11 (step-wise solid lines) for a given forecaster (forecaster
number shown in parentheses) and the bin bounds (black ticks, horizontal axis).

Figure 1 shows the probabilities that the 2020 (first row) and the 2021 (second row) real

GDP growth falls within the bins (horizontal axis) as provided by four respondents in the US

SPF conducted in the second quarter of 2020, specifically in mid-May (from now on, we will

use the notation XQY to denote the survey made in quarter Y of year X). These probabilities

are displayed as histograms, while the black ticks on the horizontal axis mark the boundaries

of the bins. In 2020Q2 the survey histogram has 11 bins with bounds −12, −6, −3, 0, 1.5,

2.5, 4, 7, 10, and 16, with left and right open bins. In the SPF the bins have been changing

over time. Stark (2013) discusses at length some of the features of the SPF survey, and the

Philadelphia Fed’s site provides a manual for interpreting the data that includes the history

up to the present of bin boundaries for the various variables being forecast. The fact that
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the bin boundaries change over time needs to be borne in mind when comparing surveys for

different years.

These four examples illustrate a few common features of the SPF data: potential asym-

metry, the presence of probability mass on open bins (forecaster 576 assigns most probability

mass to the left open bin), the fact that some forecasters assign positive probability to most

if not all bins (forecaster 422) while for others most bins have zero probability (forecaster

527), and rounding (almost all probabilities in Figure 1 are round numbers, with some bins

for forecaster 422 being the only exception). The econometrician’s problem is to use those

few points given by the elements of the survey probability vector zi of the i-th forecaster

to address a number of questions of interest: What is the mean prediction for forecaster i?

How uncertain are they? What probability do they place on tail events, e.g., output growth

in 2020 or 2021 being below 10 percent? The next section describes how the literature has

gone after this problem, considering the survey features mentioned above.

II.B Current Approaches

This section describes the approaches used so far for translating the information provided

by the respondents into the objects of interest mentioned above. The general approach for

macroeconomic surveys has been to postulate that forecasters i = 1, . . . , n have in mind a

given predictive probability distribution Fi(y) over the variable being forecast, which they

use to assign the bin probabilities zi. The name of the game for the econometrician is then

to conduct inference on Fi(y) based on the data zi, and then use the estimated Fi(y) to

answer the questions of interest.

To our knowledge, all existing literature has accomplished this task by fitting a given

parametric distribution to the Cumulative Distribution Function (CDF) implied by the bin

probabilities, respondent by respondent, that is fitting Zij = zi,1 + · · · + zi,j j = 1, . . . , J ,

i = 1, . . . , n using a parametric family of distributions {F (y|θ) : θ ∈ Θ}. The type of

the parametric distribution varies across studies, from a mixture of uniforms/piece-wise

linear CDF (that is, assuming that the probability is uniformly distributed within each

bin; Zarnowitz and Lambros, 1987), to a Gaussian (Giordani and Soderlind, 2003), a skew-

normal (Garcia and Manzanares, 2007), a generalized beta (Engelberg et al., 2009)1 and

a skew-t distribution (e.g., Ganics et al., 2020). The Gaussian and the generalized beta

1Whenever the number of (adjacent) bins with positive probability is two or fewer, Engelberg et al. (2009)

uses a triangular distribution.
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assumptions have been the most popular approaches in academic research, as discussed in

ClementsetalCHAPT-inVOLUME (2022), although in applied work at central banks the

mixture of uniforms approach is often followed. The parameters of each distribution are

usually estimated using nonlinear least squares, respondent by respondent; that is, Fi(y) =

F (y|θ∗i ), where

θ∗i = argmin
θi

J∑
j=1

∣∣∣Zij − F (yj|θi)
∣∣∣2. (1)

These approaches have been popular but have some limitations, which are generally

well known in the literature and which we discuss in the remainder of this section using the

examples of Figure 1, focusing on the generalized beta and Gaussian cases.2 A first limitation

is that the assumed parametric distribution may be misspecified, in the sense that it may

not fit the individual responses very well. For instance, the right column panels of Figure 2

show that for respondents 587 and 422 neither the normal nor the beta distributions fit all

the observed Zij’s. Second, the width of the bins can be large, as is the case for real output

growth in 2020Q2, implying that even if the distributions fit the Zij’s well, the inference

results on moments and quantiles can be sensitive to the distributional assumption.

Another issue is that bounded distributions such as the beta or the mixture of uniforms

take literally the zij that are zero, in that they place no probability mass on bins where

the respondents place no mass (see respondents 587, 576, and 527). Since y is a continuous

variable, one suspects that zij = 0 may not literally mean that Fi(y) places no mass on

that interval, but that the mass is relatively small so that the respondent felt comfortable

reporting zero. More generally, for all assumed F (·)’s the approach outlined in expression (1)

ignores the issue of rounding, in that it takes all the Zij’s literally even though, as mentioned

before, they are all round numbers suggesting that the respondent reported approximate

probabilities (Dominitz and Manski, 1996; D’Amico and Orphanides, 2008; Boero et al.,

2008b, 2014; Engelberg et al., 2009; Manski and Molinari, 2010; Manski, 2011; Giustinelli et

al., 2020, among others, discuss the issue of rounding; Binder, 2017 uses rounding to measure

uncertainty).3

2In what follows, when showing results using the beta assumption we follow Engelberg et al. (2009) quite

literally. We also followed the literature in terms of closing the open bins for both the generalized beta and

the step-wise uniform.
3Manski and Molinari (2010) and Giustinelli et al. (2020) propose to treat the issue of rounding by

considering interval data and using a person’s response pattern across different questions to infer her or his

rounding practice. It is important to note that the inferential approach based on interval data followed by

these researchers is very different from the one described at the beginning of this section.
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Figure 2: Inference Using the Uniform, Beta, and Gaussian Distributions: PDFs and CDFs

for Selected Examples from the 2020Q2 SPF

(587) – Forecast for output growth in 2020

(576) – Forecast for output growth in 2020

(422) – Forecast for output growth in 2021

(527) – Forecast for output growth in 2021 made in 2020Q2

Note: Nonlinear least squares estimation of the subjective PDF (left) and CDF (right) using the normal (gray, dashed line)
or beta (black, dash-and-dotted line) parametric assumptions. In addition, the left column shows the step-wise uniform PDF
(dotted lines) obtained from step-wise uniform PDF (dotted lines) implied by the histogram probabilities zij , j = 1, . . . , J . The
right column displays the observed cumulated histogram probabilities Zij j = 1, . . . , J (crosses).
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Finally, and very importantly, existing approaches do not capture inference uncertainty.

Because of the limited information available, the econometrician cannot be sure about the

inferred CDF Fi(·). Yet, most if not all existing approaches completely ignore this inference

uncertainty, even that concerning θi for a given parametric assumption, let alone the uncer-

tainty about the shape of Fi(·). For respondent 527 in Figure 2 there are arguably many

Gaussians with a fit very close to that of the one implied by θ∗i .
4 This omission implies that

confidence bands and hypothesis testing procedures cannot be derived.

As mentioned, these limitations are well known in the literature. There have been at-

tempts to address some of these issues, in particular the potential misspecification, by choos-

ing more flexible families of distributions such as the skew-normal or the skew-Student-t

distribution (e.g., Garcia and Manzanares, 2007; Ganics et al., 2020). But the risk of mis-

specification obviously remains; for example, some forecasters display multimodal histograms

(see Del Negro et al., 2018). Most importantly, if the econometrician does not account for in-

ference uncertainty, this flexibility comes at the price of possible overparamterization. Again,

respondent 527 has a histogram with only two bins, and one can hardly discriminate between

normal and Student-t distributions. The next section discusses an inference method that

attempts to overcome some of the limitations of the current approaches.

II.C A Bayesian Non-parametric Alternative

The Bayesian method developed in Del Negro et al. (2018) relies on a probabilistic model for

the forecaster’s subjective probabilities and a flexible (non-parametric) modeling approach.

We will refer to this method as BNP. It differs from existing methods in four important

dimensions. First, it is robust to misspecification regarding the parametric assumption for

predictive CDF Fi(·). Second, the method allows for full-fledged inference regarding the

mapping between data and objects of interest (e.g., the quantiles of the predictive den-

sity), thereby providing posterior probabilities that reflect inference uncertainty. Third, it

conducts inference jointly across survey respondents, that is, using the entire cross-section

4Researchers recognize the emergence of an inference issue especially when the information provided by the

respondent is very limited, but the proposed solution mostly amounts to either choosing less parameterized

distributions or discarding the respondent. For instance, some researchers simply discard histograms with

fewer than three bins Clements (2010), others (Engelberg et al., 2009; Clements, 2014b,a; Clements and

Galvão, 2017) use a triangle distribution in these cases, as mentioned above. Liu and Sheng (2019), however,

make an attempt to account for parameter uncertainty for given parametric assumptions. They propose

maximum likelihood estimation of parametric distributions on artificial data generated from the histogram.



9

instead of being applied to each respondent separately. The joint inference allows for par-

tial information pooling across forecasters and exploits commonalities across forecasters to

improve our inference for the aggregate and individual CDFs. This implies that when the

number of forecasters grows posterior estimates become more precise, making it possible to

obtain some consistency results, as discussed later. Fourth, it explicitly accounts for noise

(including rounding toward zero) in the survey responses.

This section offers a mostly verbal description of the approach, keeping the analytical

expressions to a minimum. Del Negro et al. (2018) provides any missing detail and contains

formal derivations of the results mentioned in this section. The model description works as

follows. We first describe a parametric model. This model follows the literature in that it

assumes that forecasters have in mind a specific predictive distribution F (·) which they use

to assign probabilities ν to the bins. It is different from the literature in that it explicitly

postulates that the data z are noise-ridden versions of the ν’s, where again the noise is

assumed to have some parametric form. We then depart from this parametric framework by

embedding it into a more general Bayesian non-parametric approach, thereby amending the

potential misspecification associated with the parametric assumptions.

A parametric probabilistic model

The probabilities zi reported by the forecaster are imperfect representations of the respondent

forecast uncertainty (see Boero et al., 2008a and the discussion in ClementsetalCHAPT-

inVOLUME, 2022), and can be considered noise-ridden measurements of an unobserved

vector of subjective probabilities over the J bins νi = (νi1, . . . , νiJ) with νij ≥ 0 and νi1 +

. . .+ νiJ = 1. The uncertainty in the vector of probabilities zi is encoded into a probability

distribution h(·),
zi = (zi,1, . . . , zi,J) ∼ h(zi|νi;θi), (2)

which captures the noise due to approximations or to actual mistakes in reporting. In

choosing h(·), one needs to account for the fact that zi belongs to the simplex; that is, the

elements of zi are positive and sum up to one. A natural choice for random variables on the

simplex is the Dirichlet distribution. A drawback of the standard Dirichlet distribution is

that its PDF is null for zi’s that have some elements equal to zero, when in fact forecasters

often assign zero probability to one or more bins. Del Negro et al. (2018) therefore use the

Zadora distribution (see Zadora et al. (2010); Scealy and Welsh (2011)), which allows for

values of the random vector that are zeros.
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The vector of probabilities over the J bins can be re-parameterized with a family of

subjective probability functions F (y|θ):

νij(θi) = F (yj|θi)− F (yj−1|θi), j = 1, . . . , J. (3)

This leads us to write h(zi|νi;θi) as h(zi|θi), where θi ∈ Θ includes both the parameters

describing the CDF F (·) and those needed to specify h(·) in (2). In the application below,

we follow Del Negro et al. (2018) and assume F (·) is a mixture of two normal distributions.5

A Bayesian non-parametric approach

The Bayesian non-parametric approach amounts to a flexible hierarchical setup where each

respondent is described by a potentially infinite mixture of the parametric probability distri-

bution described so far. These mixtures can be seen as forecaster “types” (for concreteness,

let us think of low and high uncertainty; low and high mean; left-skewed and right-skewed;

low and high reporting noise; et cetera). Assume that the population of forecasters has K

different types, and recall that h(zi|θi) subsumes differences in the parameterization of both

the h(·) and the F (·) functions. At the first stage of the hierarchy of distributions, the i-th

forecaster’s response is characterized by h(zi|θi), where the parameters θi are distributed

according to

θi
iid∼


θ∗1 with probability p1

...

θ∗K with probability pK

(4)

or, equivalently, θi ∼ G i.i.d. for

G(θ) =
K∑
k=1

pkδ(θ − θ∗k) (5)

5The mixture is parametrized as F (y|θ) = (1−ω)Φ(y|µ, σ2
1)+ωΦ(y|µ+µδ, σ

2
2), where Φ(y|µ, σ2) denotes

the normal CDF with location µ and variance σ2. The Zadora distribution is parameterized as

h(z|θ) ∝

 J∏
j=1

αj(θ)ξj (1− αj(θ))1−ξj

 Γ
(∑

j∈J ∗ φνj(θ)
)

∏
j∈J ∗ Γ(φνj(θ))

∏
j∈J ∗

z
φνj(θ)−1
j ,

where the auxiliary variable ξj is equal to 1 if zj = 0 and 0 otherwise, J ∗ = {j = 1, . . . , J ; ξj = 0} indicates

the bins with non-zero probabilities, (α1(θ), . . . , αJ(θ)) are the probabilities that a forecaster will report a

zero on the J bins, and

αj(θ) =

∫ ε

0

g(x|νj(θ), r)dx,

where g(x|m, r) denotes the PDF of a beta distribution Be(m, 100) with mean m and precision 100.



11

with δ(x) a point mass distribution located at 0, pk > 0 and p1 + . . .+pK = 1. At the second

stage of the hierarchy, it is assumed that the unknown parameter types are sampled from

a common distribution θ∗k
iid∼ G0(θ), k = 1, . . . , K, and the type probabilities have prior

distribution

(p1, . . . , pK) ∼ Dir
(ψ0

K
, . . . ,

ψ0

K

)
, (6)

where ψ0 is a concentration parameter and Dir(a1, . . . , aK) a Dirichlet distribution of pa-

rameters (a1, . . . , aK).

When K goes to infinity, one obtains

G(θ) =
∞∑
k=1

pkδ(θ − θ∗k), (7)

where θ∗k
iid∼ G0 and pks is a sequence of random weights with stick breaking representation

SB(ψ0) described, for example, in Pitman (2006). This hierarchical model is known as a

Dirichlet process prior:

θi
iid∼ G, G ∼ DP(ψ0, G0),

where the random probability measure G is a Dirichlet process with law DP(ψ,G0) (see

Ferguson, 1973). The base measure G0 has the interpretation of mean type distribution,

and the precision parameter ψ0 measures the concentration of G around G0, so that when

ψ0 → +∞ all forecasters are assumed to be of the same type and when ψ0 → 0 the inference

is done forecaster by forecaster (using the same prior).

The intuition behind Bayesian non-parametrics is that each forecaster can be described

by a prior distribution over a sufficiently rich parameter space. Bayesian non-parametrics

allows for some degree of pooling: the approach allocates forecasters whose predictive dis-

tributions are similar to one another into groups and allows the number of groups to grow

naturally as more data becomes available. This pooling mitigates overfitting and produces

sharper inference. At the same time, the non-parametric nature of the prior overcomes the

inherent misspecification implied by the use of a specific parametric distribution and thereby

delivers some consistency results when n goes to infinity which we briefly mention below.6

6The Dirichlet process prior is an example of a Bayesian non-parametric model and it has been applied

in many fields, including econometrics (e.g., see Hirano, 2002; Griffin and Steel, 2011; Bassetti et al., 2014,

2018; Griffin and Kalli, 2018; Billio et al., 2019) and psychometrics (e.g., see Navarro et al., 2006; Karabatsos

and Walker, 2009; Li et al., 2019). In econometrics, Bayesian non-parametrics has been used to build

robust models that account for heavy tails, skewness, and multimodality. In psychometrics, Bayesian non-

parametrics has been successfully employed to accommodate heterogeneity in experimental responses within

models for cognitive processes.
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Some asymptotic properties

Asymptotic properties of the proposed Bayesian model can be studied in two settings: large

n and large J . The first asymptotic scenario concerns the consistency of the posterior

distribution of the Bayesian model for the inference on the z’s, while the second concerns the

inference on the underlying probability distribution F (·). When the number of forecasters n

grows to infinity, the posterior distribution concentrates around the process that is generating

the data z1, z2, . . . (Ghosh and Ramamoorthi, 2003). Very loosely speaking, this implies that

whatever the data generating process for the z1, z2, . . ., the posterior will recover it. When,

in addition, the number of bins J goes to infinity, the bin size goes to zero and the rounding

disappears. Thereafter, the random histogram model zi converges to an infinite dimensional

model where each forecaster’s response is modeled by a (random) CDF Zi,∞ with mean

F (·|θi). Del Negro et al. (2018) provide a much more formal treatment.

Finite sample properties and caveats

Given a finite sample of forecasters, the posterior distribution can be easily approximated by

Monte Carlo sampling (see Del Negro et al., 2018, for further details). This method generates

random draws from the posterior distribution of θi and of the subjective CDF F (y|θi). For

each posterior draw, the quantity of interest is computed, whether it involves individual

forecasters or the cross-sectional distribution of forecasters. Point estimates, whenever used,

and posterior credible intervals for any such object are obtained from this simulated posterior

distribution.

The choice of the probabilistic model and of the prior distribution can have an impact on

the results given that n is far from infinity (it hovers around 30 for the SPF) and especially

because the number of bins J and of observations for forecasters are small (e.g., J = 10

in the US SPF on GDP in 2020). Therefore the choice of the probability density h(·),
and in particular the distribution family F (·), does matter. When the number of bins

decreases and/or the bin width increases, the amount of information available to reconstruct

the subjective CDF diminishes, and model assumptions can have a more significant impact

on the empirical results. An advantage of the Bayesian approach is that it accounts for the

lack of information returning wider credible intervals, as we will see below. In general, the

approach provides a measure of the level of estimation uncertainty for all objects of interest.

Nevertheless, a robustness check with respect to the specification of the prior distribution

and the distribution family should be considered in all applications of this method.



13

A comparison with existing approaches

We conclude this section with some comparisons between the different approaches in our

application.7 Figure 3 shows the inference results for the four SPF respondents shown in

Figure 1. For each forecaster we show posterior draws (thin gray lines) from the BNP model

for the subjective CDFs (top) and their quantiles (bottom), and compare it with the beta

(black, dash-and-dotted lines for the CDF, and squares for the quintiles) and Gaussian (gray,

dashed lines for the CDF, and circles for the quintiles) approaches. The CDF plots also show

the observed cumulated histogram Zij (crosses), as in Figure 2. The quantiles shown in the

bottom panels are the 5th, 10th, 25th, 50th, 75th, 90th, and 95th, with colors becoming

lighter the farther away the quantile is from the median.

For the BNP approach, the bars represent the posterior means for each quantile and,

for each quantile, the (5,95) posterior coverage intervals are shown using triangles. Figure 4

shows posterior draws from the BNP model for the subjective PDFs for the same forecasters,

along with the step-wise uniform PDF obtained from histogram probabilities zij, j = 1, . . . , J

(dotted lines).

Figure 3 is helpful in illustrating a few points about the BNP approach. First, the

observed cumulative histogram (the Zij’s; crosses) belongs to the high posterior density

region for all respondents. In contrast, as noted in discussing Figure 2, the beta and the

normal approaches do not always fit the Zij’s well, and in these cases their CDFs do not

belong to the high posterior density region obtained from the BNP approach. This implies

that there can be significant differences in the quantiles implied by the different approaches

(see, for instance, forecaster 587 or 422). Both the beta and the normal distributions miss

the fat-tails of the distribution (e.g., see the left tails in the CDF chart, which are apparent

also from Figure 4), and the interquartile range is much wider than that implied by the BNP

approach.

Figure 3 also shows that whenever there is less information from the respondent, the

BNP approach delivers wider posterior coverage intervals reflecting the higher degree of

uncertainty. The case of respondent 576 is exemplary. This respondent places 55 percent

7The prior distribution on the parameters µ, µδ, σ1, σ2, ω, φ and ε is a Dirichlet process with con-

centration ψ0 = 1 and base measure G0 given by µ ∼ N (2, 52) (normal); σj ∼ IGa(aσ, bσ)I(σj)(0,10)

j = 1, 2 (inverse gamma), E[σj ] = 2 and V [σj ] = 4; µδ ∼ N (0, 2.52) (normal); ω ∼ Be(0.5, 3) (beta);

φ ∼ Ga(aφ, bφ)I(σj)(0,10) (gamma), s.t. E[φ] = 25 and V [φ] = 100; ε ∼ Ga(aε, bε) (gamma) s.t. αj is close

to one for νj < 0.01, very small for any νj > 0.05, and virtually zero when νj > 0.1.
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Figure 3: Inference Using Bayesian Non-parametric Approach: CDFs and Quantiles for

Selected Examples from the 2020Q2 SPF

Forecasts for output growth in 2020

(587) (576)

Forecasts for output growth in 2021

(422) (527)

Note: In each panel: the subjective CDFs (top panels) and selected quantiles (bottom panels). Top panels: subjective CDF
using least-squares approach with normal (gray, dashed line) or beta (black, dash-and-dotted line) assumption; subjective CDF
using BNP approach (posterior random draws in light gray); and observed cumulated histogram probabilities Zij j = 1, . . . , J
(crosses). Bottom panels: Quantiles of the predictive distribution computed using the normal (gray circles) or beta (black
squares), and the BNP approach. The quantiles shown are the 5th, 10th, 25th, 50th, 75th, 90th, and 95th, with colors
becoming lighter the farther away the quantile is from the median. For the BNP approach the bars represent the posterior
means for each quantile and, for each quantile, the (5,95) posterior coverage intervals are shown using triangles.
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Figure 4: Inference Using Bayesian Non-parametric Approach: PDFs for Selected Examples

from the 2020Q2 SPF

Forecasts for output growth in 2020

(587) (576)

Forecasts for output growth in 2021

(422) (527)

Note: In each panel: subjective PDF using BNP approach (posterior random draws in gray); and step-wise uniform PDF
(dotted lines) implied by the histogram probabilities zij , j = 1, . . . , J .

probability on the left open bin (see Figure 1), implying that we know very little about

the left-tail behavior of this forecaster. The posterior coverage intervals for both the BNP

CDF and PDF reflect this uncertainty, as evidenced by the fact that the gray lines for both

the CDF and the PDF are far less concentrated for forecaster 576 in the left tail than for

other forecasters (e.g., 587). Moreover, the gray lines for the left tails are less concentrated

than for the right tails, where we have more information. The posterior distribution for the

quantiles (especially for the left tail) also reflects this lack of information.

While Figures 2, 3, and 4 looked at a few examples, Figure 5 compares all participants

across different parametric assumptions and estimation approaches, for the forecasts for 2021
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Figure 5: Inter-quantile Ranges: Implications from Alternative Approaches

Normal Beta

Forecasts for output growth in 2021 made in 2020Q1 (pre-COVID)

IQD(10, 90)

Forecasts for output growth in 2021 made in 2020Q2 (during COVID)

IQD(10, 90)

Note: In each plot, the dot coordinates represent the IQDs (or IQR) computed according to the BNP (horizontal axis) and the
least-squares (vertical axis) approaches for the normal (left, gray circles) or beta (right, black squares) distributions.

made in 2020Q1 and 2020Q2.8 In the comparison we use the interquantile distances (IQD)

of the subjective CDF. Let F denote a CDF; its IQD(q, r) is defined as

IQD(q, r) = F−1(r/100)− F−1(q/100) (8)

with q ≤ r and q, r ∈ [0, 100]. The interquartile range (IQR), a measure widely used to

measure uncertainty in probability forecasts (see ClementsetalCHAPT-inVOLUME, 2022),

is a special case of the IQD(q, r) for q = 25 and r = 75.

Each plot shows the IQDs computed according to BNP on the x-axis versus the IQDs

computed using the normal (left column; gray circles) or beta (right column; black squares)

approaches on the y-axis. The dot reports the BNP posterior mean while the thin horizontal

8Note that beginning with the 2020:Q2 SPF, changes were made to the definition of the bins for real

GDP growth. Prior to 2020Q2, there were 11 bins with bounds −3, −2, −1, 0, 1, 2, 3, 4, 5, and 6 with left

and right open bins.



17

lines provide the 95 percent posterior credible intervals. The 45-degree line indicates BNP

and least-squares estimates are equal. While some of the points lie not too far from the

45-degree line, there are several deviations. For many forecasters, the BNP estimates of

the IQD(10, 90) are smaller than the least-square estimates (dots below the 45-degree line),

suggesting that the subjective CDF BNP estimates’ tails have a slower decay rate than one

of the other models. Note that this is the case both before and after COVID, although the

range of the x-axis is very different. For the IQRs (not shown), differences between BNP and

alternative approaches are smaller—most points lie not far from the 45-degree line. Still, if

we compute the ratio of the IQRs computed using the different approaches, we find that the

posterior mean of these ratios varies from below 0.5 to above 1.5, suggesting that different

approaches can lead to a different assessment of uncertainty.

III Challenges in Measuring Uncertainty

Assessing uncertainty plays an important role in macroeconomics analysis (Bloom, 2009, and

Jurado et al., 2015, are two notable examples, and Bloom, 2014, provides a survey). Density

predictions have the advantage over point predictions in that they provide information about

the forecasters’ subjective view on uncertainty. A large body of literature, much of it reviewed

in ClementsetalCHAPT-inVOLUME (2022), makes use of uncertainty measures based on

surveys of forecasters and investigates their properties.9

Measuring uncertainty in the context of density forecasts is not a trivial task, and this

section reviews the approaches that have been used in the literature and the extent to which

they may lead to different answers (see also Manski, 2018, for an insightful discussion). The

variance (or the standard deviation) is a natural measure of uncertainty, but it is sensitive

to assumptions on the tail behavior of the PDF. Cognizant of its current limitations (e.g.,

the fact that the beta chops off the tails altogether, or that the Gaussian does not capture

possible fat tails), the literature has often relied on measures of uncertainty based on the

IQR or other IQDs (e.g., Engelberg et al., 2011; Manski, 2018; Bruine De Bruin et al., 2011,

among many others). If one ignores issues of rounding, IQRs are particularly robust because

9Zarnowitz and Lambros (1987) and Giordani and Soderlind (2003) find that forecasters underestimate

uncertainty. Boero et al. (2008a),Daniel and Hirshleifer (2015), Kenny et al. (2014), Malmendier and Taylor

(2015) also find that forecasters are overconfident and discuss various strategy to measure overconfidence.

Some researchers (e.g., Liu and Sheng, 2019) explore the impact of subjective uncertainty on macroeconomic

activity or discuss its evolution over time (e.g., Campbell, 2007).
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the bins’ edges can provide a non-parametric boundary for the quartiles. Since in normal

circumstances it is quite rare for respondents to place more than 25 percent probability on the

open bins, if F (yj) < .25 and F (yj+1) > .25, then it had better be that yj < F−1(.25) < yj+1.

Figure 6: Which Measure of Uncertainty?

IQR vs IQD(10, 90)

2020Q1 2020Q2

IQR vs IQD(5, 95)

IQR vs Standard Deviation

Note: In each plot: dots coordinates are the ratio between the BNP IQR/IQD ratio and the theoretical value of the ratio under
Gaussianity (vertical axis) and the mean IQR (horizontal axis); vertical lines represent credible intervals.

A number of challenges remain, however. First, rounding may make non-parametric

boundaries less reliable. Second, it is not clear what to do in the event that the given para-

metric distribution does not fit the points in the CDF well, such that F−1(.25) or F−1(.75)
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and the non-parametric boundaries are at odds— the beta for forecaster 422 in Figure 2 be-

ing one example. Third, there are cases, as we have seen, where respondents place more than

25 percent probability on the outer bins, and these cases are more frequent precisely when

the uncertainty increases, that is, when monitoring it becomes most important. Fourth,

when the gap between bins is wide, the IQR remains dependent on the assumed parametric

distribution, as is the case for output forecasts during COVID. For instance, F−1(.25) could

be anywhere between -6 and -12 percent for respondent 587 in Figure 2.

Perhaps the most important issue is that only under Gaussianity are the IQR, other

IQDs, and the standard deviation proportional to one another and provide the same as-

sessment of uncertainty. In the presence of skewness or kurtosis these various measures can

provide quite different answers. We have seen above examples of distributions that appear

to be far from Gaussian. How general is this situation? In the remainder of the section, we

use the SPF dataset to provide an illustration of this issue.

Figure 6 considers two sets of forecasts: forecasts for 2020 made before (2020Q1, left

column) and after (2020Q2, right column) COVID. The first row plots show, for each re-

spondent in the survey, the ratio (vertical axis) between the IQR and the IQD(10, 90) (BNP

estimates), divided by the theoretical value of this ratio under Gaussianity versus the mean

IQR (horizontal axis). In other words, if the distributions were all Gaussian, all the points

should be equal to 1 (horizontal dashed line). We see that under standard circumstances

(left column) when uncertainty is small, most observations are fairly close to 1 with only a

handful of exceptions. When uncertainty becomes very large, however (right column), devi-

ations from Gaussianity become both larger (a ratio of 2 means that the IQD(10, 90) is twice

as large as that implied by the IQR under normality) and more common. The last two rows

perform the same analysis for IQD(5, 95) and for the standard deviation. Not surprisingly,

the deviations from Gaussianity are even larger when looking at these two statistics and

quantitatively striking for forecasts made in 2020Q2: for several forecasters, uncertainty is

at least 50 percent larger when measured using the IQD(5, 95) or the standard deviation

relative to the IQR. The bottom line from this section is that one measure of uncertainty

is probably not sufficient, particularly in periods when uncertainty is high. For this reason,

when assessing the evolution of uncertainty over time in section VI we look at a variety of

measures.
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IV Heterogeneity in Density Forecasts

Subjective density forecasts can be very different from one another. The probabilistic pre-

dictions for output growth in 2021 made by forecasters 422 and 527 in Figure 1 are a shining

example of this phenomenon. This section discusses heterogeneity in both the first and the

second moments of the forecast distributions, using the SPF surveys during the pandemic

as an illustration.

Figure 7: Quantiles and Mean of Individual Density Forecasts for Output Growth

Forecasts for 2020 made in 2020Q1 Forecasts for 2020 made in 2020Q2

Note: For each object (quantiles and mean) we report the posterior mean.

It was established long ago—at least since Wachtel (1977) and Bomberger and Frazer

(1981)—that forecasters disagree about point forecasts, and a large literature has docu-

mented and tried to explain this phenomenon for macroeconomic surveys (see, for instance,

Mankiw et al., 2003; Carroll, 2003; Capistrán and Timmermann, 2009; Patton and Tim-

mermann, 2010, 2011; Andrade and Le Bihan, 2013; Andrade et al., 2016 and other papers

surveyed in ClementsetalCHAPT-inVOLUME, 2022). While much of the early literature

focused on point projections, some studies documented the fact that forecasters disagree

about uncertainty (e.g., Lahiri and Liu, 2006, D’Amico and Orphanides, 2008 and Man-

ski, 2018).10 A number of papers provide evidence of persistent heterogeneity in subjective

uncertainty (Bruine De Bruin et al., 2011; Boero et al., 2014) and interpret this fact as

10Lahiri and Liu (2006) measure the uncertainty by fitting a Gaussian CDF to each forecaster’s histogram
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suggesting that the degree of uncertainty is a forecaster-specific characteristic akin to the

individual optimism and pessimism established in the literature on point forecasts. While

the papers mentioned above provide quantitative evidence on forecasters’ heterogeneity by

focusing on the variance of first- or second-order moments, other work discusses higher mo-

ments (e.g. Mirkov and Steinhauer, 2018) or uses measures of discrepancy based on entire

predictive distribution (e.g., Shoja and Soofi, 2017, Cumings-Menon et al., 2021, and Rich

and Tracy, 2021). In particular, Rich and Tracy (2021) propose a measure of heterogeneity

based on the Wasserstein distance, which they computed assuming that individual PDFs

are step-wise Uniform distributions. See also ClementsetalCHAPT-inVOLUME (2022) for

further references.

In the remainder of the section we document the fact that SPF forecasters do indeed

significantly disagree about the uncertainty in the economy and that the extent of their

disagreement increases in high-volatility periods such as COVID. Figure 7 shows the quantiles

for the individual output growth density forecasts for 2020 made in 2020Q1 (left panel),

right before the COVID pandemic reached the US, and the following quarter, 2020Q2 (right

panel). For each forecaster the quantiles of the distribution are depicted using different

shades of gray: light gray for the segment connecting the 5th and 95th quantiles, slightly

darker gray for that connecting the 10th and 90th quantiles, and black for the 25th-75th

range. The median is denoted using a single vertical black bar and the mean by a cross.

For each object (quantiles and mean) we report only the posterior mean, because visualizing

posterior uncertainty as in Figure 3 becomes challenging. In each panel the forecasters are

sorted from 1 to n, where n is the total number of forecasters in each survey, on the basis of

their (posterior mean) IQR.

Since the survey composition changes from survey to survey the figure does not allow for

comparing the change in uncertainty for the same individual (some of the results shown later

in Section VI are more suited for this purpose). The point of Figure 7 is instead twofold.

First, it provides a bird’s-eye view of the dramatic differences in uncertainty between the two

surveys, even though their temporal distance is only one quarter (the x-axis is the same in

and using the “whisker plots” (that is, plotting some key quantiles of the distribution). D’Amico and

Orphanides (2008) measure the individual variance under the Normal parametric assumption, assume a

Gamma distribution for the cross-section of individual variances, and use the variance of this Gamma to

measure disagreement about uncertainty. Still in the context of the SPF, Manski (2018) plots the median

versus the IQR for a cross-section of SPF forecasters and thereby documents the heterogeneity in both the

central tendencies and uncertainty. a few papers (Clements, 2014b; Manzan, 2021, among others) discuss

the updating of density forecasts and in particular uncertainty in light of new information.
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both panels to emphasize this point). In 2020Q1 essentially all IQD(5,95) are between 0 and

4, while in 2020Q2, for many of the participants, they are several times as large. Second, it

shows that heterogeneity in both central tendencies and subjective uncertainty is sizeable.

Some forecasters remain quite confident about their predictions even during COVID, while

for others the IQD(5,95) is almost as large as 20 percent. While the fact that the location of

the bins changed from 2020Q1 to Q2 may explain part of the increase in average uncertainty

across surveys, it is less clear that it has an effect on the increase in heterogeneity.

Figure 8: Disagreement About Mean, Median, and Uncertainty for Output Growth

Ranked Mean and Median
(Differences wrt Cross-Sectional Median)

Ranked Interquantile Differences
and Standard Deviations

(Differences wrt Cross-Sectional Median)
Forecasts for 2020 made in 2020Q1

Forecasts for 2020 made in 2020Q2

Note: Left: ranked differences in the mean (light gray, squares) and the median (black, crosses). Right: ranked differences in
the IQR (black, crosses), IQD(5,95) (gray, diamonds), and standard deviation (light gray, squares). The reported values are
the posterior means of the quantities of interest.

Figure 8 provides evidence on the heterogeneity in central tendencies and uncertainty, as

well as its evolution with COVID. The left column in Figure 8 shows the means (light gray,
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squares) for all respondents, sorted in increasing order, and expressed in difference from the

cross-sectional median (of the means). The black line with crosses does the same for the

median. The right column uses the same approach to quantify heterogeneity in uncertainty,

as measured by the IQR (black, crosses), the IQD(95, 5) (gray, diamonds), and the standard

deviation (light gray, squares). Full homogeneity implies that each line is vertical at zero.

The flatter the curve, the higher the level of disagreement among forecasters. The top and

bottom row concern predictions made in 2020Q1 and 2020Q2, respectively.

That the scale of the x-axis is almost one order of magnitude larger for 2020Q2 than

2020Q1 for both heterogeneity in central tendencies and uncertainty is quite telling. Dif-

ferences in means or medians between more and less optimistic forecasters are on the order

of about 1 percent in 2020Q1. They become about 10 percent in 2020Q2. Heterogeneity

in uncertainty is more sensitive to how it is measured. In 2020Q1 the difference in IQRs

between the least and the most uncertain respondent is on the order of 1 percent, while the

difference in IQD(5,95) and standard deviations is about 1.5 and 2 percent, respectively.

In 2020Q2, as the COVID pandemic hit the US, the difference in IQRs between the least

and the most uncertain respondent is about 7 percent, while that in IQD(5,95) is almost a

staggering 20 percent. This suggests that the assessment of tail events is far more different

in 2020Q2 than before COVID. The different behavior of the IQRs and IQD(5,95) confirms

the departure from Gaussianity discussed in the previous section. The difference in standard

deviations in 2020Q2 is smaller, however, and closer to that of IQRs.

An interesting feature of Figure 8 is that the clustering of the CDF forecasters in terms

of both means and uncertainty is quite evident from the staircase-like behavior of the curves

for the pre-COVID density predictions, with three or more forecasters having very similar

central tendencies or degrees of uncertainty. In 2020Q2 the curves are more continuous,

although there is still some amount of clustering. This also indicates that the amount of

heterogeneity increases together with uncertainty during COVID.

V Pooling and Consensus Forecasts

It is common practice to aggregate forecasters, if only to simplify the presentation of the

analysis and avoid reporting all the individual responses. The goal of forecast combination

is to reduce the information of a pool of forecasts to a single combined forecast (e.g., see

Timmermann, 2006). Combination may occur at two different levels: point forecasts or
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probability forecasts. For example, the Philadelphia Fed reports the SPF data aggregated

across forecasters in two ways: the median of the point forecasts and the average probability

mass in each bin for the probability forecasts. In the remainder of the section we focus on

combining probabilistic forecasts.

The simplest possible combination formula for histograms, densities, and CDF is the

linear combination, also known as linear pooling (se, e.g. Genest and Zidek, 1986). The

linear pooling of subjective PDFs and CDFs is defined as

f̄w(y) =
n∑
i=1

wif(y|θi), F̄w(y) =
n∑
i=1

wiF (y|θi), (9)

where wi ≥ 0, i = 1, . . . , n,
n∑
i=1

wi = 1, and f(y|θi) is the PDF associated with the subjec-

tive CDF F (y|θi). The equally weighted linear pooling, also known as “consensus density

forecast,” is obtained for wi = 1/n. In what follows, we denote with f̄(y) and F̄ (y) the con-

sensus PDF and CDF, respectively. Analogous definitions can be given for equally weighted

linear pooling of histograms and cumulated histograms, that is, z̄j = (z1j + . . . + znj)/n

and Z̄j = (Z1j + . . . + Znj)/n. Empirical studies have shown that consensus performs rel-

atively well in practice and usually outperforms more sophisticated pooling schemes (e.g.,

Zarnowitz, 1967, and more recently Genre et al., 2013, and Conflitti et al., 2015).

Figure 9 provides examples of consensus density forecasts. The top-row panels show

the step-wise uniform PDF implied by the pooling probabilities z̄j, j = 1, . . . , J , for output

growth in 2020 (left) and 2021 (right) from the 2020Q2 SPF survey (step-wise dotted lines).

They also show the estimated consensus PDF obtained using the BNP approach (posterior

draws in gray). The middle-row panels show the cumulated histogram pooling probabilities

Z̄j j = 1, . . . , J (crosses) and the consensus CDF (posterior draws in gray). The bottom

panels display selected quantiles of the consensus distribution computed using the BNP

approach, with the bars representing the posterior means for each quantile and the triangles

representing the (5%,95%) posterior coverage intervals. Figure 9 shows that the level of

estimation uncertainty for the consensus PDF or CDF is generally much smaller than that

for individual forecasters (recall Figure 3). This reduction in the inference uncertainty is

an effect of both averaging and the fact that pooling favors posterior concentration. Figure

9 also suggests that estimation uncertainty for the consensus distribution in 2020 (left) is

larger than that for 2021 (right), partly because in 2020 respondents assign substantial mass

to the left open bin and to the very wide bin (−12,−6].
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Figure 9: 2020Q2 Consensus PDF, CDF, and Quantiles

Forecasts for output growth in 2020 Forecasts for output growth in 2021
PDF

CDF

Quantiles

Note: Top row: step-wise uniform PDF (dotted lines) implied by the pooling probabilities z̄j , j = 1, . . . , J and consensus PDF
using BNP (posterior random draws in light gray). Middle row: cumulated histogram pooling probabilities Z̄j j = 1, . . . , J
(crosses) and consensus CDF using BNP (posterior random draws in gray). Bottom row: quantile ranges of the consensus
distribution. Bottom panels: Selected quantiles of the consensus distribution computed using the BNP approach. The quantiles
shown are the 5th, 10th, 25th, 50th, 75th, 90th, and 95th, with colors becoming lighter the farther away the quantile is from
the median. The bars represent the posterior means for each quantile and, for each quantile, the (5%,95%) posterior coverage
intervals are shown using triangles.

After the seminal paper by Stone (1961), pooling of densities has been extensively applied

in the empirical literature (see, e.g. DeGroot and Mortera, 1991; DeGroot et al., 1995) and

extended along different directions including nonlinear pooling (e.g., see Genest and Zidek,
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1986; DeGroot and Mortera, 1991; Clements and Harvey, 2011), calibrated linear pooling

(e.g., Ranjan and Gneiting, 2010), and generalized pooling (see, e.g. Kapetanios et al., 2015;

Bassetti et al., 2018). In this literature, a parametric family of aggregation functions Cη from

[0, 1]n to [0, 1], with η ∈ E, is used to pool together the CDFs:

F̄ η(y) = Cη(F (y|θ1), . . . , F (y|θn)). (10)

The linear pooling is a special case of these general frameworks, which can be obtained

choosing Cη(x1, . . . , xn) = η1x1 + . . . + ηnxn and ηj = wj. Optimal pooling has been in-

troduced to take advantage of the heterogeneous forecast abilities of the respondents (see,

e.g. Hall and Mitchell, 2007; Geweke and Amisano, 2011; Clements and Harvey, 2011). In

this framework the weights wj, j = 1, . . . , n, of the linear pooling or the parameters η of

the generalized pooling are either specified as a function of the relative performances of the

forecasters, or chosen following some statistical criteria. In both frameworks forecast per-

formances are taken into account and usually obtained from previous forecasting exercises.

The literature has also recognized that relative forecasting performance may change over

time and has proposed time-varying pooling schemes (see, e.g. Billio et al., 2013; Del Negro

et al., 2016; McAlinn and West, 2019).

The pooling techniques reviewed above make it possible to partly summarize the informa-

tion content of the individual predictive densities. In the case of linear pooling it is possible

to establish a relationship between the first and second moments of the pooled distribution

and the cross-sectional distribution of the moments of the individual CDFs. For instance,

the uncertainty in the linear pooling distribution can be related to the uncertainty in the

individual forecasts. The variance of the consensus CDF, sometimes refereed to as aggre-

gate uncertainty, is the sum of the average (individual) uncertainty σ̄2 and the disagreement

among forecasters V(µ), defined as

σ̄2 =
n∑
i=1

wiσ
2
i , V(µ) =

n∑
i=1

wi(µi − µ̄)2, (11)

where µi and σ2
i are the mean and variance, respectively, of the i-th forecaster CDF, i =

1, . . . , n, and µ̄ = w1µ1 + . . . + wnµn is the mean of the linear pooling. These indicators

have been used in macroeconomic analysis, to capture different aspects of the aggregate

uncertainty (see, e.g. Giordani and Soderlind, 2003). See ClementsetalCHAPT-inVOLUME

(2022) for more details on the uncertainty and disagreement decomposition and for a review

of the literature.
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VI The Evolution of Professional Forecasters’ Density

Forecasts during the COVID Pandemic

Figure 10: GDP Growth Uncertainty during COVID

Forecasts for Current Year Forecasts for the Following Year

Mean and Quantiles of the Consensus Density Forecast

Variance of the Consensus Density Forecast, Average Uncertainty and Disagreement

Note: Left column: current year; right column: next year. Top row: mean of the consensus distribution (black solid line);
the 5th, 10th, 25th, 75th, 90th, and 95th quantiles of the consensus distribution are displayed using different shades of gray.
Bottom row: variance of the consensus forecast (solid black line), average uncertainty across forecasters σ̄2 (dashed gray line);
disagreement V(µ) (dash-and-dotted black line). For each object the shaded areas display the 90 percent posterior credible
intervals.

This section describes the evolution of SPF density forecasts for GDP growth and in-

flation during the COVID pandemic. We discuss the change in the consensus forecast, in

average measures of subjective uncertainty, as well as heterogeneity in both mean projec-

tions and subjective confidence in such projections. We show the time series for these various

objects of interest from 2007 to 2021, where the starting date is chosen so that the analysis

includes the Great Recession for comparison. We will focus on the surveys for both the



28

Figure 11: Average and Individual GDP Growth Uncertainty during COVID

Forecasts for Current Year Forecasts for the Following Year

Individual, Mean, and Consensus Density Forecast IQR

Heterogeneity in Uncertainty for GDP Density Forecasts

Note: Top panels: Individual (light gray with crosses), mean (solid black), and consensus density forecast (dashed black) IQRs.
Left column: current year; right column: next year. Bottom panels: Cross-sectional IQR for individual IQD(10,90)’s (dashed),
IQRs (dash-and-dotted), and standard deviation (solid). For each object the shaded areas display the 90 percent posterior
credible intervals. Left column: current year; right column: next year.

current and the following year made in Q2 of each year, keeping constant the quarter in

which the survey is taken so that the forecast horizon is comparable across the time series.

We choose Q2 because we have observations in 2020 after the pandemic had begun as well

as for 2021, but the general conclusions are broadly similar regardless of the quarter chosen.
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Figure 12: GDP Growth at Risk during COVID

Forecasts for Current Year Forecasts for the Following Year

10th Quantile for Individual and Consensus Density Forecasts

Note: 10th quantile for individual (light gray with crosses) and consensus density forecast (dashed black); the solid black line
depicts the average across individuals. Left column: current year; right column: next year.

VI.A GDP Growth

The two panels in the top row of Figure 10 display the mean and selected quantiles of the

consensus forecast PDF f̄(y) defined in equation (9) for the current and the following year.

Specifically, in each panel the black solid line in each panel shows the mean of the consensus

distribution, while the 5th, 10th, 25th, 75th, 90th, and 95th quantiles of the distribution are

displayed using different shades of gray (for all objects in the top panels we show the BNP

posterior means).

The panels on the bottom row show the variance of the consensus forecast (solid black

line) together with its decomposition between average uncertainty across forecasters σ̄2

(dashed gray line) and disagreement V(µ) (dash-and-dotted black line). For each object

the line represents the posterior BNP mean, while the shaded areas display the 90 percent

posterior credible intervals.

Focusing on the projections for the current year (left column), we see that the consensus

forecast distribution goes deep into negative territory in 2020, and its variance increases to

unprecedented levels.11 While disagreement also rises notably in 2020, most of the increase

11It is important to recall that the survey design, and in particular the location of the bin edges yj , changed

in 2009 and then again, dramatically, in 2020. This may have impacted the reported subjective uncertainty.
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Figure 13: Inflation Uncertainty during COVID

Forecasts for Current Year Forecasts for the Following Year

Mean and Quantiles of the Consensus Density Forecast

Variance of the Consensus Density Forecast, Average Uncertainty, and Disagreement

Note: Left column: current year; right column: next year. Top row: mean of the consensus distribution (black solid line);
the 5th, 10th, 25th, 75th, 90th, and 95th quantiles of the consensus distribution are displayed using different shades of gray.
Bottom row: variance of the consensus forecast (solid black line), average uncertainty across forecasters σ̄2 (dashed gray line),
disagreement V(µ) (dash-and-dotted black line). For each object the shaded areas display the 90 percent posterior credible
intervals.

in the variance of the consensus distribution is due to the increase in the average variance

across individuals. In 2021 the variance of the consensus forecasts, the average variance, and

disagreement all fall to about one-third of their 2020 respective levels, but remain elevated

compared to historical standards. The bottom panels also display the 90 percent credible

intervals for each object of interest (shaded areas) and show that the increases in both

uncertainty and disagreement during COVID are very significant even if one takes inference

uncertainty into account.

Moving on to the forecasts for the following year (right column), the variance of the

consensus forecast also rises to unprecedented levels in 2020, although it is smaller by about
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Figure 14: Average and Individual Inflation Uncertainty during COVID

Forecasts for Current Year Forecasts for the Following Year

Individual, Mean, and Consensus Density Forecast IQR

Heterogeneity in Uncertainty for Inflation Density Forecasts

Note: Top panels: Individual (light gray with crosses), mean (solid black), and consensus density forecast (dashed black) IQRs
(top row) and IQD(10,90) (bottom row). Left column: current year; right column: next year. Bottom panels: Cross-sectional
IQR for individual IQD(10,90)’s (dashed), IQRs (dash-and-dotted), and standard deviation (solid). For each object the shaded
areas display the 90 percent posterior credible intervals. Left column: current year; right column: next year.

one-third than the variance for the current year. A key difference relative to the current-

year projections is that disagreement is as important a driver for this increase as the average

variance across individuals. In 2021 the average variance declines a bit, but remains very

high, while disagreement falls by more than half, but remains quantitatively important. The

only two episodes where disagreement plays a non-negligible role are the COVID crisis and

the Great Recession.

Figure 10 showed that average subjective uncertainty for GDP growth predictions, as

measured by the variance, rose dramatically during the COVID pandemic. Was this rise
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Figure 15: Inflation at Risk during COVID

Forecasts for Current Year Forecasts for the Following Year

90th Quantile for Individual and Consensus Density Forecasts

Note: 90th quantile for individual (light gray with crosses) and consensus density forecast (dashed black); the solid black line
depicts the average across individuals.

common to all forecasters? Is it robust to different measures of uncertainty? (Recall from

previous sections that different measures can result in different answers as density forecasts

are sometimes far from Gaussian.) Was it due to compositional effects? Figure 11 addresses

these questions.

The top panels of Figure 11 use the IQR as a measure of uncertainty (results for the

IQD(10,90) are qualitatively similar). Each panel displays the IQR for individual forecasters

(thin gray lines with crosses), the mean of the cross-sectional IQR distribution (solid line; the

median is very similar and therefore not reported), and the IQR for the consensus forecast

(dashed line). We show individual measures of uncertainty so that one can informally assess

the extent to which changes in the composition of the panel affect summary measures of

uncertainty such as the mean (Manski, 2018, stresses the extent to which the literature has

often ignored compositional changes when discussing the evolution of consensus measures).

The bottom panels of Figure 11 provide summary measures of heterogeneity in uncertainty

across respondents. Specifically, they display the cross-sectional IQR of different measures

of individual uncertainty: the IQR, the IQD(10,90), and the standard deviation. The left

and right columns show the results for projections concerning the current and following year,

respectively.

The left column of Figure 11 shows that the increase in the uncertainty for the current
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year is (almost) universal: the IQR rises for all but one forecaster. The mean of the ranges

and the range of the consensus forecast increase approximately by the same amount, high-

lighting that disagreement, while important in absolute terms, is, in relative terms, swamped

quantitatively by the increase in uncertainty. The change in uncertainty for current-year

projections differs widely across respondents, however. This is shown by the fact that the

cross-sectional IQRs of various measures of uncertainty all rise substantially in 2020 (bottom-

left panel). For instance the IQR for both standard deviations and IQR rises from about .5

to 2 in 2020, while the IQR for IQD(10,90) increases from 1 to almost 5.

The situation is very different for the year-ahead forecasts. The increase in volatility in

2020 for the following-year forecast is less noticeable, as observed before. It is also far from

homogeneous, with a sizable rise in uncertainty for some forecasters and a decline for others

(top-right panel). The increase in disagreement is also evident, as the IQR for the consensus

rises more than the average individual IQR. Another difference with the current-year fore-

casts is that uncertainty remains on average as elevated in 2021 as in 2020. Heterogeneity in

uncertainty for year-ahead forecasts also rises in 2020 (bottom-right panel). Partly because

the increase in uncertainty is not as pronounced as for current-year projections, the rise in

heterogeneity is also less sizable.

Last, we discuss “growth at risk” as measured by the 10th quantiles of the forecast

distribution (results for the 5th quantile are similar, if a bit more extreme). The notion of

“growth at risk” has become popular following the seminal work of Adrian et al., 2019; see

also Kozlowski et al., 2020b, 2019, 2020a for a discussion of the macroeconomic implications

of tail risks. In 2020 there is much dispersion in growth at risk across respondents, with the

10th quantiles ranging from -5 to about -18 percent. All quantiles are much lower relative

to pre-COVID years, however, indicating that growth at risk in the short run increased

dramatically relative to previous years. The picture is quite different for year-ahead forecasts,

where growth at risk increases noticeably for some forecasters but declines for others, so that

the 10th quantile of the consensus forecast falls in 2020 but the mean declines only slightly.

VI.B Inflation

Turning to density forecasts for GDP deflator inflation, Figure 13 documents that the mean

of the consensus distribution, which of course coincides with the average mean projection

across forecasters, fell in the period from 2019 to 2020 but then increased noticeably in

2021, especially for the current year. In sharp contrast with the GDP growth projections,
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the variance of the consensus forecast for inflation remains well below pre-Great Recession

levels for both current-year and year-ahead predictions, although it increased a bit during

COVID for current-year forecasts. In fact, much of the increase in the variance of the

consensus distribution for current-year projections from 2019 to 2020 is due to an increase

in disagreement, as average uncertainty across forecasters rose only modestly. From 2020 to

2021, average uncertainty remained essentially flat for the current year, after accounting for

estimation uncertainty, but disagreement declined.

Figure 14 confirms that average inflation uncertainty remains low by historical standards

during the COVID period, no matter how it is measured. In fact, for most individuals,

uncertainty barely changes from 2019 to 2020. Heterogeneity in uncertainty, as measured

by the cross-sectional IQRs also does not rise during the pandemic. Indeed, both average

uncertainty and heterogeneity in uncertainty appear to be on a downward trend since the

Great Recession—a trend that is barely affected by the COVID period. This trend seems to

be driven by high uncertainty forecasters who either changed their view and became more

confident about their inflation projections, or disappeared from the sample.

Figure 15 shows that “inflation at risk,” as measured by the 90th quantile of the distri-

bution, fell on average from 2019 to 2020 but rose noticeably in 2021 (results for the 95th

quantile are similar; to our knowledge, Andrade et al., 2012, coined the term “inflation at

risk” and were the first to measure it for SPF forecasters). However, in Q2 this measure

was close to or slightly below the levels reached in 2007, before the Great Recession. The

dispersion in inflation at risk across forecasters in 2021 is much less pronounced than it was

in 2007 or even in 2011, when oil prices rose following the so-called Arab Spring.

VII Conclusions

The past two decades witnessed the emergence of a large number of probabilistic surveys

in macroeconomics eliciting predictive probabilities from professional forecasters, financial

market participants, consumers, and firms, in the US and other countries. These surveys

provide a wealth of information to researchers, who have enthusiastically used them to study

several questions, such as the evolution of uncertainty over time.

This chapter reviewed this growing literature, with a particular emphasis on the ap-

proaches employed to translate the information provided by forecasters into objects of inter-

est for macroeconomists. It also discussed the substantial inference challenges that this task
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entails and presented a novel Bayesian non-parametric approach proposed by Del Negro et

al. (2018) that tries to address some of these challenges.

Many questions concerning the proposed approach remain. One question pertains to the

robustness with respect to the choice of priors and the base function—e.g., using a mixture of

three as opposed to two normals. Another question relates to the robustness of the inference

to the survey design and in particular to the location of the bin edges. We performed two

experiments using the 2020Q2 real GDP survey. In the first experiment we merged the left

open bin (−∞,−12] with the adjacent closed bin (−12,−6], while in the second we merged

the two closed bins (−12,−6] and (−6,−3]. This preliminary investigation indicates, not

surprisingly, that inference is much sharper when more information is provided—that is,

when the bins are not merged. For most of the objects considered, the (5,95) posterior

credible intervals from BNP obtained when less information is available (when the bins are

merged) include the much narrower (5,95) intervals obtained using all the information from

the survey. This suggests that the procedure may adequately reflect the loss of information,

although a much more thorough investigation is needed.

Finally, for the time being the BNP approach deals with one survey (one cross-section)

and one forecast variable at the time. It would be interesting to extend the approach to a

panel context, which would permit joint inference across surveys for any object of interest

(e.g., one could test the significance of changes over time for the average uncertainty across

forecasters). Similarly, it would be interesting to extend the approach to a multi-variable

context, although at the moment we are not aware of any survey that systematically asks

probabilistic questions for joint distributions (say, GDP growth and inflation).

As more and more probabilistic surveys are being conducted, it is clear that much more

research is needed in order to make progress on the econometric challenges discussed in this

chapter—ideally using a variety of diverse approaches, both frequentist and Bayesian. We

hope that this review will help spur interest in such research.
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